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Abstract. In this paper we study autonomous systems whose La-
grangian function is the combination of several homogeneous terms with
respect to positions and velocities. We show that, assuming certain re-
lations between the degrees of homogeneity of such terms, the systems
considered possess (in addition to energy) a further first integral that
provides information about their solutions. A new feature of these re-
sults is the use of the theory of nonlocal constants, which finds useful
constants using one-parameter perturbed motions.
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1. Introduction

First integrals represent a fundamental concept in the study of dynamical sys-
tems. They serve various purposes, including acting as significant constants
that can (i) yield solutions through quadratures [10] and (ii) confine motion
to a limited domain within phase space [15]. Furthermore, in numerous sys-
tems, first integrals are often the sole computable indicators of the efficacy of
numerical methods employed for their study [14].

Focusing on systems characterized by an autonomous1 Lagrangian function
L(q, q̇), we say that for any Euler-Lagrange equation of motion of the form[

∇q̇L(q, q̇)
]· −∇qL(q, q̇) = 0 , q ∈ Rn , (1)

a smooth point-function I(t, q, q̇) is a first integral if it remains constant when
evaluated along any solution t 7→ q(t) of (1). In this context, the notation
∇q = ∂/∂q ∈ Rn and ∇q̇ = ∂/∂q̇ ∈ Rn is employed, while the dot signifies total

1An autonomous Lagrangian function L(q, q̇) doesn’t explicitly depend on time.
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derivative with respect to time t ∈ R. Thus, for a first integral, the condition
İ|q(t) = 0 must hold true.

The identification of (non-trivial) first integrals typicailly necessitates math-
ematical proficiency and extensive analytical effort. Nevertheless, a comprehen-
sive range of techniques for their construction can be found in the literature [11].
Notably, the celebrated Noether’s Theorem [12] asserts that if the Lagrangian
L exhibits a symmetry, then a corresponding first integral exists. Recently,
Gorni and Zampieri [6] have put forth a rethinking of Noether’s Theorem by
introducing the concept of nonlocal constants of motion. These constants are
defined as functions that maintain their values along the trajectories of the
system described by equation (1), while their specific values at any given time
t are determined by the historical trajectory of the motion.

In our investigation of the implications related to this nonlocal framework,
we noted that the authors of [6] have developed an new approach that recov-
ers a well-known result by Logan (L) [13], which focuses on deriving energy-
dependent first integrals from these nonlocal constants. Specifically, their sys-
tem was characterized by an autonomous Lagrangian LL = K(q̇) − U(∥q∥),
where K(q̇) = 1

2∥q̇∥
2 and U(∥q∥) represents a homogeneous potential of degree

κU = −2. The first integral they identified was IL = q̇ · q − 2ELt, with EL

the (conserved) energy of the system. For the benefit of a broader audience,
it is important to recall that a function φ : x 7→ φ(x) is said to be homoge-
neous of degree κφ if φ(sx) = sκφφ(x) for any s ∈ R. Hence, in our case,
U(∥sq∥) = s−2U(∥q∥).

In examining Logan’s example, we asked ourselves what general property
connects the expression of the kinetic termK with the specified degree of homo-
geneity κU = −2 for U , which is necessary for the system to potentially exhibit
a first integral such as IL. Through this investigation, we found an intriguing
derivation demonstrating that when the Lagrangian function is formulated as a
combination of homogeneous terms, each subject to specific homogeneity con-
straints, the presence of a first integral like IL is readily guaranteed, as outlined
in our main result below:

Theorem 1.1. Let σ1,2,3 ∈ {0, 1} and consider the class of autonomous La-
grangian systems

L(q, q̇) = σ1K(q̇) + σ2 g(q)f(q̇)− σ3U(q) , (2)

where the kinetic term K(q̇), the potential U(q), and g(q), f(q̇) are non-zero ho-
mogeneous functions of degrees κK , κU and κg, κf , respectively. If these func-
tions satisfy the following conditions:

[
κK −Υκ(1− κK)

]
σ1 = 0 ,[

κg + κf −Υκ(1− κf )
]
σ2 = 0 ,[

κU −Υκ

]
σ3 = 0 ,

for some Υκ∈ R , (3)
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then, I is constant along the solutions of the Euler-Lagrange equation for (2),
where

I = ∇q̇L · q +ΥκEt , (4)

and E ≡ ∇q̇L · q̇ − L is the (conserved) energy of the system.

