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1. Introduction

Consider a nonlinear elliptic problem{
−∆u = λu+ b(x)g(u) in Ω,
u = 0 on ∂Ω,

(1)

where Ω ⊂ IRN , N ≥ 1, is a bounded and regular domain, g : IR 7→ [0,∞) is a
continuous map, b ∈ C(Ω) and λ is a real parameter.

The bifurcation method is one of the most well-known tools in order to study
(nonnegative and nontrivial) solutions of (1). In fact, the bifurcation method
provides the existence of an unbounded continuum C0 ⊂ IR×C1

0 (Ω) of solutions
of (1) emanating from the trivial solution at λ = λ1, where λ1 stands for the
principal eigenvalue of the Laplacian under homogeneous Dirichlet boundary
conditions, under the condition

lim
s→0+

g(s)

s
= 0 (H0)

see for instance [25] and [19].
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In a similar way, if g verifies

lim
s→+∞

g(s)

s
= 0 (H∞)

then an unbounded continuum C∞ of solutions of (1) emanates from infinity at
λ = λ1, [26]. In both cases, the results are similar if the limits are finite and
not necessarily zero, see [4]. We point out that when (H0) and (H∞) are both
satisfied, C0 and C∞ do not have necessarily to coincide, see for instance [6].

We assume now that g verifies only (H0) and not (H∞). Then, the global
behaviour of the continuum C0 depends strongly on g and the sign of b. Let us
summarize the main results in this case. For that, we need to introduce some
notation. Define the sets

B+ := {x ∈ Ω : b(x) > 0},
B− := {x ∈ Ω : b(x) < 0},
B0 = int(Ω \ (B+ ∪B−)),

for which we will assume for simplicity that they are regular sets and that B0

is also connected.
Given a subdomain D ⊂ Ω, we denote by λD1 the principal eigenvalue of the

Laplacian under homogeneous Dirichlet boundary conditions. Moreover, given
(λ, u) ∈ C0 we define ProjIR(λ, u) = λ.

Finally, assume that there exists p > 1 such that

lim
s→+∞

g(s)

sp
= g0 > 0. (S∞)

Hence, when g verifies only (H0) and not (H∞), the main results can be sum-
marized as follows:

1. If b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR, then ProjIR(C0) = (λ1,+∞)
and as consequence there exists at least a positive solution for λ > λ1.

2. If b ≤ 0, b 6= 0 in Ω and B0 6= ∅, then ProjIR(C0) = (λ1, λ
B0
1 ). In this

case, a bifurcation to infinity appears at λ = λB0
1 . Moreover, there exists

at least a positive solution for λ ∈ (λ1, λ
B0
1 ).

3. Assume that b changes sign, (S∞) and that p < p∗, for some p∗ < (N +
2)/(N − 2). Then, (−∞, λ1) ⊂ ProjIR(C0) ⊂ (−∞, λ), for some λ < ∞.
In this case, there exists at least a positive solution for λ < λ1.

There is a large literature on the above problem. Let us focus on those papers
that mainly use the bifurcation technique to get the results. Thanks to the a
priori bounds and the non-existence of positive solutions for λ ≤ λ1, the case
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b(x) ≤ b1 < 0 is the simplest one. For the case b < 0 and B0 6= ∅ we refer to [21]
as a general reference, see also [3, 14, 15, 16, 23] and the references therein.
For the case b changing sign, see for instance [2, 8, 22].

A similar study could be done if g verifies (H∞) and not (H0). However,
in this case, the behaviour of C∞ is less known in general. Let us focus on the
particular case g(u) = uq, 0 < q < 1. Hence, we have the following results:

1. If b ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR, then ProjIR(C∞) = (λ1,+∞).

2. If b(x) ≥ b0 > 0 for all x ∈ Ω for some b0 ∈ IR, then ProjIR(C∞) =
(−∞, λ1).

See for instance [7, 12, 13, 24, 26].
In this paper, our main goal is to study the set of nonnegative and nontrivial

solutions of (1) when conditions (H0) and (H∞) are not fullfilled. For that, we
are going to study the following specific equation{

−∆u = λu+ b(x)(uq + up) in Ω,
u = 0 on ∂Ω,

(2)

where
0 < q < 1 < p

although most of the results obtained here are also true for more general set of
functions.

Problem (2) can be included in a more general problem{
−∆u = λu+ a(x)uq + b(x)up in Ω,
u = 0 on ∂Ω,

(3)

for a and b verifying several structural assumptions. Problem (3) has been
analyzed in [1] when b(x) = γ ≥ 0 under homogeneous Neumann boundary
conditions. In [10] the author studied (3) when b changes sign and some further
conditions on a and b. The author proved the existence of two nonnegative and
nontrivial solutions when λ < λ∗ for some λ∗ ∈ IR. First, the sub-supersolution
method is used to prove the existence of a solution, which is a local minimum
of the associated functional. Finally, using mainly the mountain pass theorem
the existence of the second solution is shown. The case λ = 0 and a(x) = γc(x),
regarding now γ as a real parameter, has been studied for many authors from
the pioneering work [5], see for instance [9, 11, 18] and references therein.

