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with empty or connected boundary, called semi-simple and weak semi-
simple crystallizations, with a particular attention to their properties of
minimizing combinatorially defined PL-invariants, such as the regular
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1. Introduction

It is well known that, thanks to a bright idea by Mario Pezzana ([28, 29]),
every closed PL n-manifold M can be triangulated by a pseudocomplex K,
whose vertices are exactly n+1 (i.e. the minimum possible). If this is the case,
K and its dual edge-colored graph are called a contracted triangulation and a
crystallization of M respectively.

More recently, the above result was extended to singular n-manifolds, i.e.
triangulated polyhedra, whose vertices may have not only spheres, but also
closed connected (n − 1)-manifolds as links. In this context, some kind of
“minimality” with respect to the number of vertices of the obtained pseudo-
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complex can be considered, too. In particular, if M has only one singular
vertex, then Pezzana’s theorem can be presented exactly in the same form.
Hence, each such singular n-manifold may be combinatorially visualized and
studied by means of regular graphs of degree n+ 1 (still called crystallizations)
whose edges are labelled by n+ 1 colors and such that the subgraph obtained
by deleting all edges of any chosen color is connected ([15, 20]).

Since singular n-manifolds with only one singular vertex are in bijection
with manifolds with connected boundary, crystallizations can be thought of as
a representation for manifolds with connected (non-spherical) boundary, too.
Straightforward generalizations are known for singular n-manifolds with several
singular vertices, i.e. for compact manifolds with several boundary components.

The present paper is devoted to present a unifying survey about some special
classes of crystallizations of compact PL 4-manifolds with empty or connected
boundary, called semi-simple and weak semi-simple crystallizations (see Sec-
tion 4 for details), with a particular attention to their properties of minimizing
interesting combinatorially defined PL-invariants, such as the regular genus,
the Gurau degree and the gem-complexity.

The main achievement is the proof of the following summarizing result,
which is an original contribution of the present paper.

Theorem 1.1 (Main Theorem). Let M4 be a compact 4-manifold with empty

or connected boundary, and let cM4 be its associated singular manifold; let us
assume rk(π1(M4)) = m ≥ 0 and rk(π1(cM4)) = m0 ≥ 0. Then:

(a) The regular genus G(M4) of M4 satisfies

G(M4) ≥ 2χ(cM4) + 5m− 2(m−m0)− 4.

Moreover, equality holds if and only if M4 admits a weak semi-simple
crystallization.

(b) The Gurau degree DG(M4) of M4 satisfies

DG(M4) ≥ 12
h
2χ(cM4) + 5m− 2(m−m0)− 4

i
.

Moreover, equality holds if and only if M4 admits a semi-simple crystal-
lization.

(c) The gem-complexity k(M4) of M4 satisfies

k(M4) ≥ 3χ(cM4) + 10m− 4(m−m0)− 6.

Moreover, equality holds if and only if M4 admits a semi-simple crystal-
lization.
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A further original contribution of the paper is Proposition 4.4, yielding a
characterization of compact 4-manifolds admitting semi-simple crystallizations,
via a relationship between gem-complexity and regular genus.

In Section 5 the relevant1 problem of the additivity of regular genus with
respect to connected sum is studied, and it is proved that the additivity holds
for all compact 4-manifolds with empty or connected boundary which admit
weak semi-simple crystallizations: see Proposition 5.2.

Further, Section 6 recalls the notion of gem-induced trisection (due to [10]),
which extends the well-known notion of trisection (introduced in 2016 by Gay
and Kirby: see [24]) to compact orientable 4-manifolds with connected bound-
ary, whose associated singular manifold is simply-connected. Also in this con-
text, as a particular case of results proved in [10], weak semi-simple crystal-
lizations turn out to have a “minimality property”, which enables to directly
relate the so called gem-induced trisection genus with the regular genus and/or
the Betti numbers of the represented manifold: see Propositions 6.5 and 6.6.

2. Basic elements of crystallization theory

In the present section we will briefly review some basic notions of the so called
crystallization theory, as a representation tool for piecewise linear (PL) compact
manifolds; further details may be found in the quoted papers.

From now on, unless otherwise stated, all spaces and maps will be considered
in the PL category, and all manifolds will be assumed to be compact and
connected.

