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Abstract. We prove the inequalities
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where the best possible constants are given by
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27

2
log(3)− 18 log(2) = 2.35461....
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1. Introduction and statement of the main results

I. The discrete form of Hardy’s inequality states that if p > 1 and aj ≥ 0
(j ≥ 1), then

∞∑
j=1

(
1

j

j∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
j=1

apj . (1)

G.H. Hardy [1] proved (1) with the factor
(
p2/(p − 1)

)p
in 1920. In a private

communication, E. Landau informed him that (1) holds and that the factor(
p/(p − 1)

)p
is best possible; see Hardy [2]. Moreover, Landau [6] offered the

following counterpart of (1) for finite sums:

n∑
j=1

(
1

j

j∑
k=1

ak

)p

≤
(

p

p− 1

)p n∑
j=1

apj , (2)
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valid for p > 1, aj ≥ 0 (1 ≤ j ≤ n) and all n ≥ 1. This improves a result of
Hardy [1] who found a short proof for (2) again with the factor

(
p2/(1− p)

)p
.

Both inequalities attracted the attention of many mathematicians who
found numerous generalizations, refinements, integral analogues and remark-
able variants of (1) and (2). For detailed information on this subject we refer to
the paper [4] which describes the scientific developments of (1) and its integral
version and to the excellent monograph [5] (with about 300 references) of A.
Kufner, L. Maligranda and L.-E. Persson.

II. In 1986, P.F. Renaud [7] proved the following reverse of (1). If p > 1 and
(aj)j≥1 is a positive decreasing sequence, then

ζ(p)

∞∑
j=1

apj ≤
∞∑
j=1

(
1

j

j∑
k=1

ak

)p

,

where ζ denotes the Riemann zeta function. The factor ζ(p) is best possible.
For finite sums we obtain

n∑
j=1

apj ≤
n∑

j=1

(
1

j

j∑
k=1

ak

)p

.

This is valid for p > 0 and for any positive decreasing sequence (aj)j≥1.

III. The work on this paper was motivated by Problem 6663 published in
1991 by W. Janous and the editors in “The American Mathematical Monthly”.

Show that
n∑

j=1

(
1

j

j∑
k=1

xk−1

)2

< 4 log(2)

n∑
j=1

(xj−1)2 (3)

for 0 < x < 1 and all positive integers n; also show that the constant 4 log(2)
is best possible; see [3].

Inequality (3) refines (2) in the case of geometric sums and p = 2. In view
of (2) and (3) it is natural to ask for the best possible factor c(p) such that

n∑
j=1

(
1

j

j∑
k=1

xk−1

)p

≤ c(p)

n∑
j=1

(xj−1)p

holds for x ∈ (0, 1) and n ≥ 1, where p > 1 is a fixed real number. Here, we
consider the special case p = 3. The following theorem offers a cubic companion
to (3).
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Theorem 1.1. For all real numbers x ∈ (0, 1) and natural numbers n ≥ 1, we
have

n∑
j=1

(
1

j

j∑
k=1

xk−1

)3

< α

n∑
j=1

(xj−1)3 (4)

with the best possible constant factor

α =
27

2
log(3)− 18 log(2) = 2.35461....

Our second result provides a counterpart of (4) for series. In particular, we
obtain an improvement of (1) in the case ak = xk−1, p = 3.

Theorem 1.2. For all real numbers x ∈ (0, 1), we have

∞∑
j=1

(
1

j

j∑
k=1

xk−1

)3

< a
∞∑
j=1

(xj−1)3 (5)

with the best possible constant factor

a =
27

2
log(3)− 18 log(2). (6)

IV. In the next section, we present notations and in Section 3, we collect
eleven lemmas. With the help of the lemmas we are able to offer short proofs
for both theorems. These proofs are given in Section 4.

The numerical calculations have been carried out by using the computer
software Maple 13.