We will study (2) for different conditions on b using bifurcation methods.
In the first results, we deal with the case b changing sign and b negative,
respectively. In both cases, we can not apply directly the bifurcation method,
but we can consider a truncated problem where the bifurcation method can be
applied and then use a compactness method. Our main results can be stated
as follows (see Figure 1):
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Figure 1: Minimal bifurcation diagrams of (2) in the cases b changing sign and
b negative, respectively.

Theorem 1.1. Assume that 0 < q < 1 < p.

1. Assume that b changes sign and that for x close ∂B+,

b+(x) ≈ [dist(x, ∂B+)]γ , γ ≥ 0,

and

1 < p < min{(N + 2)/(N − 2), (N + 1 + γ)/(N − 1)}. (4)

Then, there exists λ∗ ∈ IR such that for (2) possesses at least two non-
negative and nontrivial solutions for λ < λ∗.

2. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω and for some b1 ∈ IR. Then,
there exists λ∗ ∈ IR such that for (2) possesses at least two nonnegative
and nontrivial solutions for λ > λ∗.

Surprisingly, in the case b ≤ 0 and B0 6= ∅, we obtain the existence of two
continua bifurcating from the trivial solution and from infinity at the same
point λ = λB0

1 . The main result is (see Figure 2):

Theorem 1.2. Assume that b ≤ 0, b 6= 0 in Ω and B0 6= ∅. If λ ≤ λ1, (2) does
not possess nonnegative and nontrivial solutions. Moreover:

1. From the trivial solution emanates at λ = λB0
1 an unbounded continuum

C0 ⊂ IR×L∞(Ω) of nonnegative and nontrivial solutions of (2). Moreover,
λB0

1 is the unique bifurcation point from the trivial solution.

2. λ = λB0
1 is a bifurcation point from infinity of nonnegative and nontrivial

solutions, and it is the only one. Moreover, there exists an unbounded
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Figure 2: Minimal bifurcation diagrams of (2) when b ≤ 0 and B0 6= ∅. In
the first case both continua C0 and C∞ are different; in the second one both
coincide.

continuum C∞ of nonnegative and nontrivial solutions of (2) such that

D∞ =

{
(λ, u) : u 6= 0,

(
λ,

u

‖u‖2∞

)
∈ C∞

}
∪ {(λB0

1 , 0)}

is connected and unbounded.

In this case, we are not able to ascertain the global behaviour of these
continua, mainly to the lack of the strong maximum principle in (2).

An outline of this work is as follows: Section 2 contains some properties of
the principal eigenvalue of an elliptic problem. Section 3 is devoted to show
the relative position between a family of supersolutions and a continuum of
solutions of a nonlinear elliptic problem. In Section 3 we study in detail the
truncated problems using the bifurcation method. In Sections 4 and 5 the main
results are proved.

2. Eigenvalue problems

In this section we recall some useful properties of elliptic eigenvalue problems.
Given a subdomain D ⊂ Ω we consider{

−∆u+m(x)u = λu in D,
u = 0 on ∂D,

(5)

where m ∈ L∞(Ω). The following result is well-known (see [20], where a
detailed study of (5) and more general eigenvalue problems can be found)
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Lemma 2.1. There exists a principal eigenvalue of (5), denoted by λD1 (−∆+m).
It is simple and isolated, and it is the only one whose eigenfunction associated
can be chosen to be positive in D. If we denote by ϕ1 a positive eigenfunction
associated to λD1 (−∆ +m), then ϕ1 ∈ C1,α(D), α ∈ (0, 1) and ∂ϕ1/∂n < 0 on
∂D where n is the outward unit vector normal to ∂D.

Moreover, the following properties hold:

1. Asume that m changes sing. Then t 7→ λD1 (−∆ + tm) is continuous,
concave and

lim
t→±∞

λD1 (−∆ + tm) = −∞.

2. Assume that m(x) ≤ m0 < 0 for all x ∈ D. Then, t 7→ λD1 (−∆ + tm) is
continuous, decreasing and

lim
t→±∞

λD1 (−∆ + tm) = ∓∞.

When D = Ω, we omit the superscript and we denote λ1(−∆ + m) =
λΩ

1 (−∆ +m). Moreover, when m ≡ 0 we simply write λD1 instead of λD1 (−∆).