In this context, the coefficients σ1,2,3 take on values from the set {0, 1},
thereby determining which terms do not vanish in expression (2). Consequently,
it is possible that, depending on the parameterization of L, some conditions
in (3) are trivially fulfilled, as the coefficients σi can nullify the terms located to
the left hand side of the equalities. It is also noteworthy that the condition (3) is
not influenced by the specific expression of the functions that parameterize our
Lagrangian (2); rather, it is solely determined by their degree of homogeneity.

In practical terms, the procedure for verifying the operational efficiency
of our machinery entails simple calculations. Specifically, one must (i) confirm
that the given Lagrangian conforms to the structure outlined in (2) with homo-
geneous terms, (ii) determine the coefficients σ1,2,3 and the relevant degrees of
homogeneity {κi}, (iii) resolve the system presented in (3) for the variable Υκ,
and (iv) substitute the obtained Υκ into expression (4).

Example 1.2. Consider the Lagrangian L = λ∥q̇∥m − U(∥q∥), where λ is
a constant in R. It is evident that σ1 = σ3 = 1 and σ2 = 0, with κK = m.
Consequently, from equation (3), the degree of homogeneity κU is given by κU =
Υκ = κK/(1−κK) = m/(1−m). In the specific instance of LL = 1

2∥q̇∥
2−U(∥q∥)

as referenced in [6], we find that m = 2 and λ = 1/2. Therefore, to derive
a first integral from our Theorem 1.1, the potential U(∥q∥) must exhibit a
homogeneity degree of κU = Υκ = −2, which aligns with expectations. The
corresponding first integral, as expressed in (4), is IL = q̇ · q− 2ELt, indicating
its dependence on energy EL.

Our paper is organized as follows. Section 2 is devoted to the proof of The-
orem 1.1, with a particular emphasis on the introduction of the theory of non
local constants of motion and its application in deriving energy conservation
and the existence of the first integral presented in (4). The subsequent section,
Section 3, explores various applications of our findings, including specific cases
such as (i) the Poincaré half-plane model, (ii) a Painlevé-Gambier equation,
(iii) a particle system with Calogero’s potential, and (iv) a generalization of
Logan’s result.

As a final remark, we clarify that throughout this work Rn will be the usual
Euclidean space. Additionally, we will adopt the notation (i) x · y to denote
the inner product, and (ii) ∥x∥ =

√
x · x to represent the norm within Rn.
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2. Proof of Theorem 1.1

To provide a proof of our Theorem 1.1, we employ the framework of nonlocal
constants, which identifies valuable constants through one-parameter perturbed
motions. The fundamental finding regarding nonlocal constants of motion, as
presented in [6], can be stated in a self-sufficient manner, providing all the
necessary information for the subsequent discussion.

Theorem 2.1 (Nonlocal Constants). Let t 7→ q(t) be a solution of (1), and let
qε(t), ε ∈ R, be a one-parameter smooth family such that q0(t) = q(t). Then, I
is constant along the solutions of (1), with

I = ∇q̇L(q, q̇) · ∂εqε
∣∣
ε=0

−
∫ t

t0

ds ∂εL(qε, q̇ε)
∣∣
ε=0

. (5)

Proof. Take the time derivative of expression (5) and change the order of dif-
ferentiation so that the Euler-Lagrange equation (1) can be applied.