Definition 2.1. An (n + 1)-colored graph (n ≥ 2) is a pair (Γ, γ), where
Γ = (V (Γ), E(Γ)) is a multigraph (i.e. multiple edges are allowed, while loops
are forbidden) which is regular of degree n + 1, and γ is an edge-coloration,
that is a map γ : E(Γ)→ ∆n = {0, . . . , n} which is injective on adjacent edges.

For sake of concision, when the coloration is clearly understood, colored
graphs are often denoted simply by Γ.

For every {c1, . . . , ch} ⊆ ∆n let Γfc1;:::;chg be the subgraph obtained from
Γ by deleting all the edges that are not colored by the elements of {c1, . . . , ch}.
In this setting, the complementary set of {c} (resp. {c1, . . . , ch}) in ∆n will
be denoted by ĉ (resp. ĉ1 · · · ĉh). The connected components of Γfc1;:::;chg
are called {c1, . . . , ch}-residues or h-residues of Γ; their number is denoted by
gfc1;:::;chg (or, for short, by gc1;c2

, gc1;c2;c3
and gĉ if h = 2, h = 3 and h = n

respectively).

1In the closed 4-dimensional case, the problem is strictly related to the Smooth Poincaré
Conjecture: see [21] or Section 5.
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Each (n+ 1)-colored graph Γ encodes an associated n-dimensional pseudocom-
plex K(Γ):

• K(Γ) contains an n-simplex for each vertex of Γ, and the vertices of any
n-simplex are (injectively) labelled by the elements of ∆n;

• if two vertices of Γ are c-adjacent (c ∈ ∆n), then the corresponding n-
simplices of K(Γ) are glued along their (n−1)-dimensional faces opposite
to the c-labelled vertices, so that equally labelled vertices are identified.

In general |K(Γ)| is an n-pseudomanifold and Γ is said to represent it.

Via the above construction, it is not difficult to prove that:

- |K(Γ)| is a closed n-manifold iff, for each color c ∈ ∆n, all ĉ-residues of
Γ represent the (n− 1)-sphere;

- |K(Γ)| is a singular 2 n-manifold iff, for each color c ∈ ∆n, all ĉ-residues
of Γ represent closed connected (n− 1)-manifolds.

Remark 2.2: Note that a bijective correspondence exists between singular n-
manifolds and compact n-manifolds with no spherical boundary components.
In fact, if N is a singular n-manifold, then a compact n-manifold Ň is easily ob-
tained by deleting small open neighbourhoods of its singular vertices: Ň turns
out to be either closed (in case N itself is a closed manifold, and hence N = Ň)
or with non-empty boundary, without spherical components. Conversely, given
a compact n-manifold M without spherical boundary components, a singular
n-manifold cM can be constructed by capping off each component of ∂M by a
cone over it.

For this reason, throughout the present work, we will restrict our atten-
tion to compact manifolds without spherical boundary components, and an
(n + 1)-colored graph Γ will be said to represent a compact n-manifold M of
this class (or, equivalently, to be a gem of M , where gem means Graph En-
coding Manifold: see [26]) if and only if it represents the associated singular

manifold cM .

A restricted class of graphs gives the name to the whole theory:

Definition 2.3. An (n+1)-colored graph Γ representing a compact n-manifold
with empty or connected boundary is said to be a crystallization of M if, for
each color c ∈ ∆n, Γĉ is connected.

2A polyhedron jKj (K being a simplicial complex) is said to be a singular n-manifold if
the links of the vertices of K are closed connected (n � 1)-manifolds. The notion extends
also to polyhedra associated to colored graphs: jK(Γ)j is said to be a singular n-manifold if
the links of vertices of K(Γ) in its first barycentric subdivision are closed connected (n� 1)-
manifolds. In both cases, a vertex whose link is not a (n � 1)-sphere is called a singular
vertex.
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The following theorem extends to the boundary case a well-known result -
originally due to Pezzana ([28, 29]) - founding the combinatorial representation
theory for closed manifolds of arbitrary dimension via colored graphs.

Theorem 2.4 ([15, 9]). Any compact orientable (resp. non orientable) n-
manifold with no spherical boundary components admits a bipartite (resp. non-
bipartite) (n + 1)-colored graph representing it. In particular, any compact
n-manifold with empty or connected boundary admits a crystallization repre-
senting it.

