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Abstract. In this article, we introduce the concept of generalized
(α, T )-G-contractive mappings in partial b-metric spaces endowed with
a digraph G and obtain a new coincidence point and common fixed
point result for a pair of self mappings satisfying such contractive con-
dition. Our main result will extend and unify several known results in
the existing literature and also brings some new results as consequences.
Finally, we give an application of our main result to obtain a unique
solution of an integral equation.
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1. Introduction

It is well known that the Banach contraction theorem [6] in complete metric
spaces is an important and useful tool in modern analysis. It has many appli-
cations in different fields of mathematics and applied sciences. Several authors
have successfully generalized this famous theorem in different directions. There
exist a lot of generalizations of the notion of metric spaces such as b-metric
space, introduced by Bakhtin [5], partial metric space by Matthews [24], and
dislocated metric space by Hitzler et al. [20]. In [30], S. Shukla introduced the
concept of a partial b-metric as a generalization of the notions of b-metric and
partial metric and established some fixed point results in such spaces.

Coincidence point and common fixed point results for a pair of mappings
satisfying some contractive type conditions in various spaces have been studied
extensively by many researchers. In recent investigations, the study of fixed
point theory via simulation functions takes a vital role in many aspects. In
2015, Khojasteh et al. [22] initiated the idea of Z-contraction by using a simu-
lation function and generalized the Banach contraction theorem by combining
various types of nonlinear contractions. Afterwards, Argoubi et al. [4] and
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Roldán et al. [28] modified the existing idea of simulation functions in different
ways and established some common fixed point results utilizing this modified
class of simulation functions. In [10], S. H. Cho introduced the concept of L -
contractions and unified some existing metric fixed point results. Very recently,
Gubran et al. [19] introduced a new simulation function involving three vari-
ables, called a tri-simulation function which is also designed to unify several
known contractions. The study of fixed point theory combining a graph is a
new development in the domain of single valued and multi valued fixed point
theory. Echenique [13] studied fixed point theory by using graphs and then
Espinola and Kirk [14] applied fixed point results in graph theory. Motivated
by the idea given in [15, 19, 22] and some recent works on partial b-metric and
b-metric spaces with a graph (see [2, 3, 7, 16, 23, 25, 26, 27, 29]), we refor-
mulated some important coincidence point and common fixed point results in
partial b-metric spaces endowed with a digraph by using tri-simulation func-
tions. Also, we construct some non trivial examples to examine the strength
of the hypotheses of our main result.

2. Some Basic Concepts

In this section we recall some basic notations, definitions and necessary results
that will be needed in the sequel.

Definition 2.1 ([11]). Let X be a nonempty set and b ≥ 1 be a given real
number. A function d : X × X → R+ is said to be a b-metric on X if the
following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ b (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is valuable to note that the family of b-metric spaces is effectively larger
than that of the ordinary metric spaces.

Definition 2.2 ([24]). A partial metric on a nonempty set X is a function
p : X ×X → R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y;

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
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The pair (X, p) is called a partial metric space.

Example 2.3 ([24]). Let X = [0,∞) and let p(x, y) = max {x, y} for all
x, y ∈ X. Then (X, p) is a partial metric space but p is not a metric on X.

Definition 2.4 ([30]). A partial b-metric on a nonempty set X is a function
pb : X ×X → R+ such that for some real number b ≥ 1 and all x, y, z ∈ X:

(pb1) pb(x, x) = pb(y, y) = pb(x, y) ⇐⇒ x = y;

(pb2) pb(x, x) ≤ pb(x, y);

(pb3) pb(x, y) = pb(y, x);

(pb4) pb(x, y) ≤ b[pb(x, z) + pb(z, y)]− pb(z, z).

The pair (X, pb) is called a partial b-metric space. The number b is called the
coefficient of (X, pb).

Remark 2.5 ([30]). In a partial b-metric space (X, pb) if x, y ∈ X and pb(x, y)=
0, then x = y, but the converse may not be true.

It is clear that every partial metric space is a partial b-metric space with
the coefficient b = 1 and every b-metric space is also a partial b-metric space
with the same coefficient b. However, the reverse implications need not hold
true, in general.

