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Abstract. By using mountain pass arguments and a novel group-
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1. Introduction

In this short note we are interested on the existence of nodal (sign-changing)
solutions for the following nonlinear eigenvalue problem

−∆hw + α(σ)w = λβ(σ)|w|q−2w, in Sd, (1)

where (Sd, h) denotes the unit sphere Sd, with d ≥ 5, endowed by the standard
metric h induced by the natural embedding Sd ↪→ Rd+1 and ∆h is the Laplace-
Beltrami operator on (Sd, h) whose expression in local coordinates and standard
notations is given by ∆h = hij(∂ij − Γk

ij∂k). Furthermore

α, β∈Λ+(Sd) :=
{
η∈L∞(Sd;R) : η is O(d+1)-invariant and essinf

σ∈Sd
η(σ) > 0

}
where O(d + 1) denotes the orthogonal group acting on Rd+1, λ is a positive
real parameter.

Finally, from now on, along the paper we assume that q ∈ [1, 2∗], where, as
usual, 2∗ := 2d/(d− 2) denotes the critical Sobolev exponent. As customary,
we say that problem (1) is subcritical provided that q ∈ [1, 2∗) and critical if
q = 2∗. Hence, in our setting, the main problem (1) should be either subcritical
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or critical. To the best of our knowledge the main results are new in any of the
above cases.

Let us first recall that slightly subcritical problems on the round sphere
have been studied by F. Robert and J. Vétois [45] obtaining the existence of
multiple nodal solutions blowing-up at points, while the general subcritical
case has been investigated by H. Brézis and Y. Li [8] and, more recently, by G.
Henry and J. Petean along the paper [23].

In the last cited paper the authors also developed a novel technical approach
by proving the existence of an infinite number of non constant positive solutions
having prescribed level sets in terms of isoparametric hypersurfaces.

On the other hand, a special case of (1) is clearly given by the following
celebrated Yamabe-type equation

−∆hw +
d(d− 2)

4
w =

d(d− 2)

4
|w|

4
d−2w, in Sd. (2)

A complete classification of all positive solutions of (2) goes back to the
result of M. Obata [42]. As far as nodal solutions are concerned, we recall the
result of W. Ding [18] on the existence of solutions which are invariant under
the action of the Lie group O(k)×O(d+1− k) for k = 2, ..., d− 1; see also the
quoted papers [4] and [5] due to T. Bartsch and M. Willem.

Unlike what happens with the positive solutions to this problem on the
Euclidean sphere, a classification of all the nodal solutions is far for being
complete. To this reason, the existence of nodal solutions for critical problems
on the round sphere, whose prototype is given by (2), have been studied by
several authors. Among others, we mention here just some contributions due
to M. Clapp [9], M. Clapp and J.C. Fernández [11], M. del Pino, M. Musso, F.
Pacard, and A. Pistoia [15, 16], and M. Musso and J. Wei [41]. For the sake
of completeness, we also note that several recent and significant contributions
on nodal solutions to the Yamabe problem have been made by J.C. Fernández
and J. Petean [19], as well as by M. Clapp, J. Faya, and A. Saldaña [10].

This bibliography does not escape the usual role to be incomplete. Moti-
vated by this wide interest in the current literature, in the spirit of seminal
papers of P.-L. Lions [30, 31], the main result reads as follows.

Theorem 1.1. Let (Sd, h) be the unit sphere Sd, with d ≥ 5, endowed by the
standard metric h induced by the natural embedding Sd ↪→ Rd+1. Moreover,
let α, β ∈ Λ+(Sd) and let ⌈·⌉ be the integer function, i.e. the largest integer
less that or equal to a given real number. Then, for every λ > 0, equation (1)
admits at least

sd := ⌈d/2⌉+ (−1)d+1 − 1

sequences of nodal solutions with mutually different symmetric structures.

A meaningful consequence of Theorem 1.1 is the following.
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Corollary 1.2. Assume that d ≥ 5. Then, the Yamabe-type equation (2) ad-
mits at least sd sequences of nodal solutions with mutually different symmetric
structures.