3. Relative position between a subcontinuum of solutions
and a continuous family of supersolution

The main goal of this section is to generalize some results of [15]. Consider the
general elliptic problem {

−∆u = f(x, u) in Ω,
u = 0 on ∂Ω,

(6)

where f : Ω × IR 7→ IR is a continuous function and locally Lipschitz in the
second variable.

We define the positive cone in C1(Ω)

Q := {u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω},

whose interior and exterior are

int(Q) = {u ∈ C1(Ω) : u(x) > 0 for all x ∈ Ω},

and

ext(Q) = C1(Ω) \ Q.

We have the following result
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Lemma 3.1. Let u ∈ C1(Ω) be a supersolution of (6) with u > 0 on ∂Ω and
u ∈ C1

0 (Ω) a solution of (6). Then,

u− u 6∈ ∂Q.

Proof. By contradiction assume that u− u ∈ ∂Q = Q \ int(Q). Then,

w(x) = u(x)− u(x)

verifies that w(x) ≥ 0 for all x ∈ Ω and w(x0) = 0 for some x0 ∈ Ω. Observe
that, {

−∆w +Mw ≥ f(x, u) +Mu− (f(x, u) +Mu) ≥ 0 in Ω,
w > 0 on ∂Ω,

for some M > 0 large enough. The strong maximum principle asserts that
w(x) > 0 for all x ∈ Ω. This is a contradiction.

The main result of this section reads as follows:

Theorem 3.2. Let C be a subcontinuum of solutions C ⊂ I × C1
0 (Ω) of (6),

where I ⊂ IR is a real interval. Let U : I 7→ C1(Ω) a continuous family
of supersolutions of (6) with U(λ) > 0 on ∂Ω. If for some (λ0, u0) ∈ C,
u0 ≤ U(λ0), then u < U(λ) for all (λ, u) ∈ C.

Proof. Consider the continuous map T : I × C1(Ω) 7→ C1(Ω) given by

T (λ, u) := U(λ)− u. (7)

Since T is continuous, then T (C) is connected. By Lemma 3.1 we conclude that
T (C) ∩ ∂Q = ∅. Then, either T (C) is completely inside int(Q) or completely
outside. Since T (λ0, u0) ∈ int(Q), we deduce that T (C) ⊂ int(Q).

In fact, from the proof of Theorem 3.2, we obtain:

Corollary 3.3. Let C ⊂ I ×C1
0 (Ω) a subcontinuum of solutions of (6) and T

the map defined in (7). Then, either

1. T (C) ⊂ int(Q), and therefore, u < U(λ), or

2. T (C) ⊂ ext(Q).
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4. Study of the truncated problems

For δ > 0 we define

fδ(s) :=

{
δq−1s if s ∈ [0, δ],
sq if s > δ.

Let us consider now the truncated problem{
−∆u = λu+ b(x)(fδ(u) + up) in Ω,
u = 0 on ∂Ω.

(8)

We point out that the nonlinear term is locally Lipschitz continuous in the
second variable, and then by the strong maximum principle, any nonnegative
and nontrivial solution of (8) is positive in all Ω.

4.1. b changes sign

First, we prove a non-existence result.

Lemma 4.1. Consider (λ, u) a positive solution of (8). Then

λ ≤ λ for some λ <∞.

Moreover, if B0 6= ∅, then
λ ≤ λB0

1 .

Proof. Take a ball B ⊂ B+ such that b(x) ≥ b0 > 0 for x ∈ B. Let ϕB1 be a
positive eigenfunction associated to λB1 and consider

ϕ =

{
ϕB1 in B,
0 in Ω \B.

Since ϕ ∈ H1
0 (Ω), then on multiplying (8) by ϕ and using that ∂ϕB1 /∂n < 0 on

∂B, we deduce that

0 ≥
∫
B

(
λ− λB1 + b0

fδ(u) + up

u

)
uϕB1 ,

which is a contradiction for λ large, for instance, for λ ≥ λB1 .
Assume now that B0 6= ∅. Let ϕB0

1 be a positive eigenfunction associated
to λB0

1 and consider

ϕ =

{
ϕB0

1 in B0,
0 in Ω \B0.

Now, we can follow the previous argument and conclude that

λ ≤ λB0
1 .
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In the following theorem we show a priori bounds for the solutions of (8).
In the first part, we obtain a priori bounds with respect to the parameter λ,
and then, for a fix λ, with respect to δ. These results will be crucial in order
to pass to the limit as δ → 0. For its proof, we will closely follow [2].

Theorem 4.2. Assume that for x close ∂B+,

b+(x) ≈ [dist(x, ∂B+)]γ , γ ≥ 0,

and

1 < p < min{(N + 2)/(N − 2), (N + 1 + γ)/(N − 1)}. (9)

1. Then, for every bounded interval Λ ⊂ IR there exists a positive constant
M such that

‖u‖∞ ≤M

for any positive solution (λ, u) of (8), with λ ∈ Λ.