Example 2.6 ([30]). Let X = R+, p > 1 a constant, and pb : X × X → R+

be defined by

pb(x, y) = [max {x, y}]p + |x− y|p, ∀x, y ∈ X.

Then (X, pb) is a partial b-metric space with coefficient b = 2p, but it is neither
a partial metric space nor a b-metric space.

Example 2.7 ([30]). Let (X, p) be a partial metric space and define pb(x, y) =
(p(x, y))p, where p ≥ 1 is a real number. Then pb is a partial b-metric with
coefficient b = 2p−1.

Let (X, pb) be a partial b-metric space. For each x ∈ X and for each
ϵ > 0, put B(x, ϵ) = {y ∈ X : pb(x, y) < pb(x, x) + ϵ}. Let B = {B(x, ϵ) : x ∈
X and ϵ > 0}. Ge and Lin [17] proved that B is not a base for any topology
on X. However, they proved that B is a subbase for some topology τ on X
such that (X, τ) is a T0-space.

Proposition 2.8 ([17]). Let (X, pb) be a partial b-metric space and (xn) be a se-
quence in X. If (xn) converges to x ∈ X with respect to τ , then lim

n→∞
pb(xn, x) =

pb(x, x).

The above proposition cannot be reversed (see [17]).
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Definition 2.9 ([30]). Let (X, pb) be a partial b-metric space with coefficient
b ≥ 1 and let (xn) be a sequence in X. Then

(i) (xn) converges to a point x ∈ X if lim
n→∞

pb(xn, x) = pb(x, x). This will be

denoted as lim
n→∞

xn = x or xn → x(n→ ∞).

(ii) (xn) is called a Cauchy sequence if lim
n,m→∞

pb(xn, xm) exists and is finite.

(iii) (X, pb) is said to be complete if every Cauchy sequence (xn) in X, there
exists x ∈ X such that lim

n,m→∞
pb(xn, xm) = lim

n→∞
pb(xn, x) = pb(x, x).

Definition 2.10 ([12]). A sequence (xn) in a partial b-metric space (X, pb) is
called 0-Cauchy if

lim
n,m→∞

pb(xn, xm) = 0.

The space (X, pb) is said to be 0-complete if every 0-Cauchy sequence in X
converges to a point x ∈ X such that pb(x, x) = 0, i.e., lim

n,m→∞
pb(xn, xm) =

lim
n→∞

pb(xn, x) = pb(x, x) = 0.

Lemma 2.11 ([12]). If (X, pb) is complete, then it is 0-complete.

The converse assertion of the above lemma may not hold, in general. The
following example supports this fact.

Example 2.12. The space X = [0,∞) ∩ Q with pb(x, y) = max {x, y} is a
0-complete partial b-metric space with coefficient b = 1, but it is not complete.
Moreover, the sequence (xn) with xn = 1 for each n ∈ N is a Cauchy sequence
in (X, pb), but it is not a 0-Cauchy sequence.

Remark 2.13 ([30]). In a partial b-metric space (X, pb), the limit of a conver-
gent sequence need not be unique.

Definition 2.14. A sequence (xn) in a partial b-metric space (X, pb) is said
to be bounded if the set {pb(xn, xm) : n, m ∈ N} of real numbers is bounded in
R, that is, there exists M > 0 such that pb(xn, xm) ≤M for all n, m ∈ N.

Definition 2.15 ([1]). Let T and S be self mappings of a set X. If y = Tx =
Sx for some x in X, then x is called a coincidence point of T and S and y is
called a point of coincidence of T and S.

Definition 2.16 ([21]). The mappings T, S : X → X are weakly compatible, if
for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.
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Proposition 2.17 ([1]). Let S and T be weakly compatible self mappings of a
nonempty set X. If S and T have a unique point of coincidence y = Sx = Tx,
then y is the unique common fixed point of S and T .