The existence of a particular type of embedding of colored graphs into
surfaces, is the key result in order to define two of the PL-invariants considered
in the present paper.

Proposition 2.5 ([23]). Let Γ be a bipartite (resp. non-bipartite) (n + 1)-
colored graph of order 2p. Then for each cyclic permutation ε = (ε0, . . . , εn)
of ∆n, up to inverse, there exists a cellular embedding of Γ into an orientable
(resp. non-orientable) closed surface F"(Γ) whose regions are bounded by the
images of the {εj , εj+1}-colored cycles, for each j ∈ Zn+1. Moreover, the genus
(resp. half the genus) ρ"(Γ) of F"(Γ) satisfies

2− 2ρ"(Γ) =
X

j2Zn+1

g"j ;"j+1 + (1− n)p.

Definition 2.6. Let Γ be an (n + 1)-colored graph. If {ε(1), ε(2), . . . , ε( n!
2 )} is

the set of all cyclic permutations of ∆n (up to inverse), ρ"(i)(Γ) (i = 1, . . . , n!
2 )

is called the regular genus of Γ with respect to the permutation ε(i). Then, the
Gurau degree (or G-degree for short) of Γ, denoted by ωG(Γ), is defined as

ωG(Γ) =

n!
2X
i=1

ρ"(i)(Γ)

and the regular genus of Γ, denoted by ρ(Γ), is defined as

ρ(Γ) = min {ρ"(i)(Γ) / i = 1, . . . ,
n!

2
}.

As a consequence, focusing on the represented compact n-manifolds, the
following combinatorially defined PL-invariants are introduced:

Definition 2.7. Let M be a compact (PL) n-manifold (n ≥ 2). The (general-
ized) regular genus of M is defined as

G(M) = min{ρ(Γ) | Γ represents M}.

and the Gurau degree (or G-degree) of M is defined as

DG(M) = min{ωG(Γ) | Γ represents M}.
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Remark 2.8: Note that the (generalized) regular genus is a PL-invariant ex-
tending to higher dimension the classical genus of a surface and the Heegaard
genus of a 3-manifold. It succeeds in characterizing spheres in arbitrary dimen-
sion ([21]), and a lot of classifying results via regular genus have been obtained,
especially in dimension 4 and 5 (see [16], [6], [9] and their references). On the
other hand, Gurau degree originally arises, within theoretical physics, from
the theory of random tensors as an approach to quantum gravity in dimen-
sion greater than two ([25]). Also G-degree characterizes spheres in arbitrary
dimension and some classifying results via this invariant have recently been
obtained in dimension 3 and 4: see [15] for the compact 3-dimensional case,
[12] for the closed 4-dimensional case, and [9] for the compact 4-dimensional
case.

A further PL-invariant has been - quite naturally - defined within crystal-
lization theory3:

Definition 2.9. For each compact n-manifold M , its gem-complexity is the
non-negative integer k(M) = p − 1, where 2p is the minimum order of an
(n+ 1)-colored graph representing M .

We point out that, for each compact n-manifold with empty or connected
boundary, both regular genus and G-degree and gem-complexity are actually
realized by a crystallization.

Moreover, if M is a compact n-manifold with empty or connected boundary,
it is always possible to assume - up to a permutation of the color set - that any
gem (and, in particular, any crystallization) of M has color n as its (unique)
possible singular color, i.e. that each ĉ-residue, with c 6= n, represents the
(n− 1)-sphere.

In Section 6 a fourth PL-invariant (called G-trisection genus) will be com-
binatorially defined via colored graphs, in the restricted setting of compact

4-manifolds M4 such that the associated singular manifold dM4 is simply-
connected.

3. Computing invariants from crystallizations of compact
4-manifolds

In the present section, M4 will be a compact 4-manifold with empty or con-
nected boundary, such that rk(π1(M4)) = m ≥ 0 and rk(π1(cM4)) = m0 ≥ 0

3Note that a lot of significant classification results have been obtained within crystalliza-
tion theory with respect to gem-complexity, too: as regards the closed case, see, for example,
[1] and [7] for the dimension 3, [8] and [13] for the dimension 4; in the compact case, see
[19] for a classification according to gem-complexity for compact orientable 3-manifolds with
toric boundary.
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(with m0 ≤ m), and Γ will be a 5-colored graph representing M4. As pointed
out in Section 2, we may assume without loss of generality Γ to be a crystal-
lization (i.e. Γĉ is connected for any c ∈ ∆4) and color 4 to be its (unique)
possible singular color (i.e. Γĉ represents S3, for any c 6= 4). Furthermore, let
us denote by P4 the set of all cyclic permutations ε = (ε0, ε1, ε2, ε3, ε4) of ∆4

such that ε4 = 4.