In the critical case, the energy functional Jλ : H2
1 (Sd) → R given by

Jλ(w) :=
1

2

(∫
Sd

|∇w(σ)|2dσh+

∫
Sd

α(σ)|w(σ)|2dσh

)
− λ

q

∫
Sd

β(σ)|w(σ)|qdσh,

and associated to problem (1) does not satisfy the usual Palais-Smale con-
dition due to the lack of compactness of the embedding H2

1 (Sd) ↪→ L2∗(Sd);
see Section 2 for the functional setting involving here. In order to regain some
compactness properties, we use here [24, Theorem 3.1] in the more precise form
given in Proposition 3.2.

Indeed, for every i ∈ Jd := {1, ..., sd}, the subgroups Gτi
d,i := ⟨Gd,i, τi⟩ of

the orthogonal group O(d+ 1), where

Gd,i :=


O(i+ 1)×O(d− 2i− 1)×O(i+ 1), if i ̸= d− 1

2
,

O(i+ 1)×O(i+ 1), if i =
d− 1

2
,

and τi : Sd → Sd is the involution function defined by

τi(σ) :=


(σ3, σ2, σ1), if i ̸= d− 1

2
and σ1, σ3 ∈ Ri+1, σ2 ∈ Rd−2i−1,

(σ3, σ1), if i =
d− 1

2
and σ1, σ3 ∈ Ri+1,

for every σ = (σ1, σ2, σ3) ∈ Sd, will imply the compactness of the embed-
ding of Gτi

d,i-invariant functions HG
τi
d,i
(Sd) of H2

1 (Sd) into the Lebesgue spaces

Lq(Sd) whenever q ∈
[
1, 2∗d−1

)
, with 2∗d−1 := 2(d− 1)/(d− 3); see [24], [28,

Chapter 10], [36, Chapter 6], as well as Section 3.
Now, having such a compactness, the cassical the Z2-symmetric version of

the Mountain Pass Theorem and the principle of symmetric criticality due to
Palais (see [44] and Theorem 2.1 in Section 2) applied to the energy functional
Jλ will guarantee the existence of a whole sequence of Gτi

d,i-invariant solutions
for (1). Finally, the number of sd sequences of nodal solutions for (1) with
mutually different nodal properties will follow by the careful choices of the
subgroups Gτi

d,i ⊂ O(d+ 1); see Proposition 3.2 in Section 3.
Furthermore, since the appearance of the celebrated paper of W. Ding [18]

on the conformally invariant scalar field equation in Rd, concerning the exis-
tence of infinitely many conformally inequivalent changing sign solutions, with
finite energy, the method of pulling back the problem into the unit sphere Sd
of Rd+1 by means of a stereographic projection and then into its variational



(4 of 16) G. MOLICA BISCI

formulation has been having a large use in literature for different problems,
involving critical nonlinearities in the sense of Sobolev.

Along this direction, a remarkable case of problem (1) is given by the critical
equation

−∆hw +
(d− 1)2

4
w = λβ(σ)|w|2

∗−2w, in Sd. (3)

Indeed, by using an appropriate change of coordinates due to M.F. Bidaut-
Véron and L. Véron [6], existence results for problem (3) yield the existence of
solutions to the following parameterized Emden-Fowler equation

−∆u = λ|x|
2

d−2 β

(
x

|x|

)
|u|

4
d−2u, x ∈ Rd+1 \ {0}. (4)

We emphasize that equations of type (4) have been largely studied in the
literature. For instance, among others, we just mention here the pioneering
papers due to A. Cotsiolis and D. Iliopoulos [13] and J.L. Vázquez and L.
Véron [46]; see also A. Cotsiolis and D. Iliopoulos [14].

Thanks to the stereographic projection method developed in the cited pa-
pers, existence results for equation (4) have been established recently in [7, 27,
28, 32], as well as [37, 40], via variational methods.

The main result for parameterized Emden-Fowler equations states as fol-
lows; see also Remark 4.3.

Corollary 1.3. Assume that d ≥ 5 and let β ∈ Λ+(Sd). Then, for every
λ > 0, equation (4) admits at least sd sequences of nodal solutions with mutually
different symmetric structures.