Definition 2.18 ([19]). Let T : [0,∞) × [0,∞) × [0,∞) → R be a mapping.
Then T is called a tri-simulation function if it satisfies the following conditions:

(T1) T (z, y, x) < x− yz for all x, y > 0, z ≥ 0;

(T2) if (zn), (yn) and (xn) are sequences in (0,∞) such that yn < xn for all
n ∈ N, lim

n→∞
zn ≥ 1 and lim

n→∞
yn = lim

n→∞
xn > 0, then

lim sup
n→∞

T (zn, yn, xn) < 0.

The set of all tri-simulation functions is denoted by T .

We now give some examples of tri-simulation functions.

Example 2.19 ([19]). Let T (z, y, x) = λx − yz for all x, y, z ∈ [0,∞), where
λ ∈ [0, 1). Then T ∈ T .

Example 2.20 ([19]). Let T (z, y, x) = x − ψ(x) − yz for all x, y, z ∈ [0,∞),
where ψ : [0,∞) → [0,∞) is a lower semicontinuous function such that ψ(t) = 0
if and only if t = 0. Then T ∈ T .

Example 2.21 ([19]). Let T (z, y, x) = x
x+1 − yz for all x, y, z ∈ [0,∞). Then

T ∈ T .

Example 2.22 ([19]). Let T (z, y, x) = ψ(x)− yz for all x, y, z ∈ [0,∞), where
ψ : [0,∞) → [0,∞) is Matkowski function, i.e., non-decreasing function such
that lim

n→∞
ψn(t) = 0 for all t > 0. Observe that, ψ(t) < t for all t > 0. Then

T ∈ T .

Example 2.23 ([19]). Let T (z, y, x) = ψ(x) − zϕ(y) for all x, y, z ∈ [0,∞),
where ϕ, ψ : [0,∞) → [0,∞) are two continuous functions such that ψ(t) =
ϕ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0. Then T ∈ T .

We now assign a digraph in partial b-metric spaces (X, pb) as follows.

Let (X, pb) be a partial b-metric space and let ∆ = {(x, x) : x ∈ X}. We
consider a digraph G whose vertex set V (G) coincides with X, and the set
E(G) of its edges contains all loops, i.e., E(G) ⊇ ∆. We also assume that G
has no parallel edges. Under these assumptions, we can identify G with the pair
(V (G), E(G)). By G−1 we denote the graph obtained from G by reversing the
direction of edges, i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}. Actually,
it will be more convenient for us to treat G̃ as a digraph for which the set of
its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).
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Our graph theory notations and terminology are standard and can be found
in all graph theory books, like [8, 9, 18].

Definition 2.24. Let (X, pb) be a partial b-metric space with the coefficient
b ≥ 1 and let G = (V (G), E(G)) be a digraph. A mapping f : X → X is called
a Banach G-contraction or simply G-contraction if there exists k ∈ (0, 1b ) such
that

pb(fx, fy) ≤ k pb(x, y)

for all x, y ∈ X with (x, y) ∈ E(G).

Any Banach contraction is a G0-contraction, where the graph G0 is defined
by E(G0) = X × X. But it is valuable to note that a Banach G-contraction
need not be a Banach contraction (see Remark 3.9).

Remark 2.25. If f is a G-contraction, then f is both a G−1-contraction and
a G̃-contraction.

3. Main Result

In this section we assume that (X, pb) is a partial b-metric space with the
coefficient b ≥ 1 and G = (V (G), E(G)) is a reflexive digraph which has no
parallel edges. Let f, g : (X, pb) → (X, pb) be two mappings. We use the
following notations:

Mfg(x, y) := max

{
pb(gx, gy), pb(gx, fx),

pb(gy, fy)

2
,
pb(gx, fy) + pb(gy, fx)

2b

}
for all x, y ∈ X.

If g = I, the identity map on X, we denote Mf (x, y) :=Mfg(x, y).

Definition 3.1. Let f, g : (X, pb) → (X, pb) be two mappings. Then, the
mapping f is called a generalized (α, T )-G-contractive w.r.t. the mapping g if
there exist two functions T ∈ T and α : X ×X → [0,∞) such that

T
(
α(gx, gy), bpb(fx, fy),Mfg(x, y)

)
≥ 0 (1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and α(gx, gy) ≥ 1.