2.1. Energy conservation

The principle of energy conservation serves as a simple example of a conser-
vation law that can be derived from nonlocal constants when the Lagrangian
function is autonomous (as it is also well known from the Noetherian approach).
Given that our Lagrangian (2) is explicitly independent of time, we introduce
the time-shift family defined by qε = q(t + ε). This leads to the relation
∂εqε|ε=0 = q̇, allowing us to utilize (5) for the computation of the nonlocal
constant as follows

I = ∇q̇L · q̇ −
∫ t

t0

ds
(
∇qL · q̇ +∇q̇L · q̈

)
. (6)

In this context, under the assumption that qε is a smooth function, we have
used that ∂εq̇ε|ε=0 = (∂εqε|ε=0)

· = q̈. It is important to recognize that the
integrand in (6) represents the total derivative L̇, which leads us to conclude
that the energy defined by

E ≡ ∇q̇L · q̇ − L , (7)

constitutes a conserved quantity within the framework of our system.

2.2. Proof of Theorem 1.1

As outlined in the introduction, our focus is on autonomous Lagrangian func-
tions L(q̇, q). By expressing the nonlocal constant (5) in relation to (2), we



EXPLORING FIRST INTEGRALS (5 of 11)

arrive at the following formulation:

I = ∇q̇L(q, q̇) · ∂εqε
∣∣
ε=0

−
∫ t

t0

ξ ds . (8)

Here, the integrand ξ = ξ[q(s), q̇(s)] has expression:

ξ = ∂εLε|ε=0 = ∇qL · ∂εqε|ε=0 +∇q̇L · (∂εqε|ε=0)
· . (9)

Drawing from the perturbed motions adopted in references [2, 6], we choose
our perturbed motion as follows

qε(t) = eεq
[
hε(t)

]
. (10)

In this formulation, hε(t) is a free function dependent on the parameters (ε, t),
with the condition that hε(t)|ε=0 = t. Consequently, we derive that

∂εqε|ε=0 = q + q̇ · v, (11)

where v = v(t) = ∂εhε|ε=0. Usefully, since qε is assumed to be a smooth
function, we can also write ∂εq̇ε|ε=0 = (∂εqε|ε=0)

·.
Utilizing the aforementioned fact in conjunction with the parametrization

outlined in equation (2), it can be determined that the integrand represented
in expression (9) is expressible as:

ξ = L̇v +
{
σ1(∇q̇K · q̇) + σ2

[
(∇qg · q)f + g(∇q̇f · q̇)

]
− σ3(∇qU · q) +

[
σ1(∇q̇K · q̇) + σ2 g (∇q̇f · q̇)

]
v̇
}
. (12)

In general, since (12) does not represent a total derivative, the expression (8)
formally contains an integral that we aim to eliminate. The situation can
be simplified by recognizing that certain terms of (12) can be combined into
total derivatives through a suitable selection of the parameter v. Specifically,
the configuration of expression (12) indicates that the term enclosed in curly
brackets should complete the total derivative (Lv)· = L̇v+Lv̇. To realize this,
we impose the condition

σ1(∇q̇K · q̇) + σ2

[
(∇qg · q)f + g(∇q̇f · q̇)

]
− σ3(∇qU · q) +

[
σ1(∇q̇K · q̇) + σ2 g (∇q̇f · q̇)

]
v̇ = Lv̇ . (13)

In this way it is immediate to check that ξ = (Lv)·. Hence, by using expres-
sion (11) the nonlocal constant (8) becomes the conserved first integral

I = ∇q̇L · (q + q̇v)− Lv ,
= ∇q̇L · q + (∇q̇L · q̇ − L)v , (14)

= ∇q̇L · q + Ev .
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Here, the E symbol represents the (conserved) energy of the system, as derived
in (7) of Section 2.1. It is important to observe that the expression in (14) still
depends on the arbitrary function v(t), which we now aim to determine.