2. Notation

The classical polylogarithm function is defined by

Lim(z) =

∞∑
k=1

zk

km
,

where m ∈ N and z ∈ C with |z| < 1. This function plays an important role
in various fields, like, for example, algebraic K-theory and hyperbolic geome-
try. Here, we present five functions which are defined in terms of the di- and
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trilogarithm, Li2 and Li3.

g(x) = 3Li2(x) + 3Li2(x
3),

h(x) = 6Li2(x
2)− 3 log(1− x) + 12 log(1− x2)− 9 log(1− x3),

z1(t) = Li2(1− t)− 1

2
Li2((1− t)2),

z2(t) = Li2((1− t)2)− 2

3
Li2((1− t)3),

ϕ(x) = ζ(3)− 3Li3(x) + 3Li3(x
2)− Li3(x

3).

Moreover, we need the following functions:

θ(t) =
4− t

t(2− t)
ϕ(1− t) + ϕ′(1− t),

P (x) =
1 + x

(1− x)2
ϕ(x), Q(x) =

1− x3

(1− x)3
ϕ(x),

A1(t) =
π2

12
− log(2)t+

(
1

4
− 1

2
log(2)

)
t2,

A2(t) =
π2

18
+ 2 log(2/3)t+

(
1

2
+ log(2/3)

)
t2,

B(t) = (9 log(3)− 12 log(2)) t+

(
9

2
log(3)− 6 log(2)− 3

2

)
t2,

Sn(x) =
1− x3

1− x3n

n∑
j=1

(
1− xj

j(1− x)

)3

.

3. Lemmas

We collect some properties of the functions which are defined in the previous
section.

Lemma 3.1. The functions g and h are increasing on (0, 1).

Proof. Let x ∈ (0, 1). Then

1

3
g′(x) = Li′2(x) + 3x2Li′2(x

3) = − 1

x

(
log(1− x) + 3 log(1− x3)

)
> 0.

We have

xh′(x) = −12 log(1− x2)− 3x(2x2 + 5x− 1)

(1 + x)(x2 + x+ 1)
= h1(x), say.
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It follows that

h′
1(x) =

h2(x)

(1− x)(1 + x)2(x2 + x+ 1)2

with h2(x) = 24x6 + 69x5 + 153x4 + 144x3 + 48x2 − 9x+ 3.

Since

h2(x) >
27

4
x2 − 9x+ 3 = 3(3x/2− 1)2 ≥ 0,

we obtain h′
1(x) > 0 and h1(x) > h1(0) = 0. This yields h′(x) > 0.

Lemma 3.2. For x ∈ (0, 0.1], we have h′′(x) < 0.

Proof. Let x ∈ (0, 0.1]. Then

h′′(x) =
12 log(1− x2)

x2
+ h3(x)

with

h3(x) =
3(6x5 + 16x4 + 47x3 + 51x2 + 23x+ 1)

(1 + x)2(1− x3)(x2 + x+ 1)
.

We have
12 log(1− x2)

x2
≤ −12

and

9− h3(x) =
−3h4(x)

(1 + x)2(1− x3)(x2 + x+ 1)
,

where h4(x) = 3x7 + 9x6 + 18x5 + 22x4 + 41x3 + 39x2 + 14x− 2.

The function h4 is increasing with h4(0.1) = −0.16.... It follows that
h3(x) < 9. Hence, h′′(x) < −12 + 9 = −3.

Lemma 3.3. For x ∈ (0, 1), we have ϕ(x) > 0, ϕ′(x) < 0, ϕ′′(x) > 0.

Proof. We have

x2ϕ′′(x) = g(x)− h(x) = ϕ1(x), say.

To prove that ϕ1 is positive on (0, 1) we consider two cases.

Case 1. 0 < x ≤ 0.1. Since g′′(x) ≥ 0, we obtain from Lemma 3.2

ϕ′′
1(x) = g′′(x)− h′′(x) > 0.

Hence ϕ′
1(x) > ϕ′

1(0) = 0 and ϕ1(x) > ϕ1(0) = 0.
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Case 2. 0.1 ≤ x < 1. Let 0.1 ≤ r ≤ x ≤ s ≤ 1. Applying Lemma 3.1 gives

ϕ1(x) ≥ g(r)− h(s) = ϕ2(r, s), say.