Taking g = I, the above definition gives the following definition.

Definition 3.2. The mapping f : (X, pb) → (X, pb) is called a generalized
(α, T )-G-contractive if there exist two functions T ∈ T and α : X×X → [0,∞)
such that

T
(
α(x, y), bpb(fx, fy),Mf (x, y)

)
≥ 0

for all x, y ∈ X with (x, y) ∈ E(G̃) and α(x, y) ≥ 1.
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Taking G = G0 in Definition 3.1, we get the following.

Definition 3.3. Let f, g : (X, pb) → (X, pb) be two mappings. Then, the
mapping f is called a generalized (α, T )-contractive w.r.t. the mapping g if
there exist two functions T ∈ T and α : X ×X → [0,∞) such that

T
(
α(gx, gy), bpb(fx, fy),Mfg(x, y)

)
≥ 0

for all x, y ∈ X and α(gx, gy) ≥ 1.

Let f, g : X → X be such that f(X) ⊆ g(X). Let x0 ∈ X be arbitrary.
Since f(X) ⊆ g(X), there exists an element x1 ∈ X such that gx1 = fx0.
Continuing in this way, we can construct a sequence (gxn) in g(X) such that
gxn = fxn−1, n = 1, 2, 3, · · · .

Definition 3.4. Let the mappings f, g : X → X be such that f(X) ⊆ g(X)
and let α : X × X → [0,∞) be another mapping. We define CαG

fg the set of

all elements x0 of X such that for all m, n = 0, 1, 2, · · · , (gxn, gxm) ∈ E(G̃)
and α(gxn, gxm) ≥ 1, for every sequence (gxn) such that gxn = fxn−1, n =
1, 2, 3, · · · .

Taking g = I, we denote CαG
f := CαG

fg .

Taking G = G0, C
αG
fg becomes Cα

fg which is the collection of all elements x0
of X such that for all m, n = 0, 1, 2, · · · , α(gxn, gxm) ≥ 1, for every sequence
(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · .

Before presenting our main result, we state a property of the graph G, call
it Property (∗).
Property (∗): If (gxk) is a sequence in (X, pb) such that pb(gxk, x) → 0,
(gxk, gxk+1) ∈ E(G̃) and α(gxk, gxk+1) ≥ 1 for all k ≥ 1, then there exists a
subsequence (gxki) of (gxk) such that (gxki , x) ∈ E(G̃) and α(gxki , x) ≥ 1 for
all i ≥ 1.

Taking g = I, the above property reduces to Property (∗)́:
Property (∗)́: If (xk) is a sequence in a partial b-metric space (X, pb) such
that pb(xk, x) → 0, (xk, xk+1) ∈ E(G̃) and α(xk, xk+1) ≥ 1 for all k ≥ 1,
then there exists a subsequence (xki

) of (xk) such that (xki
, x) ∈ E(G̃) and

α(xki
, x) ≥ 1 for all i ≥ 1.

Taking G = G0 in Property (∗), we get the following property:

Property (†): If (gxk) is a sequence in (X, pb) such that pb(gxk, x) → 0 and
α(gxk, gxk+1) ≥ 1 for all k ≥ 1, then there exists a subsequence (gxki

) of (gxk)
such that α(gxki , x) ≥ 1 for all i ≥ 1.

If (X, pb,⪯) is a partially ordered partial b-metric space, then by taking
α(x, y) = 1 for all x, y ∈ X and G = G2, where the graph G2 is defined by
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E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}, the Property (∗)́ reduces to the
Property (‡) which can be stated as follows:

Property (‡): If (xk) is a sequence in a partially ordered partial b-metric space
(X, pb,⪯) such that pb(xk, x) → 0 and xk, xk+1 are comparable for all k ≥ 1,
then there exists a subsequence (xki

) of (xk) such that xki
, x are comparable

for all i ≥ 1.

We now present our main result.