2. Fix λ ∈ IR and consider a sequence δn → 0. Denote by un a positive
solution of (8). Then, there exists a positive constant C > 0 such that

‖un‖∞ ≤ C.

Proof. 1. This paragraph follows by Theorem 4.3 in [2].

2. In this case we can follow again the proof of Theorem 4.3 in [2], using a
Gidas-Spruck argument [17] taking into account that

fδ(u) ≤ uq.

We are ready to show the main result in this case (see Figure 3):

Theorem 4.3. Assume that b changes sign, 0 < q < 1 < p and p verifying
(9). Then, there exists an unbounded continuum Cδ in IR × C1

0 (Ω) of positive
solutions of (8) emanating from u ≡ 0 at

λ = λ1(δ) := λ1(−∆− b(x)δq−1).

For any δ < 1.

1. There exists λ+
1 (δ) < λ1(δ) such that (8) does not possess positive solution

(λ, u) for λ ≤ λ+
1 (δ) with ‖u‖∞ ≤ δ.
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Figure 3: Minimal bifurcation diagram of (8) when b changes sign.

2. There exist a real value λ∗ ∈ IR and two continuous families of su-
persolutions u+, U+ : (−∞, λ∗) 7→ C1(Ω), all independent of δ, with
u+(λ) > 0, U+(λ) > 0 on ∂Ω. Moreover, u+(λ) < U+(λ) for λ < λ∗ and
u+(λ∗) = U+(λ∗). Furthermore,

u+(λ)→ 0 and U+(λ)→ +∞ in L∞(Ω) as λ→ −∞.

3. For any λ ∈ (λ1(δ), λ∗) there exist at least two solutions u+
δ and U+

δ of
(8) with (λ, u+

δ ), (λ,U+
δ ) ∈ Cδ such that

u+(λ)− u+
δ ∈ int(Q) and U+(λ)− U+

δ ∈ ext(Q).

Proof. Since

lim
s→0+

fδ(s)

s
= δq−1,

it follows the existence of an unbounded continuum Cδ in IR×C1
0 (Ω) of positive

solutions of (8) emanating from the trivial solution at λ = λ1(−∆−b(x)δq−1) =
λ1(δ).

Thanks to Lemma 4.1 and the first paragraph of Theorem 4.2, we conclude
the existence of λ+ ∈ IR such that

(−∞, λ+) ⊂ ProjIR(Cδ) ⊂ (−∞, λ). (10)

For any 0 < δ < 1 consider a positive solution u of (8) such that ‖u‖∞ ≤
δ < 1. Observe that up ≤ u because p > 1. Then,

−∆u = λu+ b(x)(fδ(u) + up) = λu+ b(x)(δq−1u+ up) ≤ u(λ+ bM (δq−1 + 1)),
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where bM = maxx∈Ω b(x), and hence

λ ≥ λ1(−∆− bM (δq−1 + 1)) = λ1 − bM (δq−1 + 1).

It suffices to take
λ+

1 (δ) := λ1 − bM (δq−1 + 1).

We now build the families of supersolutions. Notice that K > 0 is a super-
solution of (8) if

0 ≥ λK + b(x)(fδ(K) +Kp).

Observe that

b(x)(fδ(K)+Kp) ≤ bM (δq−1Kχ{K≤δ}+K
qχ{K>δ}+K

p) ≤ bM (δq+Kq+Kp).

Using now that δ < 1, we have that K is supersolution of (8) if

bM (K−1 +Kq−1 +Kp−1) ≤ −λ.

The function
h(x) := bM (x−1 + xq−1 + xp−1)

attains a minimum at xmin > 0, h(xmin) = h0 > 0 and h′(x) < 0 if x < xmin
while that h′(x) > 0 if x > xmin. Then, taking λ∗ = −h0 for any λ < λ∗ there
exist two positive constants Ki, i = 1, 2, such that h(Ki) = −λ, with K1 < K2

and K1(λ)→ 0 and K2(λ)→ +∞ as λ→ −∞. Then, it suffices to take

u+(λ) = K1(λ), U+(λ) = K2(λ).

Now, we apply Theorem 3.2 with I = (−∞, λ∗]. By (10), the nonexistence of
positive solutions with ‖u‖∞ ≤ δ for λ ≤ λ+

1 (δ), that Cδ bifurcates at λ = λ1(δ)
and u+(λ1(δ)) > 0, it follows the existence of a positive solution u+

δ of (8) for
any λ ∈ (λ1(δ), λ∗] with (λ, u+

δ ) ∈ Cδ such that

u+(λ)− u+
δ ∈ int(Q).