With the notations settled in Section 2 for the number of residues, [3] and [9]
yield, ∀j, k, l ∈ ∆3:

gj;k;l = 1 +m0 + tj;k;l, with tj;k;l ≥ 0 and {r, s} = ∆4 − {j, k, l};

gj;k;4 = 1 +m+ tj;k;4, with tj;k;4 ≥ 0 and {r, s} = ∆3 − {j, k}.

As a consequence:X
i;j;k2�4

gi;j;k = 10 + 10m− 4(m−m0) +
X

i;j;k2Z5

ti;j;k (1)

On the other hand, in [9] the following relation is proved to hold for each
i ∈ ∆4 and for each ε ∈ P4:

g d"i�1; d"i+1
= g"i;"i+2;"i+3

= 1 + ρ" − ρ"
î�1
− ρ"̂

i+1
(2)

where εî = (ε0, . . . , εi�1, εi+1, . . . , ε4 = 4) and ρ", ρ"î
respectively denote ρ"(Γ),

ρ"î
(Γ b"i

).
Therefore:

g"i�1;"i+1;"i+3 = 1 + ρ" − ρ"î
− ρ"̂

i+2
= 1 +m0 + t"i�1;"i+1;"i+3 ∀i ∈ {2, 4} and

g"i�1;"i+1;"i+3
= 1 + ρ" − ρ"î

− ρ"̂
i+2

= 1 +m+ t"i�1;"i+1;"i+3
∀i ∈ {0, 1, 3},

which trivially imply

ρ" − ρ"î
− ρ"̂

i+2
−m0 = t"i�1;"i+1;"i+3

∀i ∈ {2, 4} and

ρ" − ρ"î
− ρ"̂

i+2
−m = t"i�1;"i+1;"i+3 ∀i ∈ {0, 1, 3}

(3)

where all subscripts are taken in Z5.

Computations regarding the regular genus, the G-degree and the order of Γ,
performed in the quoted papers and in [17], allow to prove the following sum-
marizing result, which is an original contribution of the present paper.

Proposition 3.1. Let Γ be an order 2p crystallization of a compact 4-manifold
M4 with empty or connected boundary, with rk(π1(M4)) = m ≥ 0 and

rk(π1(cM4)) = m0 ≥ 0 (m0 ≤ m). Then:
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(a) ρ"(Γ) = 2χ(cM4) + 5m− 2(m−m0)− 4 +
X
i2Z5

t"i;"i+2;"i+4
;

(b) ωG(Γ) = 6
h
4χ(cM4) + 10m− 4(m−m0)− 8 +

X
i;j;k2Z5

ti;j;k

i
;

(c) p− 1 = 3χ(cM4) + 10m− 4(m−m0)− 6 +
X

i;j;k2Z5

ti;j;k.

Proof. In [17], for each cyclic permutation ε = (ε0, ε1, ε2, ε3, ε4) of ∆4, the
associated permutation ε0 has been defined as ε0 = (ε0, ε2, ε4, ε1, ε3).4 Then,
[17, Proposition 7] yields:

χ(N4) =
�
ρ"(Γ) + ρ"0(Γ)

�
− p+ 3 (4)

for any order 2p crystallization of a singular 4-manifold N4 with one singular
vertex at most.

Moreover, in virtue of [17, Proposition 6(b)],

ρ"0(Γ)− ρ"(Γ) =
X
j2Z5

g"j ;"j+1;"j+2
−
X
j2Z5

g"j ;"j+2;"j+4

holds for any 5-colored graph representing a singular 4-manifold N4; hence:

ρ"0(Γ)− ρ"(Γ) =
X
i2Z5

t"i;"i+1;"i+2 −
X
i2Z5

t"i;"i+2;"i+4 . (5)

Then, by comparing relations (5) and (4), the following formula follows:

χ(cM4) = 2ρ"(Γ) + 3− p+
X
i2Z5

t"i;"i+1;"i+2
−
X
i2Z5

t"i;"i+2;"i+4
(6)