Theorem 3.5. Let (X, pb) be a partial b-metric space with the coefficient b ≥ 1
and let G = (V (G), E(G)) be a digraph. Let the mappings f, g : X → X be such
that pb(fx, fy) > 0 implies that pb(gx, gy) > 0. Suppose that f is generalized
(α, T )-G-contractive w.r.t. the mapping g. Suppose also that f(X) ⊆ g(X),
g(X) is a 0-complete subspace of X and the graph G has the Property (∗).
Then f and g have a point of coincidence u(say) in g(X) with pb(u, u) = 0 if
CαG

fg ̸= ∅.
Moreover, f and g have a unique point of coincidence in g(X) if the graph

G has the following property:

(∗∗) If x, y are points of coincidence of f and g in g(X), then (x, y) ∈ E(G̃)
and α(x, y) ≥ 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique
common fixed point in g(X).

Proof. Suppose that CαG
fg ̸= ∅. We choose an x0 ∈ CαG

fg and keep it fixed. Since
f(X) ⊆ g(X), there exists a sequence (gxn) in X such that gxn = fxn−1, for
n ∈ N and (gxn, gxm) ∈ E(G̃) and α(gxn, gxm) ≥ 1 for m, n = 0, 1, 2, · · · .

We assume that gxn ̸= gxn−1 for every n ∈ N. In fact, if gxn = gxn−1 for
some n ∈ N then gxn = fxn−1 = gxn−1 which implies that gxn is a point of
coincidence of f and g.

We now prove that lim
n→∞

pb(gxn−1, gxn) = 0.

First we note that for all n ∈ N, (gxn−1, gxn) ∈ E(G̃), α(gxn−1, gxn) ≥
1 and pb(fxn−1, fxn) > 0, pb(gxn−1, gxn) > 0. Therefore, it follows from
conditions (1) and (T1) that

0 ≤ T
(
α(gxn−1, gxn), bpb(fxn−1, fxn),Mfg(xn−1, xn)

)
< Mfg(xn−1, xn)− bα(gxn−1, gxn)pb(fxn−1, fxn), (2)
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where

Mfg(xn−1, xn) = max

{
pb(gxn−1, gxn), pb(gxn−1, gxn),

pb(gxn,gxn+1)
2 , pb(gxn−1,gxn+1)+pb(gxn,gxn)

2b

}

≤ max

{
pb(gxn−1, gxn), pb(gxn, gxn+1),

pb(gxn−1,gxn)+pb(gxn,gxn+1)
2

}
= max {pb(gxn−1, gxn), pb(gxn, gxn+1)} .

It now follows from condition (2) that, for all n = 1, 2, · · · ,

pb(gxn, gxn+1) ≤ bα(gxn−1, gxn)pb(gxn, gxn+1)

< Mfg(xn−1, xn)

≤ max {pb(gxn−1, gxn), pb(gxn, gxn+1)} . (3)

If max {pb(gxn−1, gxn), pb(gxn, gxn+1)} = pb(gxn, gxn+1), then by using (3),
we get

pb(gxn, gxn+1) < pb(gxn, gxn+1),

which is a contradiction. Therefore,

max {pb(gxn−1, gxn), pb(gxn, gxn+1)} = pb(gxn−1, gxn).

Hence from condition (3), we can compute that

pb(gxn, gxn+1) ≤ bpb(gxn, gxn+1)

≤ bα(gxn−1, gxn)pb(gxn, gxn+1)

< Mfg(xn−1, xn)

≤ pb(gxn−1, gxn). (4)

Hence, we conclude that (pb(gxn−1, gxn)) is a decreasing sequence of posi-
tive real numbers, so there exists r ≥ 0 such that

lim
n→∞

pb(gxn−1, gxn) = r.