Moreover, we can conclude the existence of a positive solution of (8) for some
λ > λ∗.

Now, we claim that there exists a subcontinuum Dδ ⊂ Cδ such that

U+(λ)− U+
δ ∈ ext(Q) (λ,U+

δ ) ∈ Dδ, λ ∈ (−∞, λ∗]. (11)

It is already known the existence of positive solutions (λ, u) ∈ Cδ of (8) for
all λ ∈ (−∞, λ∗]. Moreover, it is not posible that u+(λ) − u ∈ int(Q) for all
(λ, u) ∈ Cδ. Hence, there exists (λ0, u0) ∈ Cδ such that u+(λ0)− u0 ∈ ext(Q).
Thus, from Corollary 3.3, there exists a subcontinuum Dδ such that u+(λ)−u ∈
ext(Q) for all (λ, u) ∈ Dδ. Again, by Corollary 3.3, this subcontinuum has two
possibilities, either
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1. U+(λ)− u ∈ ext(Q) for all (λ, u) ∈ Dδ, or

2. U+(λ)− u ∈ int(Q) for all (λ, u) ∈ Dδ.

We show that the second possibility is not possible, proving the claim (11).
Indeed, if U+(λ)− u ∈ int(Q) for all (λ, u) ∈ Dδ, since u+(λ)− u ∈ ext(Q) for
all (λ, u) ∈ Dδ, then we have for λ = λ∗ that

U+(λ∗)− uλ∗ ∈ int(Q), u+(λ∗)− uλ∗ ∈ ext(Q),

which is impossible because U+(λ∗) = u+(λ∗). This completes the proof.

4.2. b(x) ≤ b1 < 0 for all x ∈ Ω

First, we show a necessary condition on λ for the existence of positive solution
of (8).

Lemma 4.4. Assume b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR and consider
(λ, u) a positive solution of (8). Then,

λ ≥ λ1.

Proof. In this case, we have that −∆u ≤ λu in Ω, whence we deduce the
result.

With respect to the a priori bounds, we have:

Lemma 4.5. Assume b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR and consider
(λ, u) a positive solution of (8). Then, there exists C(λ) > 0 such that

‖u‖∞ ≤ max{δ, C(λ)}. (12)

Proof. Let xM ∈ Ω be such that uM = u(xM ) = maxx∈Ω u(x). Assume that
uM > δ. Then,

λuM + b(xM )(uqM + upM ) ≥ 0,

and hence
−bL(uq−1

M + up−1
M ) ≤ λ,

where bL = minx∈Ω b(x). This finishes the result.

Our main result is the following (see Figure 4):

Theorem 4.6. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR.
Then, there exists an unbounded continuum Cδ in IR× C1

0 (Ω) of positive solu-
tions of (8) emanating from u ≡ 0 at

λ = λ1(δ) := λ1(−∆− b(x)δq−1).

Moreover, there exists δ0 such that for 0 < δ < δ0, we have:
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Figure 4: Minimal bifurcation diagram of (8) when b is negative.

1. The existence of λ−1 (δ) > λ1(δ) such that (8) does not possess positive
solution (λ, u) for λ ≥ λ−1 (δ) with ‖u‖∞ ≤ δ.

2. There exist a real value λ∗ ∈ IR, independent of δ, and two continuous
families of supersolutions u−, U− : [λ∗,Λ(δ)] 7→ C1(Ω) with u−, U− > 0
on ∂Ω, where Λ(δ) = δq−1 + δp−1. Such families satisfy

u−(λ) < U−(λ) for λ ∈ [λ∗,Λ(δ)] and u−(λ∗) = U−(λ∗), u−(Λ(δ)) = δ.

Furthermore, U−(Λ(δ))→ +∞ and u−(Λ(δ))→ 0 in L∞(Ω) as δ → 0.

3. For λ ∈ (λ∗, λ1(δ)) there exist at least two solutions u−δ and U−δ of (8)
such that

u−(λ)− u−δ ∈ int(Q) and U
−
δ − U−δ ∈ ext(Q).

Proof. The proof is rather similar to the one of Theorem 4.3. We point out
only the main differences.

Assume that ‖u‖∞ ≤ δ, then

−∆u = λu+ b(x)(δq−1u+ up) ≥ λu+ b(x)(δq−1 + 1)u.

Therefore
λ ≤ λ−1 (δ) := λ1(−∆− b(x)(δq−1 + 1)).

Taking K > 0, we have that K is a supersolution of (8) provided that

hδ(K) := (δq−1χ{K≤δ} +Kq−1χ{K>δ} +Kp−1) ≥ λ

−bM
.
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Observe that hδ(K) can be rewritten as

hδ(K) =

{
δq−1 +Kp−1 if K ≤ δ,
Kq−1 +Kp−1 if K > δ.