On the other hand, an easy computation (making use of [12, Lemma 21])
yields:

χ(cM4) = 5− 1

3

X
i;j;k2�4

gi;j;k +
1

3
p. (7)

Hence, by comparison with (6) and by using (1):

χ(cM4) = 2ρ"(Γ) + 3− 3χ(cM4) + 5− 10m+ 4(m−m0)− 2
X
i2Z5

t"i;"i+2;"i+4
,

4Note that, if " 2 P4 is assumed (i.e. "4 = 4), we can always consider "′ =
("1; "3; "0; "2; "4 = 4), i.e. "′ 2 P4, too.
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from which

ρ"(Γ) = 2χ(cM4) + 5m− 2(m−m0)− 4 +
X
i2Z5

t"i;"i+2;"i+4
(8)

easily follows, as well as

ρ"0(Γ) = 2χ(cM4) + 5m− 2(m−m0)− 4 +
X
i2Z5

t"i;"i+1;"i+2 . (9)

This proves statement (a).

In virtue of [17, Proposition 5],

ωG(Γ) = 6
�
ρ"(Γ) + ρ"0(Γ)

�
holds for each 5-colored graph (Γ, γ), and for each pair (ε, ε0) of associated cyclic
permutations of ∆4. Hence, by summing relations (8) and (9), statement (b)
easily follows:

ωG(Γ) = 6
�

2ρ"(Γ) + (ρ"0(Γ)− ρ"(Γ))
�

= 6
�

4χ(cM4) + 10m− 4(m−m0)− 8 +
X

j;k;l2�4

tj;k;l

�
.

Finally, in order to prove statement (c), it is sufficient to make use of rela-
tion (7), together with relation (1):

p− 1 = 3χ(cM4)− 16 +
X

i;j;k2�4

gi;j;k

= 3χ(cM4)− 16 + 10 + 10m− 4(m−m0) +
X

j;k;l2�4

tj;k;l.

The following statement, extending [12, Corollary 24] to the connected bound-
ary case, is a direct consequence of Proposition 3.1 (b) and (c):

Corollary 3.2. Let M4 be a compact 4-manifold M4 with empty or connected
boundary, Then:

DG(M4) = 6
h
χ(cM4)− 2 + k(M4)

i
.
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4. Weak semi-simple crystallizations of compact
4-manifolds

In [3] and [2] two particular types of crystallizations are introduced and studied,
by generalizing the notion of simple crystallizations for closed simply-connected
4-manifolds (see [4] and [14]): they are proved to be “minimal” with respect to
regular genus, among all graphs representing the same closed 4-manifold.

In [10] these definitions are extended to compact 4-manifolds with empty
or connected boundary.

Definition 4.1. Let M4 be a compact 4-manifold, with empty or connected
boundary. A 5-colored graph Γ representing M4 is called semi-simple if gj;k;l =
1 +m0 ∀ j, k, l ∈ ∆3 and gj;k;4 = 1 +m ∀ j, k ∈ ∆3, where rk(π1(M4)) =

m ≥ 0 and rk(π1(cM4)) = m0 ≥ 0 (m0 ≤ m). Γ is called weak semi-simple
with respect to a permutation ε ∈ P4 if g"i;"i+2;"i+4

= 1 + m ∀ i ∈ {0, 2, 4}
and g"i;"i+2;"i+4

= 1 + m0 ∀ i ∈ {1, 3} (where the additions in subscripts are
intended in Z5).

We point out that, as a consequence of the above definition, if Γ is weak semi-
simple, then gĵ = 1, ∀ j ∈ ∆4, i.e. Γ is a crystallization of M4.
In case m = 0 (and, hence, m0 = 0, too), semi-simple (resp. weak semi-simple)
crystallizations are said to be simple (resp. weak simple).

By making use of relations (3), for all i ∈ ∆4, it is not difficult to prove the
following characterization of weak semi-simple crystallizations:

Proposition 4.2. ([10, Corollary 8]) Let Γ be a crystallization of a compact
4-manifold M4 with empty or connected boundary, with rk(π1(M4)) = m ≥ 0,

rk(π1(cM4)) = m0 ≥ 0 (m0 ≤ m). Then Γ is weak semi-simple with respect to
a cyclic permutation ε ∈ P4 if and only if

ρ"î
=

1

2
(ρ" −m) ∀i ∈ ∆3 and ρ"4̂

=
1

2
(ρ" −m) + (m−m0).