We emphasize that, taking into account the simple nature of the pure (crit-
ical) power, Theorem 1.1, and its consequences reported here, cannot be de-
duced by the results proved in [24]. Indeed, conditions (f0

2 ) in [24, Theorem 2.1]
and (f∞

2 ) in [24, Theorem 2.2] are clearly not verified in our setting.
Furtheromre, for the sake of completeness, we point out that in recent

years, singular Riemannian foliations have come to the forefront as a natural
and compelling generalization of symmetry in Riemannian geometry, particu-
larly within the setting of manifolds with nonnegative sectional curvature. As
extensions of classical notions such as isometric group actions and Riemannian
submersions, they provide a versatile framework that captures both geomet-
ric and analytic phenomena beyond the reach of traditional symmetry models.
Notably, a variety of results that depend solely on the transverse geometry to
group orbits extend naturally to this broader context.

Along this direction, the work of D. Corro, J.C. Fernández, and R. Perales
[12] stands out as a significant, elegant and general contribution. In particular,
the authors constructed an unbounded sequence of nodal, symmetric solutions
to the Yamabe problem on the sphere, each invariant along the leaves of a
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singular Riemannian foliation induced by the orbits of certain subgroups of the
orthogonal group O(d+ 1); see [12, Corollary C].

Their approach, which blends geometric insight with analytic precision, also
encompasses a wider class of Yamabe-type equations with symmetric, non-
constant coefficients, encompassing equation (1) as a particular case. Their
work offers a deep and unifying perspective on how symmetry, in its generalized
form, governs the structure of solutions to geometric PDEs.

Building upon this foundational framework, the present work aims to fur-
ther articulate and enrich the structure of nodal solutions. Unlike the solutions
obtained in [12], which share a unified symmetry structure, the solutions we
construct exhibit a diversity of symmetry types, each precisely characterized
and associated to a separate sequence of nodal solutions.

In this perspective, our results can be naturally reinterpreted within the
general framework developed in [12]. While our analysis is restricted to a
specific and constrained case within the broader scope of [12], it nonetheless
leads to a more detailed formulation of the results in this setting. In particular,
it yields a precise enumeration of symmetry-distinct nodal solutions and a more
articulated understanding of the corresponding symmetry structures.

The plan of the paper is as follows. In the next section we recall some basic
facts on the Sobolev spaces defined on the sphere Sd. In Section 3 we will
discuss our abstract group-theoretical arguments while in the last section we
are dealing with the proof Theorem 1.1 and its consequences.

The main results of the paper are mainly based on the arguments and ideas
contained in [3, 18, 24] as well as [13, 46]; see also the monographs [28, 36].
Related existence and multiplicity results can be found in [26, 29, 33, 34] and
[35, 38, 39].

2. Framework and Notations

We start this section with a short list of notions in Riemannian geometry. We
refer to Aubin [1, 2] and Hebey [21] for detailed derivations of the geometric
quantities, their motivation and further applications; see also the work [1] and
the brief introduction on the subject given in [7].

As usual, we denote by C∞(Sd) the space of smooth functions defined on Sd.
Let α ∈ Λ+(Sd) and put ∥α∥∞ := esssup

σ∈Sd
α(σ).

For every w ∈ C∞(Sd), set

∥w∥2H2
α
:=

∫
Sd

|∇w(σ)|2dσh +

∫
Sd

α(σ)|w(σ)|2dσh,

where ∇w is the covariant derivative of w, and dσh is the Riemannian measure.



(6 of 16) G. MOLICA BISCI

Hence, let

ωd := Volh(Sd) =
∫
Sd

dσh.

The Sobolev space H2
α(Sd) is defined as the completion of C∞(Sd) with

respect to the norm ∥ · ∥H2
α
. Then H2

α(Sd) is a Hilbert space endowed with the
inner product

⟨v, w⟩H2
α
:=

∫
Sd
⟨∇v(σ),∇w(σ)⟩hdσh +

∫
Sd

α(σ)⟨v(σ), w(σ)⟩hdσh,

for every v, w ∈ H2
α(Sd), where ⟨·, ·⟩h is the inner product on covariant tensor

fields associated to h.
Since α is positive, the norm ∥ · ∥H2

α
is equivalent with the standard norm

∥w∥H2
1
:=

(∫
Sd

|∇w(σ)|2dσh +

∫
Sd

|w(σ)|2dσh

)1/2

.