A detailed study of hδ(K) leads to the result. Indeed, since the infimum of the
map x 7→ h(x) := xq−1 + xp−1 is attained in xmin = ((p − 1)/(1 − q))1/(p−q)

and its value is h(xmin) = h0 > 0, then, for δ small, xmin is also the minimum
of hδ(K). Then, for δ small, we have that the function hδ has the following
properties:

1. x ∈ [0, δ] 7→ hδ(x) ∈ [δq−1, δq−1 + δp−1] is increasing.

2. x ∈ [δ, xmin] 7→ hδ(x) ∈ [h0, δ
q−1 + δp−1] is decreasing.

3. x ∈ [xmin,+∞) 7→ hδ(x) ∈ [h0,+∞) is increasing.

Hence, taking Λ(δ) = δq−1 + δp−1, for

λ

−bM
∈ [h0,Λ(δ)],

there exist K1(λ) < K2(λ) such that hδ(Ki(λ)) = λ
−bM with δ < K1(λ) <

K2(λ). In fact, observe that in this region, hδ(x) = xq−1 + xp−1, and therefore
Ki(λ) does not depend on δ. Moreover,

K1(λ)→ δ as −λ/bM → Λ(δ).

5. Proof Theorem 1.1

1. Let us fix λ < λ∗. By Lemma 2.1, λ1(δ) → −∞ as δ → 0. Hence,
there exists δ0 such that for δ ≤ δ0 we have that λ1(δ) < λ. Then,
λ ∈ (λ1(δ), λ∗)) and by Theorem 4.3 there exist two positive solutions,
u+
δ < U+

δ of (8) for δ ≤ δ0.

On the other hand, thanks to the a priori bound given by the second
paragraph of Theorem 4.2, we get that ‖U+

δ ‖∞ ≤ M for a constant M
that does not depend on δ. Observe that

fδ(U
+
δ ) ≤ (U+

δ )q,

and then {U+
δ } is bounded in W 2,r(Ω) for any r > 1. Hence, we can pass

to the limit and conclude that U+
δ → U+

0 in C1(Ω) as δ → 0, with U+
0
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a nonnegative solution of (2). Moreover, since U+(λ)− U+
δ ∈ ext(Q) for

all δ ≤ δ0, it follows the existence of x0 ∈ Ω such that

U+
0 (x0) ≥ U+(λ)(x0) > 0. (13)

Hence, U+
0 is a nonnegative and nontrivial solution of (2).

On the other hand, since u+
δ < u+(λ) we can conclude that u+

δ → u+
0 ≥ 0

in C1(Ω) as δ → 0. We will prove that u+
0 6= 0. Assume by contradiction

that u+
δ → 0 in C1(Ω). Take a ball B ⊂ B+ such that b(x) ≥ b0 > 0

in B. Since λ is fixed, let us take M large enough such that

λB1 − λ ≤ b0M.

For this M , let us take δ small such that uqδ ≥Muδ and

λB1 − λ ≤ b0 min{δq−1,M}.

On multiplying (8) by ϕB1 and integrating in B, we obtain

−
∫
B

∆u+
δ ϕ

B
1 = λ

∫
B

u+
δ ϕ

B
1 +

∫
B

b(x)(fδ(u
+
δ ) + (u+

δ )p)ϕB1 .

Then,

λB1

∫
B

u+
δ ϕ

B
1 +

∫
∂B

∂ϕB1 /∂nu
+
δ > λ

∫
B

u+
δ ϕ

B
1

+ b0

∫
B

(
δq−1u+

δ χ{u+
δ ≤δ}

+Mu+
δ χ{u+

δ >δ}
)
ϕB1 .

Using that ∂ϕB1 /∂n < 0 on ∂Ω, we conclude that

λB1 > λ+ b0 min{δq−1,M},

a contradiction. Hence, u+
0 is a nontrivial and nonnegative solution of (2).

Moreover, since

u+
0 ≤ u+(λ) < U+(λ),

and (13), it follows that u+
0 6= U+

0 . Thus, there exist at least two positive
solutions of (2).

2. Assume that b(x) ≤ b1 < 0 for all x ∈ Ω for some b1 ∈ IR. Let us fix
λ > λ∗. Let us take δ0 > 0 small such that

λ < min{λ1(δ),Λ(δ)} for any δ ≤ δ0.
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Observe that this is possible thanks to the expression of Λ(δ) and Lem-
ma 2.1.

Then, by Theorem 4.6 there exist two positive solutions u−δ < U−δ of (8).
With a similar argument to the one used in the first paragraph, we can
show that U−δ → U−0 in C1(Ω) as δ → 0, where U−0 is a nonnegative
solution of (2) and U−0 6= 0 in Ω.