We have

[0.1, 1] =

89⋃
k=0

[
0.1 +

k

100
, 0.1 +

k + 1

100

]
.

By direct computation we obtain

ϕ2

(
0.1 +

k

100
, 0.1 +

k + 1

100

)
> 0 for k = 0, 1, ..., 89.

This implies that ϕ1 is positive on [0.1, 1]. We obtain for x ∈ (0, 1),

ϕ′′(x) > 0, ϕ′(x) < ϕ′(1) = 0, ϕ(x) > ϕ(1) = 0.

Lemma 3.4. For t ∈ (0, 0.1], we have z
(4)
1 (t) < 0 < z

(4)
2 (t).

Proof. Let t ∈ (0, 0.1]. We have

−1

6
(1− t)4z

(4)
1 (t) = log(2− t) +

11t3 − 48t2 + 69t− 32

6(2− t)3
= λ1(t), say.

Then

λ′
1(t) = − (1− t)3

(2− t)4
< 0 and λ1(t) ≥ λ1(0.1) = 0.020....

This leads to z
(4)
1 (t) < 0.

We have

−z
(4)
2 (t) =

λ2(t) + λ3(t)

(1− t)4(2− t)3(t2 − 3t+ 3)3

with

λ2(t) = 12(2− t)3(t2 − 3t+ 3)3 log
t2 − 3t+ 3

2− t

and

λ3(t) = 22t9 − 330t8 + 2136t7 − 7910t6 + 18588t5 − 28878t4

+ 29764t3 − 19674t2 + 7578t− 1296.

λ2 is the product of positive decreasing functions. It follows that λ2 is decreas-
ing. Next, we apply Sturm’s theorem to determine the number of distinct real
roots of an algebraic polynomial located in an interval; see van der Waerden
[8, Section 79].
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It turns out that λ′
3 has no zero on [0, 0.1] with λ′

3(0) = 7578. This implies
that λ3 is increasing. Let 0 ≤ r ≤ t ≤ s ≤ 0.1. We obtain

λ2(t) + λ3(t) ≤ λ2(r) + λ3(s) = λ4(r, s), say.

Since

λ4(0, 0.03) < 0, λ4(0.03, 0.05) < 0, λ4(0.05, 0.07) < 0, λ4(0.07, 0.1) < 0,

we conclude that λ2 + λ3 is negative on [0, 0.1]. Thus z
(4)
2 (t) > 0.

Lemma 3.5. For t ∈ (0, 0.1], we have

A1(t)− 0.0256t3 ≤ z1(t) ≤ A1(t)− 0.0227t3, (7)

A2(t) + 0.0908t3 ≤ z2(t) ≤ A2(t) + 0.112t3. (8)

Proof. Let

H1(t) = A1(t)− α1t
3 − z1(t), α1 = −1

6
z′′′1 (0) = 0.0227....

We obtain H ′′′
1 (t) = −6α1 − z′′′1 (t), so that Lemma 3.4 implies that H ′′′

1 is
strictly increasing on (0, 0.1]. Since

H1(0) = H ′
1(0) = H ′′

1 (0) = H ′′′
1 (0) = 0,

we conclude that H1 is positive on (0, 0.1]. This leads to the second inequality
in (7).

Let

H2(t) = −A1(t) + α2t
3 + z1(t), α2 = −1

6
z′′′1 (0.1) = 0.02559....

Since z′′′1 is decreasing, we get H ′′′
2 (t) = 6α2 + z′′′1 (t) ≥ H ′′′

2 (0.1) = 0. Using
H2(0) = H ′

2(0) = H ′′
2 (0) = 0 yields H2(t) ≥ 0 for t ∈ (0, 0.1]. This gives the

first inequality in (7).
Let

H3(t) = A2(t) + α3t
3 − z2(t), α3 =

1

6
z′′′2 (0.1) = 0.11191....

We apply Lemma 3.4 and obtain

H ′′′
3 (t) = 6α3 − z′′′2 (t) ≥ H ′′′

3 (0.1) = 6α3 − z′′′2 (0.1) = 0.