Example 4.3: As concerns the closed case, S4, CP2, S2 × S2 admit simple
crystallizations, while S1×S3, S1e×S3 (the orientable and non-orientable sphere
bundles over S1) and RP4 admit semi-simple crystallizations. See Figures 1, 2,
3, 4, 5 respectively. Moreover, in [4] a simple (order 134) crystallization of the
K3-surface is produced.

In the boundary case, examples of simple crystallizations of S2 × D2 and
ξ2 - the D2-bundle over S2 with Euler number 2 , whose boundary is the lens
space L(2, 1) - are constructed in [9]: see Figures 6 and 7.

In the same paper, semi-simple crystallizations of Y4
h and eY4

h, the genus h
orientable and non-orientable 4-dimensional handlebodies, can be found (see
Figures 8 and 9, where the orientable cases h = 1 and h = 2 are depicted), as
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well as a weak simple (but not simple!) crystallization of ξc (c ∈ Z+ − {1, 2}),
the D2-bundle over S2 with Euler number c whose boundary is the lens space
L(c, 1): see Figure 10.

Other examples of weak simple crystallizations may be found in the existing
catalogue of rigid dipole-free bipartite crystallizations of closed orientable 4-
manifolds, up to 20 vertices (see [8]): in particular, all elements with order
16 turn out to be weak simple crystallizations of simply-connected manifolds,
whose simple crystallizations appear with less than 16 vertices.

Figure 1: The (unique) simple crystallization of S4

Figure 2: The (unique) simple crystallization of CP2

We are now able to prove the Main Theorem, stated in Section 1 .

Proof of the Main Theorem. It is a direct consequence of Proposition 3.1, to-
gether with the definitions themselves of semi-simple and weak semi-simple
crystallization. In fact:

Γ weak semi-simple with respect to ε ∈ P4 ⇐⇒
X
i2Z5

t"i;"i+2;"i+4
= 0

Γ semi-simple ⇐⇒
X

i;j;k2Z5

ti;j;k = 0
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Figure 3: A simple crystallization of S2 � S2

The following statement, characterizing manifolds which admit semi-simple
crystallizations via a relationship between gem-complexity and regular genus,
is an original contribution of the present paper.

Proposition 4.4. Let M4 be a compact 4-manifold with empty or connected
boundary, with rk(π1(M4)) = m ≥ 0, rk(π1(cM4)) = m0 ≥ 0 (m0 ≤ m). Then:

k(M4) =
3G(M4) + 5m− 2(m−m0)

2
⇐⇒

M4 admits a semi-simple

crystallization.

Proof. Let Γ and Γ0 be two crystallizations of M4 and ε ∈ P4 a permutation,
such that G(M4) = ρ(Γ) = ρ"(Γ) and k(M4) = p0 − 1, 2p0 being the order of
Γ0. Statements (a) and (c) of Proposition 3.1 yield:

G(M4) = ρ"(Γ) = 2χ(cM4) + 5m− 2(m−m0)− 4 +
X
i2Z5

t"i;"i+2;"i+4

k(M4) = p0 − 1 = 3χ(cM4) + 10m− 4(m−m0)− 6 +
X

i;j;k2Z5

t0i;j;k

where ti;j;k ≥ 0 (resp. t0i;j;k ≥ 0) is the difference between the number of
{i, j, k}-residues in Γ (resp. in Γ0) and either m + 1 (in case 4 ∈ {i, j, k}) or
m0 + 1 (in case 4 /∈ {i, j, k}).

Moreover,X
i2Z5

t"i;"i+2;"i+4
≤
X
i2Z5

t0�"i;�"i+2;�"i+4
≤
X
i2Z5

t0�"i;�"i+1;�"i+2
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Figure 4: Semi-simple crystallizations of S1 � S3 and S1 e� S3

Figure 5: The (unique) semi-simple crystallization of RP4

holds, for any permutation ε̄ ∈ P4 such that ρ�"(Γ
0) ≤ ρ�"0(Γ

0), ε̄0 denoting, as
in the proof of Proposition 3.1, the permutation of P4 which is associated to ε̄.
Hence:

2k(M4)− 3G(M4)− 5m+ 2(m−m0)
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