Moreover, if w ∈ H2
α(Sd), the following inequalities hold

min{1, essinf
σ∈Sd

α(σ)1/2}∥w∥H2
1
≤ ∥w∥H2

α
≤ max{1, ∥α∥1/2∞ }∥w∥H2

1
. (5)

From the Rellich-Kondrachov theorem (for compact manifolds without bound-
ary) one has

H2
1 (Sd) ↪→ Lq(Sd),

for every q ∈ [1, 2d/(d− 2)]. In particular, the embedding is compact whenever
q ∈ [1, 2d/(d− 2)). Hence, there exists a positive constant Sq such that

∥w∥q ≤ Sq∥w∥H2
1
, ∀ w ∈ H2

1 (Sd), (6)

where the norm of the Lebesgue spaces Lq(Sd) are denoted by ∥ ·∥q, q ∈ [1,∞).

Furthermore, for the sake of completeness, we recall that, fixed λ ∈ R, a
function w ∈ H2

1 (Sd) is a weak solution of problem (1) if∫
Sd
⟨∇w(σ),∇v(σ)⟩h +

∫
Sd

α(σ)w(σ)v(σ)dσh=λ

∫
Sd

β(σ)|w(σ)|q−2w(σ)v(σ)dσh

for every v ∈ H2
1 (Sd).

Due to the regularity assumptions on the data, the weak solutions of prob-
lem (1) are also classical; see, for instance, the paper [27] as well as the books
[28, 36].

Finally, let us recall the well known principle of symmetric criticality of R.
Palais. A group (H , ∗) acts continuously on a real Banach space X by an
application (τ, u) 7→ τ ⊛H u from H ×X to X if this map itself is continuous
on H ×X and satisfies
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(i1) idH ⊛H u = u for every u ∈ X, where idH ∈ H is the identity element
of H ;

(i2) (τ1 ∗ τ2)⊛H u = τ1 ⊛H (τ2 ⊛H u) for every τ1, τ2 ∈ H and u ∈ X;

(i3) u 7→ τ ⊛H u is linear for every τ ∈ H .

Set
FixH (X) := {u ∈ X : τ ⊛H u = u for every τ ∈ H } .

A functional J : X → R is said to be H –invariant if

J (τ ⊛H u) = J (u),

for every u ∈ X and τ ∈ H .
With the notation introduced above, the following classical and celebrated

result by R.S. Palais [44] holds.

Theorem 2.1. Let X be a real Banach space, H be a compact topological group
acting continuously on X by a map ⊛H : H ×X → X, and J : X → R be a
H –invariant C1–function. If u ∈ FixH (X) is a critical point of the restriction
J|FixH (X), then u ∈ X is also a critical point of J .

For details and comments we refer to [36, Appendix A].

3. Group-theoretical arguments

Let d ≥ 5 and let us define sd := ⌈d/2⌉ + (−1)d+1 − 1, where ⌈·⌉ denotes the
integer function. In this section, arguing as in [24], we describe the construc-
tion of sd subspaces HG

τi
d,i
(Sd) of the Sobolev space H2

1 (Sd) related to certain

subgroups Gτi
d,i of the orthogonal group O(d+ 1), for every i ∈ Jd.

To this aim, let i ∈ Jd = {1, ..., sd} and set

Gd,i :=


O(i+ 1)×O(d− 2i− 1)×O(i+ 1), if i ̸= d− 1

2
,

O(i+ 1)×O(i+ 1), if i =
d− 1

2
.

Furthermore, Gd
i,j denotes the group generated by Gd,i and Gd,j whenever

i, j ∈ Jd and i ̸= j. The following result, showed in [24, Proposition 3.2], is
crucial in order to prove the geometric shape described in Proposition 3.2.

Now, let τi : Sd → Sd be the involution function associated to Gd,i and
defined by

τi(σ) :=


(σ3, σ2, σ1), if i ̸= d− 1

2
and σ1, σ3 ∈ Ri+1, σ2 ∈ Rd−2i−1,

(σ3, σ1), if i =
d− 1

2
and σ1, σ3 ∈ Ri+1,



(8 of 16) G. MOLICA BISCI

for every σ = (σ1, σ2, σ3) ∈ Sd. By construction,

τi /∈ Gd,i, τiGd,iτ
−1
i = Gd,i and τ2i = idSd .