By construction, the first order differential equation (13) constraints v(t)
as a function of K, f, g and U . So, separating the variables, we get

v =

∫ t

t0

σ1(∇q̇K · q̇) + σ2

[
(∇qg · q)f + g(∇q̇f · q̇)

]
− σ3(∇qU · q)

L − σ1(∇q̇K · q̇)− σ2 g (∇q̇f · q̇)
dτ . (15)

By hypothesis the K, f, g and U functions are assumed to be homogeneous.
This assumption leads to the applicability of Euler’s Theorem for homogeneous
functions, which states that x · ∇xϑ(x) = κϑϑ(x), where ϑ is identified as a
homogeneous function of degree κϑ. Consequently, the solution (15) can be
rewritten as follows

v =

∫ t

t0

σ1κKK + σ2(κg + κf )gf − σ3κUU

σ1(1− κK)K + σ2(1− κf )gf − σ3U
dτ . (16)

When this expression is replaced in the equation (14), it retains its non-
local characteristics due to the presence of the integration operator. One may
inquire about the specific circumstances under which the expression (16) can
be rewritten as a local constant, i.e. as a local function of t that does not
require integration over time. A straightforward scenario to consider is when
the numerator is directly proportional to the denominator

σ1κKK + σ2(κg + κf )gf − σ3κUU =

Υκ

[
σ1(1− κK)K + σ2(1− κf )gf − σ3U

]
. (17)

This relation must hold for all variables K, g, f, U , where Υκ represents an
arbitrary proportionality constant. By aligning the terms with respect to the
basis of σi, one derives the conditions outlined in (3).

Consequently, from (16), we arrive at the expression

v = Υκ

∫ t

t0

dτ = Υκt , (18)

in which t0 has been set to zero without loss of generality. Hence, by substi-
tuting (18) into (14), we ultimately obtain our final result as presented in (4).
This concludes our demonstration.

Remark 2.2. Given that ∂εhε|ε=0 = v = Υκt, there exist multiple formula-
tions for hε(t) that can fulfill this condition. Among the most fundamental
expressions, we mention

hε(t) = te εΥκt or hε(t) = (1 + εΥκ)t . (19)
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In this way, the one-parameter family described in (10) will be uniquely deter-
mined.

Remark 2.3. We dedicate a brief remark to double check that I is a first
integral for the system described by (2). The calculation is straightforward,
considering that

∇qL = σ2κgfg − σ3κUU and ∇q̇L = σ1κKK + σ2κffg . (20)

Indeed, it suffices to compute the time derivative of I to establish that

İ = (∇q̇L)· · q +∇q̇L · q̇ +ΥκE ,

= (∇q̇L)· · q +∇q̇L · q̇ +Υκ(∇q̇L · q̇ − L) , (21)

=
[
κK−Υκ(1−κK)

]
Kσ1+

[
κg + κf−Υκ(1−κf )

]
gfσ2+

[
κU−Υκ

]
Uσ3 .

In the second step, we utilized the fact that q(t) is a solution to the system,
thereby satisfying the Euler-Lagrange equations (1). The final term is evidently
zero, as the conditions (3) hold true by assumption. Consequently, I remains
constant along the solutions corresponding to the Euler-Lagrange equations
of (2).

3. Applications

In the present section we deal with some neat applications of our theorem to
well-known systems.

3.1. Poincaré half plane

We consider a model called Poincaré half plane, namely the set q = q1ê1+q2ê2 ∈
R2, q2 > 0, where we call “straight line” any half-circle with center on the x-axis
and any vertical half-line. Here, êi are the basis versors of R2. Interestingly,
the Poincaré half plane model can be formulated in the language of variational
mechanics by the following Lagrangian function

L =
∥q̇∥2

2 (q · ê2)2
. (22)

The Euler-Lagrange equation (1) for the Lagrangian function (22) reads

q̈ − 2
q̇ · ê2
q · ê2

q̇ +
∥q̇∥2

q · ê2
ê2 = 0 . (23)

In the spirit of Theorem 1.1, after a comparison of expression (22) with our
parametrization (2), we identify σ1 = σ3 = 0 and σ2 = 1. We are attracted
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to this Lagrangian because the σ2-contributions f = ∥q̇∥2 and g = (2 q · ê2)-1,
with κf = −κg = 2, satisfy the system (3) with Υκ = 0 Consequently, this
Lagrangian has the following function as immediate conserved quantity (4)

I =
q̇ · q

(q · ê2)2
. (24)

has been discussed from a nonlocal point of view in [7].