On the other hand, we have that u−δ → u−0 ≥ 0 in C1(Ω) as δ → 0 and
u−0 6= 0. Indeed, arguing by contradiction, assume that u−δ → 0 in C1(Ω).
Then, for M > 0 we have that for 0 < δ close to zero that (u−δ )q ≥Mu−δ .
Hence,

−∆u−δ ≤ λu
−
δ + bM

(
δq−1u−δ χ{u−

δ ≤δ}
+ (u−δ )qχ{u−

δ >δ}
)

= (λ+ bM min{δq−1,M})u−δ ,

whence

λ1 ≤ λ+ bM min{δq−1,M},

again a contradiction for M large and δ sufficiently close to zero.

6. The case with bifurcation

Finally, we deal with the case b ≤ 0, b 6= 0 in Ω and B0 6= ∅. For that, we
will prove directly that from the trivial solution and from infinity emanate
unbounded continua of nonnegative and nontrivial solutions of (2).

We will use the Leray-Schauder degree of Kλ in Bρ := {u ∈ C(Ω) : ‖u‖∞ <
ρ}, with respect to zero, denoted by deg(Kλ, Bρ). The isolated index of u of
Kλ is denoted by i(Kλ, u). Let us define the map

Kλ : C0(Ω)→ C0(Ω); Kλ(u) := u− T (λ, u)

where

T (λ, u) := (−∆)−1(λu+ + b(x)((u+)q + (u+)p)),

u+ := max{u, 0}, C0(Ω) := {u ∈ C(Ω) : u = 0 on ∂Ω} and (−∆)−1 denotes
the inverse of the laplacian-operator under homogeneous Dirichlet boundary
conditions.

It is easy to show that u is nonnegative solution of (2) if and only if u is
zero of the map Kλ. Moreover, by the standard regularization properties of T ,
T is a compact operator on C0(Ω).
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6.1. Bifurcation from zero

Lemma 6.1. If λ < λB0
1 , then i(Kλ, 0) = 1.

Proof. Define the map H1 : [0, 1]× C0(Ω)→ C0(Ω) by

H1(t, u) = (−∆)−1(t(λu+ + b(x)((u+)q + (u+)p))).

We show now that H1 is an admisible homotopy, for which it is sufficient to
show that there exists γ > 0 such that

u 6= H1(t, u) ∀u ∈ Bγ , u 6= 0 and t ∈ [0, 1].

Assume that there exist un ∈ C0(Ω)\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1], such
that

un = H1(tn, un).

This is,

−∆un = tn(λu+
n + b(x)((u+

n )q + (u+
n )p)) in Ω, un = 0 on ∂Ω.

On multiplying the above equality by u−n := min{un, 0} and integrating in Ω,
we infer that un ≥ 0 in Ω.

Let us define
zn =

un
‖un‖2

.

Then, zn verifies

−∆zn = tn(λzn + b(x)(‖un‖q−1
2 zqn + ‖un‖p−1

2 zpn)) in Ω, zn = 0 on ∂Ω. (14)

Since b ≤ 0, on multiplying the above equality by zn and integrating in Ω, we
obtain that

‖zn‖H1
0
≤ C for some C > 0,

and hence, up a subsequence,

zn ⇀ z in H1
0 (Ω),

zn → z in L2(Ω),

for some z ∈ H1
0 (Ω), z ≥ 0 and ‖z‖2 = 1.

Next, we show that
tn‖un‖q−1

2 →∞. (15)

Assume that for a subsequence tn‖un‖q−1
2 → r∗ ∈ [0,∞). In such case, since

‖un‖2 → 0 and q < 1 we obtain that tn → 0. Then, passing to the limit in (14),
we obtain that

−∆z = r∗b(x)zq in Ω, z = 0 on ∂Ω,
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whence we deduce that z = 0, a contradiction.
We have that z ≡ 0 in Ω\B0. Indeed, assume that z(x) > 0 in D ⊂ Ω\B0.

Take ϕ ∈ C∞c (D), then

−
∫
D

zn∆ϕ = tn

(
λ

∫
D

znϕ+ ‖un‖q−1
2

∫
D

b(x)zqnϕ+ ‖un‖p−1
2

∫
D

b(x)ϕzpn

)
.

Since zn → z in L2(Ω), we deduce that∫
D

b(x)zqnϕ→
∫
D

b(x)zqϕ < 0,

whence using (15)

−
∫
D

zn∆ϕ→ −∞,

a contradiction.
For any ϕ ∈ H1

0 (B0), prolongating this function by zero, and passing to the
limit in (14), we get that ∫

B0

∇z · ∇ϕ = t∗λ

∫
B0

zϕ,

where tn → t∗ ∈ [0, 1], and then

t∗λ = λB0
1 .