Since H3(0) = H ′
3(0) = H ′′

3 (0) = 0, we conclude that H3(t) ≥ 0 which leads to
the second inequality in (8).
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Let

H4(t) = −A2(t)− α4t
3 + z2(t), α4 =

1

6
z′′′2 (0) = 0.090801....

We obtain H ′′′
4 (t) = −6α4 + z′′′2 (t) > H ′′′

4 (0) = 0, so that H4(0) = H ′
4(0) =

H ′′
4 (0) = 0, leads to H4(t) > 0. This yields the first inequality in (8).

Lemma 3.6. For t ∈ (0, 0.1], we have

B(t)− 0.5808t3

1− t
≤ −ϕ′(1− t) ≤ B(t)− 0.4767t3

1− t
.

Proof. Let t ∈ (0, 0.1]. We have

−(1− t)ϕ′(1− t) = 3z1(t)−
9

2
z2(t).

Applying Lemma 3.5 gives

−(1− t)ϕ′(1− t) ≤ 3
(
A1(t)− 0.0227t3

)
− 9

2

(
A2(t) + 0.0908t3

)
= B(t)− 0.4767t3

and

−(1− t)ϕ′(1− t) ≥ 3
(
A1(t)− 0.0256t3

)
− 9

2

(
A2(t) + 0.112t3

)
= B(t)− 0.5808t3.

Lemma 3.7. For t ∈ (0, 0.1], we have(
9

2
log(3)− 6 log(2)

)
t2 +

(
9

2
log(3)− 6 log(2)− 1

2

)
t3 < ϕ(1− t).

Proof. We define

R(x) =
(
9 log(3)− 12 log(2)

)
x+

(
27

2
log(3)− 18 log(2)− 3

2

)
x2.

Since
B(x)− 0.5808x3

1− x
−R(x) =

9r0x
3

1250(1− x)
,

r0 = 1875 log(3)− 2500 log(2)− 289 = 38.03...,

we conclude from Lemma 3.6 that for x ∈ (0, 0.1], R(x) < −ϕ′(1− x).
Let t ∈ (0, 0.1]. Then(

9

2
log(3)− 6 log(2)

)
t2 +

(
9

2
log(3)− 6 log(2)− 1

2

)
t3

=

∫ t

0

R(x)dx < −
∫ t

0

ϕ′(1− x)dx = ϕ(1− t).
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Lemma 3.8. For t ∈ (0, 1), we have θ(t) > 0.

Proof. We consider two cases.

Case 1. 0 < t ≤ 0.1. Applying Lemma 3.6 and Lemma 3.7 gives

θ(t) ≥ 4− t

t(2− t)

[(
9

2
log(3)− 6 log(2)

)
t2 +

(
9

2
log(3)− 6 log(2)− 1

2

)
t3
]

− B(t)− 0.4767t3

1− t
=

t2C(t)

(1− t)(2− t)

with

C(t) = γ1 − γ2t− γ3t
2,

γ1 = 6 log(2)− 9

2
log(3) + 1 = 0.215...,

γ2 =
27

2
log(3)− 18 log(2)− 9767

5000
= 0.401...,

γ3 = 6 log(2)− 9

2
log(3) +

9767

10000
= 0.191....

Since C(t) > 0.2− 0.5t− 0.2t2 > 0, we conclude that θ is positive on (0, 0.1].

Case 2. 0.1 ≤ t < 1. We have

tθ(t) = η1(t)− η2(t),

where

η1(t) =
4− t

2− t
ϕ(1− t) and η2(t) = t(−ϕ′(1− t)).

From Lemma 3.3 we conclude that η1 and η2 are the product of two positive
increasing functions. This implies that η1 and η2 are increasing on [0.1, 1). Let
0.1 ≤ r ≤ t ≤ s ≤ 1. It follows that

η1(t)− η2(t) ≥ η1(r)− η2(s) = η3(r, s), say.