For instance, if d = 11, then s11 = 5 and the groups and the involution
functions are described below:

G11,1 = O(2)×O(8)×O(2),

τ1(σ1, σ2, σ3) := (σ3, σ2, σ1)

for σ1, σ3 ∈ R2 and σ2 ∈ R8, when i = 1;

G11,2 = O(3)×O(6)×O(3),

τ2(σ1, σ2, σ3) := (σ3, σ2, σ1)

for σ1, σ3 ∈ R3 and σ2 ∈ R6, when i = 2;

G11,3 = O(4)×O(4)×O(4),

τ3(σ1, σ2, σ3) := (σ2, σ1, σ3)

for σ1, σ2, σ3 ∈ R4, when i = 3;

G11,4 = O(5)×O(2)×O(5),

τ4(σ1, σ2, σ3) := (σ3, σ2, σ1)

for σ1, σ3 ∈ R5 and σ2 ∈ R2, when i = 4;

G11,5 = O(6)×O(6),

τ5(σ1, σ2) := (σ2, σ1)

for σ1, σ2 ∈ R6, when i = 5.

See [28, Chapter 10], as well as [24], for additional comments and remarks.

For every i ∈ Jd let ⊛̂i be an action of the compact group

Gτi
d,i := ⟨Gd,i, τi⟩ ⊂ O(d+ 1) (7)

on the Sobolev space H2
1 (Sd).

More precisely, we consider the action ⊛̂i : Gτi
d,i × H2

1 (Sd) → H2
1 (Sd),

(g̃, w) 7→ g⊛̂iw, which is defined pointwise for a.e. σ ∈ Sd by

(g⊛̂iw)(σ) :=

{
w(g−1σ) if g ∈ Gd,i

−w(g−1τ−1
i σ) if g = τig̃ ∈ Gτi

d,i \Gd,i, g̃ ∈ Gd,i.
(8)
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This can be done by the properties of τi. Therefore, ⊛̂i is well defined, linear
and continuous.

Let us consider for every i ∈ Jd the subspace HG
τi
d,i
(Sd) of H2

1 (Sd) given by

Ei := HG
τi
d,i
(Sd) = {w ∈ H2

1 (Sd) : g⊛̂iw = w for all g ∈ Gτi
d,i}.

Clearly, Ei contains all the functions u ∈ H2
1 (Sd), which are symmetric with

respect to the action ⊛̂i of the compact group Gτi
d,i.

We notice that the spaces Ei are infinite-dimensional. Indeed, by [43] there
exist Gd,i-invariant partitions of unity. Hence, from the fact that the groups
Gτi

d,i are disconnected it follows that there exists a nontrivial continuous homo-
morphism from Gτi

d,i to Z2. According to the remark given in [9] the conclusion
is achieved.

We also observe that every w ∈ Ei \ {0} has no constant sign. Indeed,
w(σ) = −w(τ−1

i σ) for every σ ∈ Sd, since w is Gτi
d,i–invariant by (9). The

conclusion then follows immediately from the fact that w is not zero.
Moreover, for every i ∈ Jd we also introduce

Ei := HGd,i
(Sd) = {w ∈ H2

1 (Sd) : g ⊛i w = w for all g ∈ Gd,i},

where the action ⊛i : Gd,i ×H2
1 (Sd) → H2

1 (Sd) of the compact group Gd,i on
H2

1 (Sd), (g, w) 7→ g⊛iw, is defined pointwise for a.e. σ ∈ Sd by

(g⊛iw)(σ) := w(g−1σ). (9)

That the spaces Ei are infinite dimensional follows from the fact of the
existence of Gd,i-invariant partitions of the unity and because every group Gd,i

does not acts transitively on the sphere.
Finally, for the sake of clarity let us recall the following abstract embedding

result given by E. Hebey and M. Vaugon in [22]; see also [3, Lemma 3.2].

Proposition 3.1. Let G be a closed topological subgroup of the isometries group
Isomh(Sd) and let · : G×H2

1 (Sd) → H2
1 (Sd), with d ≥ 3, be the natural action

of the topological group G on the Hilbert Sobolev space H2
1 (Sd). Set

HG(Sd) := {w ∈ H2
1 (Sd) : gw = w for all g ∈ G}.