3.2. Autonomous Painlevé-Gambier equation XXII

Painlevé-Gambier equations are attracting much attention in last years, since
some problems related to their solutions, the Painlevé transcendents, are al-
ready under discussion [1, 8]. In particular, it is well known that the only
movable singularities of these equations are poles.

Interestingly, the Lagrangian for the autonomous Painlevé-Gambier equa-
tion XXII

L = 1
2q

−3/2q̇2 + 2q−1/2 , (25)

belongs to the parametrization (2). The Euler-Lagrange equation (1) for the
Lagrangian function (25) reads

q̈ − 3
4q

−1q̇2 + 1 = 0 . (26)

First of all, a comparison between the two Lagrangians yields σ1 = 0 and
σ2 = σ3 = 1. Then, we deduce that g = 1

2q
−3/2, f = q̇2 and U = −2q−1/2.

Since κg = −3/2 and κf = 2 and κU = −1/2, the second and the third
conditions of (3) are satisfied by Υκ = −1/2. Hence from (4) we get the
conserved quantity:

I = q−1/2q̇ − 1
2 tE , (27)

where E = 1
2q

−3/2q̇2 − 2q−1/2. Expression (27) is equivalent to a Cauchy
problem for a first order differential equation with separated variables. It is
easy to see that the general solution of this equation is

q(t) = 1
4

{
1
4 Ēt2 + Īt+ 1

Ē
(Ī2 − 4)

}2

. (28)

Here, the Ē and Ī parameters are constant.

3.3. Calogero’s potential

In [6] Gorni e Zampieri show that for Lagrangians of the form L = 1
2∥q̇∥

2−U(q)
with a homogeneous potential U(q) of degree −2 the nonlocal constant (5)
reduces to a useful point-function of (q̇, q) and t. Inspired by this, we expect
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that such result must be recovered by our machinery. In fact, since in this case
σ1 = σ3 = 1 and σ2 = 0, from (3) we obtain κU = −κK = −2.

A famous potential that is homogenous with degree κU = −2 is the so-called
Calogero’s inverse-square scattering potential for the n-body problem [9]. With
the kinetic term, the full Lagrangian of the system reads

L =
1

2

n∑
i=1

∥q̇i∥2 −
1

2

n∑
i=1

n∑
j=1
j ̸=i

1

∥qi − qj∥2
. (29)

Then, the Euler-Lagrange equation (1) for expression (29) is

q̈i − 2

n∑
j=1
j ̸=i

1

∥qi − qj∥3
qi − qj
∥qi − qj∥

= 0 for i = 1, ..., n . (30)

Since Υκ = κU = −2, Theorem 1.1 tells us that we can obtain a conserved
quantity using expression (4), that is

I =

n∑
i=1

{
q̇iqi − t

[
∥q̇i∥2 +

n∑
j=1
j ̸=i

1

∥qi − qj∥2

]}
. (31)

3.4. Generalization of Logan’s result

Let us reexamine the Logan system as presented in [13], characterized by the
Lagrangian LL = 1

2∥q̇∥
2 − U(∥q∥), where U(∥q∥) represents a homogeneous

potential of degree κU = −2. In the introduction of this article, we have
applied Theorem 1.1 to establish that, consistent with existing literature, the
Lagrangian LL possesses a first integral given by IL = q̇·q−2ELt with Υκ = −2.