We shall show that r = 0. Assume that r > 0. Then by taking limit as
n→ ∞, it follows from condition (4) that

lim
n→∞

bpb(gxn, gxn+1) = r,

lim
n→∞

Mfg(xn−1, xn) = r

and
lim

n→∞
α(gxn−1, gxn) = 1.
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Let zn := α(gxn−1, gxn), yn := bpb(gxn, gxn+1) and tn := Mfg(xn−1, xn)
for all n ∈ N. Then, yn < tn for all n ∈ N and lim

n→∞
zn = 1, lim

n→∞
yn =

lim
n→∞

tn = r > 0. From (T2), we obtain

0 ≤ lim sup
n→∞

T (zn, yn, tn) < 0,

which is a contradiction. This implies that for all n ∈ N,

lim
n→∞

pb(gxn−1, gxn) = 0. (5)

We now proceed to show that (gxn) is a bounded sequence in (X, pb). To
obtain this assertion, we suppose that the sequence (gxn) is not bounded. Then
there exists a subsequence (gxnk

) of (gxn) such that n1 = 1 and for each k ∈ N,
nk+1 is the smallest integer satisfying

pb(gxnk+1
, gxnk

) > 1 and pb(gxl, gxnk
) ≤ 1

for all nk ≤ l ≤ nk+1 − 1.

We note that (gxnk+1−1, gxnk−1) ∈ E(G̃), α(gxnk+1−1, gxnk−1) ≥ 1 and

pb(gxnk+1
, gxnk

) > 1 ⇒ pb(fxnk+1−1, fxnk−1) > 0

⇒ pb(gxnk+1−1, gxnk−1) > 0

⇒Mfg(xnk+1−1, xnk−1) > 0.

Using conditions (1) and (T1), we obtain

0 ≤ T
(
α(gxnk+1−1, gxnk−1), bpb(gxnk+1

, gxnk
),Mfg(xnk+1−1, xnk−1)

)
< Mfg(xnk+1−1, xnk−1)− bα(gxnk+1−1, gxnk−1)pb(gxnk+1

, gxnk
).

That is,

bα(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

) < Mfg(xnk+1−1, xnk−1), (6)

where

Mfg(xnk+1−1, xnk−1)

= max

{
pb(gxnk+1−1, gxnk−1), pb(gxnk+1−1, gxnk+1

),

pb(gxnk−1,gxnk
)

2 ,
pb(gxnk+1−1,gxnk

)+pb(gxnk−1,gxnk+1
)

2b

}

≤ max


pb(gxnk+1−1, gxnk−1), pb(gxnk+1−1, gxnk+1

),

pb(gxnk−1,gxnk
)

2 ,

2bpb(gxnk+1−1,gxnk−1)+bpb(gxnk−1,gxnk
)+bpb(gxnk+1−1,gxnk+1

)

2b


= max

{
pb(gxnk+1−1, gxnk+1

),

pb(gxnk+1−1, gxnk−1) +
pb(gxnk−1,gxnk

)+pb(gxnk+1−1,gxnk+1
)

2

}
.
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We now compute that

pb(gxnk+1−1, gxnk−1) +
pb(gxnk−1, gxnk

) + pb(gxnk+1−1, gxnk+1
)

2
≤ bpb(gxnk+1−1, gxnk

) + bpb(gxnk
, gxnk−1)

+
pb(gxnk−1, gxnk

) + pb(gxnk+1−1, gxnk+1
)

2

≤ b+ bpb(gxnk
, gxnk−1) +

pb(gxnk−1, gxnk
) + pb(gxnk+1−1, gxnk+1

)

2

= b+
(2b+ 1)pb(gxnk−1, gxnk

) + pb(gxnk+1−1, gxnk+1
)

2
.

Therefore,

Mfg(xnk+1−1, xnk−1)

≤ max

{
pb(gxnk+1−1, gxnk+1

),

b+
(2b+1)pb(gxnk−1,gxnk

)+pb(gxnk+1−1,gxnk+1
)

2

}
.

Hence, it follows from condition (6) that

b < bpb(gxnk+1
, gxnk

)

≤ bα(gxnk+1−1, gxnk−1)pb(gxnk+1
, gxnk

)

< Mfg(xnk+1−1, xnk−1)

≤ max

{
pb(gxnk+1−1, gxnk+1

),

b+
(2b+1)pb(gxnk−1,gxnk

)+pb(gxnk+1−1,gxnk+1
)

2

}
.

