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On Hardy’s Inequality for Geometric
Sums and Series
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ABSTRACT. We prove the inequalities
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where the best possible constants are given by
27
a=a=— log(3) — 181log(2) = 2.35461....
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1. Introduction and statement of the main results

I. The discrete form of Hardy’s inequality states that if p > 1 and a; > 0
(j > 1), then
P
) < ()S
- < | — al. 1
>(15n) =(25) 24 g

G.H. Hardy [1] proved (1) with the factor (p?/(p — 1))p in 1920. In a private
communication, E. Landau informed him that (1) holds and that the factor
(p/(p — 1)) is best possible; see Hardy [2]. Moreover, Landau [6] offered the
following counterpart of (1) for finite sums:
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valid for p > 1, a; >0 (1 < j < n) and all n > 1. This improves a result of
Hardy [1] who found a short proof for (2) again with the factor (p?/(1 —p))”.

Both inequalities attracted the attention of many mathematicians who
found numerous generalizations, refinements, integral analogues and remark-
able variants of (1) and (2). For detailed information on this subject we refer to
the paper [4] which describes the scientific developments of (1) and its integral
version and to the excellent monograph [5] (with about 300 references) of A.
Kufner, L. Maligranda and L.-E. Persson.

IT. In 1986, P.F. Renaud [7] proved the following reverse of (1). If p > 1 and
(aj);j>1 is a positive decreasing sequence, then

<3 (1)

where ¢ denotes the Riemann zeta function. The factor {(p) is best possible.
For finite sums we obtain

n n 1 7 p
>y (13
j=1 j=1 k=1
This is valid for p > 0 and for any positive decreasing sequence (a;);>1.

III. The work on this paper was motivated by Problem 6663 published in
1991 by W. Janous and the editors in “The American Mathematical Monthly”.

Show that )

n (1 J > n
k—1 )

Z f,Zm < 4log(2 Zmﬂ (3)
= \/ =1
for 0 < x < 1 and all positive integers n; also show that the constant 4log(2)
is best possible; see [3].

Inequality (3) refines (2) in the case of geometric sums and p = 2. In view
of (2) and (3) it is natural to ask for the best possible factor ¢(p) such that

S(5) s

holds for x € (0,1) and n > 1, where p > 1 is a fixed real number. Here, we
consider the special case p = 3. The following theorem offers a cubic companion
to (3).
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THEOREM 1.1. For all real numbers x € (0,1) and natural numbers n > 1, we
have
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with the best possible constant factor

27
a=— log(3) — 181og(2) = 2.35461....

Our second result provides a counterpart of (4) for series. In particular, we
obtain an improvement of (1) in the case aj, = 2=, p = 3.

THEOREM 1.2. For all real numbers z € (0,1), we have

J

3
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with the best possible constant factor

a= g log(3) — 181log(2). (6)

IV. In the next section, we present notations and in Section 3, we collect
eleven lemmas. With the help of the lemmas we are able to offer short proofs
for both theorems. These proofs are given in Section 4.

The numerical calculations have been carried out by using the computer
software Maple 13.

2. Notation

The classical polylogarithm function is defined by

k

> z
Lip(2) =Y o
k=1

where m € N and z € C with |z| < 1. This function plays an important role
in various fields, like, for example, algebraic K-theory and hyperbolic geome-
try. Here, we present five functions which are defined in terms of the di- and
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trilogarithm, Lis and Lis.

g(x) = 3Lig(z) + 3Lia(2?),

h(z) = 6Lia(z?) — 3log(1 — x) + 121log(1 — 2?) — 9log(1 — %),
21(1) = Tia(1 — 1) — 5 Lin((1 — 1?),

a(t) = Lia(1 — 0)%) = SLia((1 ~ 1)),

¢(x) = ((3) — 3Lig(x) + 3Liz(2%) — Liz(a?).

Moreover, we need the following functions:

01t) = s = olL— 1)+ 61 =),
x — LU3
Pa) = goagole). Q) = ggo@)
7.[.2
Ai(t) = i log(2)t + (i - ;log(2)> t2,

2

As(t) = % +2log(2/3)t + (; + log(2/3)> t2,

B(t) = (9log(3) — 12log(2)) t + <g log(3) — 61og(2) — 3) 2

5.0 = 15> _xj))s-

=\

3. Lemmas

We collect some properties of the functions which are defined in the previous
section.