Using

η3

(
0.1 +

k

3000
, 0.1 +

k + 1

3000

)
> 0 for k = 0, 1, 2, ..., 2699

and

[0.1, 1] =

2699⋃
k=0

[
0.1 +

k

3000
, 0.1 +

k + 1

3000

]
we obtain that η1(t)− η2(t) is positive for t ∈ [0.1, 1).
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Lemma 3.9. The function P is positive and strictly increasing on (0, 1).

Proof. Let x ∈ (0, 1). We have P ′(x) = P1(x)P2(x) with

P1(x) =
1

(1− x)3
and P2(x) = (x+3)ϕ(x)+(1−x2)ϕ′(x) = (1−x2)θ(1−x).

Applying Lemma 3.8 gives that P2 is positive on (0, 1). It follows that P ′(x) >
0 and P (x) > P (0) = ζ(3).

Lemma 3.10. The function Q is strictly increasing on (0, 1) with

lim
x→1

Q(x) =
27

2
log(3)− 18 log(2).

Proof. We have

Q(x) =

(
1 +

x2

1 + x

)
P (x).

From Lemma 3.9 we obtain that Q is strictly increasing on (0, 1). We have

Q(x) = (1 + x+ x2)
ϕ(x)

(1− x)2
, ϕ(1) = ϕ′(1) = 0, ϕ′′(1) = 9 log(3)− 12 log(2).

It follows that

lim
x→1

ϕ(x)

(1− x)2
= lim

x→1

ϕ′(x)

2(x− 1)
=

ϕ′′(1)

2
.

Thus

lim
x→1

Q(x) = 3 · ϕ
′′(1)

2
=

27

2
log(3)− 18 log(2).

Lemma 3.11. Let 0 < x < 1 and n ≥ 1. Then

Sn(x) < Sn+1(x). (9)

Proof. Let x ∈ (0, 1) and n ≥ 1. Inequality (9) is equivalent to

x3n(1− x3)

1− x3n

n∑
j=1

cj(x) < cn+1(x)

with

cj(x) =

(
1− xj

j(1− x)

)3

.

Since 0 < cj(x) ≤ 1 (j ≥ 1), we obtain

n∑
j=1

cj(x) ≤ n.
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It follows that
x3n(1− x3)

1− x3n

n∑
j=1

cj(x) ≤ n
x3n(1− x3)

1− x3n
.

Thus it suffices to show that

n
x3n(1− x3)

1− x3n
<

(
1− xn+1

(n+ 1)(1− x)

)3

. (10)

Using the arithmetic mean - geometric mean inequality gives

1− xn+1

(n+ 1)(1− x)
=

1

n+ 1

n∑
k=0

xk >

(
n∏

k=0

xk

)1/(n+1)

= xn/2

and

1− x3n

n(1− x3)
=

1

n

n−1∑
k=0

x3k ≥

(
n−1∏
k=0

x3k

)1/n

= x3(n−1)/2.

It follows that(
1− xn+1

(n+ 1)(1− x)

)3
1− x3n

n(1− x3)
> x3n/2x3(n−1)/2 = x3n−3/2 > x3n.

This implies (10).

4. Proofs of the theorems

Proof of Theorem 1.1. Let x ∈ (0, 1) and n ≥ 1. We have

lim
n→∞

Sn(x) = (1− x3)

∞∑
j=1

(
1− xj

j(1− x)

)3

= Q(x). (11)

Applying Lemma 3.11, (11) and Lemma 3.10 gives

Sn(x) < Q(x) < Q(1) =
27

2
log(3)− 18 log(2).

This settles (4). Moreover, we have

lim
x→1

lim
n→∞

Sn(x) = lim
x→1

Q(x) = Q(1) =
27

2
log(3)− 18 log(2).

This limit relation shows that the given upper bound is best possible.

Proof of Theorem 1.2. Let x ∈ (0, 1). Using Lemma 3.10 yields

Q(x) < Q(1) =
27

2
log(3)− 18 log(2).

This shows that (5) is valid for all x ∈ (0, 1) and that the constant factor a
given in (6) is sharp.
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