Let
dG := min

σ∈Sd
dim(Gσ)

be the minimal dimension of the orbits in Sd, where the orbit Gσ of an element
σ ∈ Sd is given by

Gσ := {gσ : for all g ∈ G},

and gσ denotes the natural multiplicative action of G over Sd.
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Then the Sobolev embedding

HG(Sd) ↪→ Lq(Sd)

is compact for every q ∈ [1, qG), where

qG :=


2(d− dG)

d− dG − 2
if d > 2 + dG

+∞ if d ≤ 2 + dG.

If d > 2 + dG, then the space HG(Sd) is continuously embedded in LqG(Sd).

We notice that if G is a connected algebraic group, which acts on a variety Y
(not necessarily affine), then for each y ∈ Y the orbit Gy is an irreducible
variety, that is Gy is open in its closure. Moreover, its boundary, ∂Gy =
Gy \ Gy, is the union of orbits of strictly smaller dimension. Finally, in this
case orbits of minimal dimension are closed.

By Proposition 3.1, the next result holds.

Proposition 3.2. Let (Sd, h) be the unit sphere Sd, with d ≥ 5. The following
statements hold:

(i1) The Hilbert Sobolev space Ei = HGd,i
(Sd) is compactly embedded into

Lq(Sd), whenever q ∈
[
1, 2∗d−1

)
, where

2∗d−1 :=
2(d− 1)

d− 3
.

Moreover, for a fixed i ∈ Jd, one has:

(i2) Ei ∩ Ej = {constant functions on Sd} for every j ∈ Jd, with j ̸= i;

(i3) Ei ∩ Ej = {0} for every j ∈ Jd, with j ̸= i.

Proof. In order to prove item (i1), let us notice that the definition of Gd,i

shows that the Gd,i-orbit of every point σ ∈ Sd has at least dimension 1, i.e.,
dim(Gd,iσ) ≥ 1 for every σ ∈ Sd. Thus

dGd,i
:= min{dim(Gd,iσ) : σ ∈ Sd} ≥ 1.

By using Proposition 3.1, we conclude that HGd,i
(Sd) is compactly embedded

into Lq(Sd), whenever q ∈
[
1, 2∗d−1

)
as claimed. The rest of the proof is given

in [24, Theorem 3.1].

We refer to [17, 26, 34] for related topics.
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4. A proof of Theorem 1.1 and its consequences

In this section we assume the hypotheses of Theorem 1.1 are fulfilled and let
λ > 0. The energy functional Jλ : H2

1 (Sd) → R associated with problem (1)
has the form

Jλ(w) :=
1

2
∥w∥2H2

α
− λ

q

∫
Sd

β(σ)|w(σ)|qdσh. (10)

Since α, β ∈ Λ+(Sd), standard arguments ensure that the energy functional Jλ

is well-defined, it belongs to C1(H2
1 (Sd),R), and its critical points are precisely

the solutions of problem (1). Moreover, Jλ is even in H2
1 (Sd). Furthermore,

it easy to check that, for every fixed i ∈ Jd, one has Jλ(g⊛̂iw) = Jλ(w) for
every g ∈ Gτi

d,i and w ∈ H2
1 (Sd), where ⊛̂i is defined in (8). In other words, the

functional Jλ is Gτi
d,i-invariant on H2

1 (Sd).
Now, the topological group Gτi

d,i ⊂ O(d + 1) is compact and the represen-

tation map ⊛̂i : G
τi
d,i × H2

1 (Sd) → H2
1 (Sd) given in (8) is continuous. By the

principle of symmetric criticality recalled in Theorem 2.1 the critical points
of the restriction Jλ to Ei are also critical points of the energy functional Jλ

in H2
1 (Sd).
Taking into account the above remarks, let us fix i ∈ Jd and consider the

functionals Φi,Ψi : Ei → R defined by

Φi(w) :=
1

2
∥w∥2H2

α
and Ψi(w) :=

1

q

∫
Sd

β(σ)|w(σ)|qdσh, w ∈ Ei. (11)

Consequently, the restriction of the functional Jλ to Ei can be written as
follows

J (i)
λ (w) = Φi(w)− λΨi(w), w ∈ Ei. (12)

By exploiting Proposition 3.2 - Part (i1), since 2∗d−1 > 2∗, the Hilbert

Sobolev space Ei ⊂ Ei is compactly embedded into Lq(Sd), whenever q ∈ [1, 2∗].
Hence, we can apply the Z2-symmetric version of the Mountain Pass Theorem

to J (i)
λ for every i ∈ Jd. Therefore, one can guarantee the existence of the

sequences of distinct critical points {wλ,i
n }n ⊂ Ei, with i ∈ Jd, of the energy

functionals J (i)
λ , with i ∈ Jd.