LEMMA 3.1. The functions g and h are increasing on (0,1).
Proof. Let € (0,1). Then

1 1
gg'(gc) = Li(x) + 32°Liy(2®) = - (log(1 — z) + 3log(1 — z*)) > 0.

We have

3z(22% + 5z — 1)
14+z)(x®2+2x+1)

zh/(z) = —12log(1 — 2?) — = hy(x), say.
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It follows that
ha(x)
(1—-2)1+4+2)?(x®2 4+ 2+ 1)2

with hg(z) = 2425 + 692° + 1532* + 14423 + 4822 — 9z + 3.
Since

hi(z) =

ha(z) > %gﬂ — 92 +3=3(3z/2-1)2 >0,
we obtain hj(x) > 0 and hy(z) > hy1(0) = 0. This yields A'(x) > 0. O
LEMMA 3.2. For z € (0,0.1], we have h''(z) < 0.
Proof. Let x € (0,0.1]. Then

~ 12log(1 — 2?)

B (z) — + hs(z)
with
() = 3(6x5 + 162" + 4723 + 5122 + 23z + 1)
S (I+22(1—a3) (2 +z+1)
We have
.2
1210g;(12 x?) <12
x
and
—3h
9 — hy(z) = 4(2)

1+z)2(1—2)(z2+z+1)’

where hy(z) = 327 + 925 + 1825 + 222* + 4123 + 3922 + 14z — 2.
The function hy4 is increasing with h4(0.1) = —0.16.... It follows that
hs(z) < 9. Hence, h''(x) < =12+ 9 = -3. O

LEMMA 3.3. For z € (0,1), we have ¢(z) >0, ¢'(z) <0, ¢ (x) > 0.

Proof. We have
2?¢"(z) = g(z) — h(z) = ¢1(2), say.

To prove that ¢, is positive on (0,1) we consider two cases.

Case 1. 0 < z < 0.1. Since ¢”(x) > 0, we obtain from Lemma 3.2
V(@) =g"(x) = 1" (z) > 0.

Hence ¢} (x) > ¢71(0) =0 and ¢1(x) > ¢1(0) = 0.
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Case 2. 0.1 <z <1 Let 0.1 <r <z <s<1. Applying Lemma 3.1 gives

¢1(l‘) > g(’l") - h(S) = ¢2(T7 5)’ say.
We have
59 k41

k
01,1 =) (014 —,01+=].
0-1,1] kL_JO[ T0 T 100}

By direct computation we obtain

k k+1
d4+—014+ —+ f =0,1,...,89.
D2 (O +100,0 + 100)>O or k=0,1,...,89

This implies that ¢; is positive on [0.1,1]. We obtain for z € (0, 1),
¢"(z) >0, ¢'(x) <¢'(1)=0, o(x)>¢(1)=0. 0
LEMMA 3.4. Fort € (0,0.1], we have z§4)(t) <0< 254) (t).

Proof. Let t € (0,0.1]. We have

113 — 48t% + 69t — 32

62— 1) = A\ (t), say.

1)) = og2 1) +

Then
(1-1)°
1 <0 and /\1(75) > )\1(01) = 0.020....

Ai(t) = NPEDL

This leads to z§4) (t) <O.
We have
Aa(t) + As(t)
(1 —1)%(2—t)3(t2 — 3t + 3)3

237 (1) =
with )
t“—3t+3
o) = 12(2 — £3(£2 — 3t + 3)% log Tj
and

Az(t) = 22t — 3306 + 2136t7 — 791015 + 18588t° — 28878¢*
+29764t% — 19674t> + 7578t — 1296.