Now, we will explore a potential generalization of Logan’s system, parame-
terized as follows:

L = LL + g(q)f(q̇) , (32)

where g and f are non-zero homogeneous functions of degrees κg and κf , respec-
tively. According to our theorem, this generalized system retains equivalence
to the original Logan case, with the exception of an additional term weighted
by σ2 = 1. This modification ensures that the first and third conditions of (3)
are inherently satisfied, mirroring the scenario in Logan’s case with Υκ = −2.
Furthermore, it is evident from (3) that if the degrees κg and κf fulfill the new
condition

κg = κf − 2 , (33)

which constrains only one degree of homogeneity while leaving the other entirely
arbitrary, then the generalization expressed in (36) will also possess a first
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integral in a form analogous to IL, albeit with a distinct expression for ∇q̇L

I = (q̇ + g∇q̇f) · q − 2Ēt . (34)

In the realm of systems belonging to the class of these Lagrangian functions,
one could consider a set of n particle interacting through the combination of a
Calogero’s potential (LL) and a gravitational (or Coulomb) potential (κg = −1)
with the massmi(q̇) (or electrical density ϱ(q̇)) varying linearly with q̇ (κg = 1).

3.4.1. An interesting subcase

It is noteworthy that by selecting a specific subcase of our Lagrangian func-
tion (36), we can reformulate expression (34) to resemble the conservation law
of an additional first integral.

By integrating (34) with respect to time, we derive the following equation:(
1

2
∥q∥2 − 1

2
Ēt2 − Īt+

∫
∇q̇f · gq dt

)·

= 0 . (35)

It is evident that if the total derivative condition, ∇q̇f · gq = ρ̇, holds for some
function ρ = ρ(q), then (35) simplifies to a total derivative with respect to
time. It is important to note that ∇q̇f · gq is independent of q̈, which implies
that ρ cannot depend on q̇. Hence, given that ρ̇ = ∇qρ · q̇ is linear in q̇, the only
viable option to fulfill the total derivative condition is to set f = 1

2∥q̇∥
2. Given

that κf = 2, we can derive from relation (33) that κg = 0. This indicates that
any function g satisfying the condition g(q)q = ∇qΓ for some scalar function
Γ = Γ(q) will complete the total derivative condition.

By consolidating these elements, we find that if

L = LL +
1

2

∥q̇∥2

∥q∥2
∇qΓ(q) · q , (36)

then K = 1
2∥q∥

2 − 1
2 Ēt2 − Īt + Γ(q) , is a first integral for (36). Here, the

parameters Ē and Ī are constants.
As a consequence, a constraint emerges for the solutions to the correspond-

ing Euler-Lagrange equations, which is solely dependent on time. In fact,
from (35) we get

1
2∥q∥

2 + Γ(q) = 1
2 Ēt2 + Īt+ K̄ . (37)

Interestingly, in the L = LL case, Γ(q) = 0 and ∥q∥ =
√
Ēt2 + 2Īt+ 2K̄.

It is noteworthy that this result has been achieved without the necessity of
solving the equations of motion.
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tegrability Geom. Methods Appl. 15 (2019), 1–20.

[2] M. Scomparin, Conserved currents from nonlocal constants in relativistic scalar
field theories, Rep. Math. Phys. 91 (2023), 359–377.

[3] M. Scomparin, First integrals of nonlinear differential equations from nonlocal
constants, Rend. Mat. Appl. 7 (2023), 359–377.

[4] G. Gorni, M. Scomparin, and G. Zampieri, Nonlocal constants of motion in
Lagrangian Dynamics of any order, Partial Differ. Equ. Appl. Math. 5 (2022),
100262.

[5] G. Gorni and G. Zampieri, Lagrangian dynamics by nonlocal constants of mo-
tion, Discrete Contin. Dyn. Syst. 13 (2020), 2751–2759.

[6] G. Gorni and G. Zampieri, Revisiting Noether’s Theorem on constants of mo-
tion, J. Nonlinear Math. Phys. 21 (2014), 43–73.

[7] G. Gorni and G. Zampieri, The geodesics for Poincaré’s half-plane: a nonstan-
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