Hence, λ ≥ λB0
1 , a contradiction.

Take ε ∈ (0, δ], we have

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H1(1, ·), Bε)
= deg(I −H1(0, ·), Bε) = deg(I,Bε) = 1,

where I denotes the identity map. The proof is complete.

Lemma 6.2. If λ > λB0
1 , then i(Kλ, 0) = 0.

Proof. Let us take a positive and regular function ϕ > 0 in Ω. Let us define
the map H2 : [0, 1]× C0(Ω)→ C0(Ω) by

H2(t, u) = (−∆)−1(λu+ + b(x)((u+)q + (u+)p) + tϕ).

We show now that H2 is an admisible homotopy, for which it is sufficient to
prove that there exists γ > 0 such that

u 6= H2(t, u) ∀u ∈ Bγ , u 6= 0 and t ∈ [0, 1].
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Assume that there exist un ∈ C0(Ω)\{0} with ‖un‖∞ → 0 and tn ∈ [0, 1], such
that

un = H2(tn, un).

This is,

−∆un = λu+
n + b(x)((u+

n )q + (u+
n )p) + tnϕ in Ω, un = 0 on ∂Ω.

Again, it can be shown that un ≥ 0 in Ω. Let us define

zn =
un
‖un‖2

.

Hence, zn verifies that

−∆zn = λzn+b(x)(‖un‖q−1
2 zqn+‖un‖p−1

2 zpn)+
tn
‖un‖2

ϕ in Ω, zn = 0 on ∂Ω.

(16)
Now, on multiplying (16) by ψ ∈ C∞c (B0), the formula of integration by parts
gives

tn
‖un‖2

∫
B0

ϕψ = −λ
∫
B0

znψ −
∫
B0

zn∆ψ.

Since ‖zn‖2 = 1 it follows that

tn
‖un‖2

≤ C (17)

and then, for a subsequence, tn/‖un‖2 → t∗ ≥ 0.
Since ‖zn‖2 = 1 and b ≤ 0, it follows from (16) and (17) that

‖zn‖H1
0
≤ C.

Arguing as in Lemma 6.1 we deduce that z = 0 in Ω \ B0. Moreover, passing
to the limit in B0 we conclude that

−∆z = λz + t∗ϕ in B0, z = 0 on ∂B0.

Since t∗ ≥ 0, we get that λ ≤ λB0
1 and a contradiction arises immediately.

Take ε ∈ (0, γ], we have that

i(Kλ, 0) = deg(Kλ, Bε) = deg(I −H2(0, ·), Bε)
= deg(I −H2(1, ·), Bε) = 0.

This last equality holds because we have proved that the equation

−∆u = λu+ b(x)(uq + up) + ϕ

has not solution in Bε.
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6.2. Bifurcation from infinity

Lemma 6.3. Assume that λ < λB0
1 . Then, there exists R > 0 such that for any

u ∈ C0(Ω) with ‖u‖∞ ≥ R and for any t ∈ [0, 1],

u 6= (−∆)−1(t(λu+ + b(x)((u+)q + (u+)p))).

Proof. Assume by contradiction that there exist two sequences ‖un‖∞ → ∞
and tn ∈ [0, 1] such that

−∆un = tn(λu+
n + b(x)((u+

n )q + (u+
n )p)) in Ω, un = 0 on ∂Ω.

Using elliptic regularity results, it is not hard to show that ‖un‖2 →∞. Now,
the proof follows exactly as in Lemma 6.1, arguing now with tn‖un‖p−1

∞ instead
of tn‖un‖q−1

∞ .

Lemma 6.4. Assume that λ > λB0
1 and let ϕ ∈ C1

0 (Ω), ϕ > 0 in Ω. Then, there
exists R > 0 such that for any u ∈ C0(Ω) with ‖u‖∞ ≥ R and for any t ∈ [0, 1],

u 6= (−∆)−1(λu+ + b(x)((u+)q + (u+)p) + tϕ).

Proof. In this case, the proof is rather similar to the proof of Lemma 6.2.

Proof of Theorem 1.2. From Lemmas 6.1 and Lemma 6.2, it follows the exis-
tence of a continuum C0 of nonnegative and nontrivial solution of (2) emanating
from the trivial solution at λ = λB0

1 . Moreover, it can be shown that this is
the unique point of bifurcation form zero, and hence we can conclude that C0
is unbounded.

For the existence of C∞ we perform the change of variable z = u/‖u‖2∞
(u 6= 0). See, for instance [26] and [6]. Now, thanks to Lemmas 6.3 and 6.4,
the existence of C∞ can be deduced. We omit the details.
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