A2 is the product of positive decreasing functions. It follows that Ay is decreas-
ing. Next, we apply Sturm’s theorem to determine the number of distinct real
roots of an algebraic polynomial located in an interval; see van der Waerden
[8, Section 79.
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It turns out that A5 has no zero on [0,0.1] with A5(0) = 7578. This implies
that A3 is increasing. Let 0 <r <t < s < 0.1. We obtain

A2(t) + As(t) < Aa(r) + As(s) = Aq(r, s), say.
Since
22(0,0.03) <0, A4(0.03,0.05) <0, Ag(0.05,0.07) <0, Ay(0.07,0.1) < 0,
we conclude that Ag + A3 is negative on [0,0.1]. Thus 254) (t) > 0. O
LEMMA 3.5. Fort € (0,0.1], we have

Ay (t) — 0.0256t% < z1(t) < Aq(t) — 0.0227¢3, (7)
Ag(t) 4 0.0908t% < 2o(t) < Ag(t) +0.112¢3. (8)

Proof. Let
1
Hy(t) = Ay (t) — ait® — 21 (t), a1 = —éz;”(o) = 0.0227....
We obtain H{”(t) = —6a; — 2{’(¢), so that Lemma 3.4 implies that Hj” is
strictly increasing on (0,0.1]. Since
Hy(0) = H1(0) = H{/(0) = H{"(0) = 0,

we conclude that H; is positive on (0,0.1]. This leads to the second inequality
in (7).
Let

1
Ho(t) = —Ai(t) + agt® + 21(1), ag= —621"(0.1) = 0.02559....

Since z{” is decreasing, we get HY'(t) = 6z + 2{’(¢t) > H4'(0.1) = 0. Using
H>(0) = H4(0) = HY(0) = 0 yields Ha(t) > 0 for ¢ € (0,0.1]. This gives the
first inequality in (7).

Let

1
H3(t) = Ag(t) + ast® — 20(t), a3 = 6zg”(o.1) =0.11191....

We apply Lemma 3.4 and obtain
HY'(t) = 6as — 25’ (t) > HY'(0.1) = 6a3 — 25'(0.1) = 0.

Since H3(0) = H5(0) = H4(0) = 0, we conclude that H3(t) > 0 which leads to
the second inequality in (8).
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Let
1
Hy(t) = —Ag(t) — aut® + 29(t), oy = 6z;”(o) = 0.090801....

We obtain HY'(t) = —6ay + 2§'(¢t) > H'(0) = 0, so that H4(0) = H}(0)
HJ(0) =0, leads to Hy(t) > 0. This yields the first inequality in (8).

o

LEMMA 3.6. Fort € (0,0.1], we have
B(t) — 0.5808t3

1-1¢
Proof. Let t € (0,0.1]. We have

B(t) — 0.4767¢3
1—t ’

<-¢'(1-t)<
, 9
~(L=0)¢' (1~ 1) = 3a(t) — S =(1).
Applying Lemma 3.5 gives
—(1—t)¢'(1 —t) < 3(A1(t) — 0.0227¢%) — g(Ag(t) +0.0908t*)
= B(t) — 0.4767t3
and
—(1=t)¢'(1 —t) > 3(A1(t) — 0.0256¢%) — g(Ag(t) +0.112t%)
= B(t) — 0.5808¢>. O
LEMMA 3.7. For t € (0,0.1], we have
9 5 (9 1\
3 log(3) — 6log(2) | t* + B log(3) — 6log(2) — B t° < (1 —t).
Proof. We define
27 3\
R(z) = (91og(3) — 12log(2))z + 5 log(3) — 181og(2) — 5 )7
Since
B(z) — 0.58082°  Ra) = Irox® 7
1—x 1250(1 — )
ro = 18751log(3) — 25001log(2) — 289 = 38.03...,

we conclude from Lemma 3.6 that for x € (0,0.1], R(z) < —¢'(1 — z).
Let ¢ € (0,0.1]. Then

(g log(3) - 610g(2)) 2+ (2 log(3) — 6log(2) — ;) t3

t
0

:/OtR(:x)d:c< —/ ¢ (1 —z)dr = ¢p(1 —t). O
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LEMMA 3.8. Fort € (0,1), we have 0(t) > 0.

Proof. We consider two cases.