They are also critical points of Jλ due to the principle of symmetric crit-
icality recalled in Theorem 2.1. In view of Proposition 3.2 - Part (i3), the
symmetric structure of the elements in the aforementioned sequences mutually
differ. The proof of Theorem 1.1 is complete. 2

Remark 4.1. As observed in [27], we notice that, for a fixed parameter λ > 0,
the constant function wλ(σ) = k ∈ R, for every σ ∈ Sd, is a solution of (1) if
and only if

α(σ)k = λβ(σ)|k|q−2k,
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for almost every σ ∈ Sd. In particular, when wλ(σ) = k ̸= 0, the function
σ 7→ λβ(σ)/α(σ) is constant. Let us denote this value by µλ > 0. Thus,
nonzero constant solutions of problem (1) appear as fixed points of the function
t 7→ µλ|t|q−2t.We emphasize that, as a byproduct of Theorem 1.1, the existence
of multiple nonconstant solutions of problem (1) can be proved also in the case
when σ 7→ λβ(σ)/α(σ) is constant for certain λ > 0, by using variational and
group-theoretical arguments. Hence, Corollary 1.2 is an immediate consequence
of Theorem 1.1.

Proof of of Corollary 1.3. Let us consider the constant positive function α(σ) :=
(d−1)2/4 for every σ ∈ Sd. Thus, by Theorem 1.1, for every λ > 0, the following
equation

−∆hw +
(d− 1)2

4
w = λβ(σ)|w|2

∗−2w, in Sd, (13)

admits at least τd distinct pairs of sign-changing weak solutions distinguished
by their symmetry properties. Moreover, due to the regularity assumptions on
the data, the weak solutions of (13) are also classical; see, for instance, the
paper [27] as well as the books [28, 36]. Now, the solutions of

−∆u = λ|x|
2

d−2 β

(
x

|x|

)
|u|

4
d−2u, x ∈ Rd+1 \ {0}, (14)

are being sought in the particular form

u(x) = r−
d−1
2 w(σ), (15)

where, (r, σ) := (|x|, x/|x|) ∈ (0,∞) × Sd are the spherical coordinates in
Rd+1 \ {0} and w be a smooth function defined on Sd. Throughout (15)
equation (14) reduces to (13). Moreover, on account of (15), the elements

ui,λ(x) = |x|− d−1
2 wi,λ(x/|x|), i ∈ Jd, are solutions of (14). The conclusion

immediately follows. 2

Remark 4.2. We point out that the main approach is inspired by the recent
paper [25] in which the existence of nodal solutions for the fractional Yamabe
problem on Heisenberg groups has been proved in [25, Theorem 1.1] by using
a Hebey-Vaugon compactness type result and a group-theoretical construction
for suitable subgroups of the classical unitary group.

Remark 4.3. Corollary 1.3 can be done in a more general form. Indeed, a
careful analysis of the proof of Corollary 1.3 ensures that for every λ > 0, the
following equation

−∆u = λ|x|
(q−2)(d−1)−4

2 β

(
x

|x|

)
|u|q−2u, x ∈ Rd+1 \ {0}, (16)

admits at least sd sequences of nodal solutions with mutually different symmet-
ric structures, provided that q ∈ [2, 2∗]. Clearly, equation (16) reduces to (14)
by taking q = 2∗.
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Remark 4.4. A careful analysis of the proof of Theorem 1.1 ensures that
the conclusion of the main result remains valid for the following nonlinear
eigenvalue problem

−div(a(σ)∇w) + b(σ)w = λβ(σ)|w|q−2w, in Sd, (17)

where a, b, β ∈ C∞(Sd) are O(d+ 1)-invariant, with a > 0 and

−div(a(σ)∇) + b(σ)

coercive; see [11] for related results.
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[45] F. Robert and J. Vétois, Sign-changing blow-up for scalar curvature type



(16 of 16) G. MOLICA BISCI

equations, Comm. Partial Differential Equations 38 (2013), no. 8, 1437–1465.
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