Case 1. 0 <t <0.1. Applying Lemma 3.6 and Lemma 3.7 gives

o) > - (42__1;) [(glog(ii) _ 61og(2)) 24 (g log(3) — 6log(2) — ;) t3]
_ B(t) —04767t> _ $2C(t)

1—t (1—t)(2—1)

with

C(t) =71 — Y2t — 73t?,
9

7 = 6log(2) — 3 log(3) +1=0.215...,

9767

27
=—1 — 18log(2) — —— = 0.401...
72 = 5 log(3) — 18log(2) — Zoe = 0.40L...
9 9767
=6log(2) — -1 —— =0.191....
7 = 61og(2) — 5 log(3) + {55 = 019

Since C(t) > 0.2 — 0.5t — 0.2t> > 0, we conclude that  is positive on (0,0.1].
Case 2. 0.1 <t < 1. We have

t0(t) = 1 (t) — na(t),

where Ay

m(t) = ﬁ@b(l —t) and n2(t) = t(—=¢'(1 - 1)).
From Lemma 3.3 we conclude that 7, and 7. are the product of two positive
increasing functions. This implies that 7, and 7, are increasing on [0.1,1). Let

0.1 <r<t<s<l1. It follows that

m(t) = n2(t) = m(r) —na(s) = ns(r; s), say.

Using

k k+1
13 (01+3()()(),01+3)()()0> >0 for k—0,1,2,,2699

and
2699

k k+1
0.1,1] = 0.1 0.1
[0-1,1] kL:JO [ + 3000’ + 3000

we obtain that 7y (¢) — n2(t) is positive for t € [0.1,1). O
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LEMMA 3.9. The function P is positive and strictly increasing on (0,1).

Proof. Let x € (0,1). We have P'(z) = Pi(x)Ps(z) with

Py (z) = e and  Py(x) = (x+3)¢p(x)+(1—22)¢'(z) = (1—2?)0(1—2).

Applying Lemma 3.8 gives that P, is positive on (0,1). It follows that P’(z) >
0 and P(x) > P(0) = ¢(3). O

LEMMA 3.10. The function Q is strictly increasing on (0, 1) with

lim Q(z) = 2—27 log(3) — 181og(2).

x—1

Proof. We have

Qz) = (1 + 13—01—295) P(z).

From Lemma 3.9 we obtain that @ is strictly increasing on (0,1). We have

Q) = (a4 20 o) = 0'(1) =0, (1) = 9log(3) - 12log(2).
It follows that
i @) @) ¢"(D)
a1 (1—2)2  2=12(z—1) 2
Thus " o7
ignl Q(z)=3- ¢ 2( ) =5 log(3) — 181og(2). 0

LEMMA 3.11. Let 0 <z <1 andn > 1. Then
Sp(z) < Spt1(x). 9)

Proof. Let z € (0,1) and n > 1. Inequality (9) is equivalent to

.’1?3" _ 31‘3 n
T T) S h(a) < et (@)

1—z3n

with
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It follows that
"(1—a? i 3"(1 — %)

17x3” 1—z3n

Thus it suffices to show that

231 (1 — 23) 1 — gnt! 3
[—a% <<n+1><1—x>> |

Using the arithmetic mean - geometric mean inequality gives

1 xn+1

1 n n 1/(n+1)
— _ k k _ n/2
= > =
i - () -

and

1_3} n—1 n—1 1/n
1 - x3 — ngk <H $3k> — 1,3(71—1)/2.

It follows that

(11 of 12)

(10)

3
( 1 — gt )) 1—az S p3n/2,3(n=1)/2 _ 13n-3/2  3n

n+1)(1—x
This implies (10).

n(l — x3)

4. Proofs of the theorems

Proof of Theorem 1.1. Let z € (0,1) and n > 1. We have

e i 3
1—2a)
lim S,(z)=(1—-2a° () = Q(x).
Jn 8,0 ==Y (5 ) -0
Applying Lemma 3.11, (11) and Lemma 3.10 gives
5u(r) < Q) < Q(1) = 2 los(3) — 18T0g(2).

This settles (4). Moreover, we have

lim lim S,(z) = lim Q(z) = Q(1) = 2?710g(3) — 18log(2).

r—1n—oo rz—1

This limit relation shows that the given upper bound is best possible.

Proof of Theorem 1.2. Let 2 € (0,1). Using Lemma 3.10 yields
27
Q) < Q) = 2T 105(3) - 1810g(2).

This shows that (5) is valid for all € (0,1) and that the constant
given in (6) is sharp.

factor a
O
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