Taking limit as k → ∞ and using condition (5), we get

lim
k→∞

Mfg(xnk+1−1, xnk−1) = b, (7)

lim
k→∞

bpb(gxnk+1
, gxnk

) = b (8)

and

lim
k→∞

α(gxnk+1−1, gxnk−1) = 1. (9)

Let

Wk := α(gxnk+1−1, gxnk−1),

Vk := bpb(gxnk+1
, gxnk

) ,

Uk :=Mfg(xnk+1−1, xnk−1) .
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Then Vk < Uk for all k ∈ N. By using conditions (9), (7) and (8), we get
lim
k→∞

Wk = 1 and lim
k→∞

Uk = lim
k→∞

Vk = b > 0. By condition (T2), we obtain

that

0 ≤ lim sup
k→∞

T
(
Wk, Vk, Uk

)
< 0,

which is a contradiction. This ensures that the sequence (gxn) cannot have
any unbounded subsequence. Thus (gxn) is a bounded sequence in (X, pb).

Now, we shall show that (gxn) is a 0-Cauchy sequence. Let

Rn = sup{pb(gxi, gxj) > 0 : i, j ≥ n}, n ∈ N.

Since the sequence (gxn) is bounded, Rn < +∞ for every n ∈ N. But (Rn)
being a decreasing sequence of positive real numbers, there exists R ≥ 0 such
that

lim
n→∞

Rn = R. (10)

We assume that R > 0. Then by the definition of Rn, it follows that for
every natural number k, there exist nk, mk ∈ N such that mk, nk ≥ k,
pb(gxmk

, gxnk
) > 0 and

Rk − 1

k
< pb(gxmk

, gxnk
) ≤ Rk.

Taking limit as k → ∞, we have

lim
k→∞

pb(gxmk
, gxnk

) = R > 0. (11)

We note that for every k ∈ N,

pb(gxmk
, gxnk

) > 0 ⇒ pb(fxmk−1, fxnk−1) > 0

⇒ pb(gxmk−1, gxnk−1) > 0

⇒Mfg(xmk−1, xnk−1) > 0

and α(gxmk−1, gxnk−1) ≥ 1, (gxmk−1, gxnk−1) ∈ E(G̃).

Using conditions (1) and (T1), we get

0 ≤ T
(
α(gxmk−1, gxnk−1), bpb(gxmk

, gxnk
),Mfg(xmk−1, xnk−1)

)
< Mfg(xmk−1, xnk−1)− bα(gxmk−1, gxnk−1)pb(gxmk

, gxnk
).

That is,

bα(gxmk−1, gxnk−1)pb(gxmk
, gxnk

) < Mfg(xmk−1, xnk−1), (12)
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where

Mfg(xmk−1, xnk−1)

= max

{
pb(gxmk−1, gxnk−1), pb(gxmk−1, gxmk

),

pb(gxnk−1,gxnk
)

2 ,
pb(gxmk−1,gxnk

)+pb(gxnk−1,gxmk
)

2b

}

≤ max


pb(gxmk−1, gxnk−1), pb(gxmk−1, gxmk

),

pb(gxnk−1,gxnk
)

2 ,

2bpb(gxmk−1,gxnk−1)+bpb(gxnk−1,gxnk
)+bpb(gxmk−1,gxmk

)

2b


= max

{
pb(gxmk−1, gxmk

),

pb(gxmk−1, gxnk−1) +
pb(gxnk−1,gxnk

)+pb(gxmk−1,gxmk
)

2

}
.

≤ max

{
pb(gxmk−1, gxmk

),

Rk−1 +
pb(gxnk−1,gxnk

)+pb(gxmk−1,gxmk
)

2

}
.

By using the definition of Rn, it follows from condition (12) that

pb(gxmk
, gxnk

) ≤ bpb(gxmk
, gxnk

)

≤ bα(gxmk−1, gxnk−1)pb(gxmk
, gxnk

)

< Mfg(xmk−1, xnk−1)

≤ max

{
pb(gxmk−1, gxmk

),

Rk−1 +
pb(gxnk−1,gxnk

)+pb(gxmk−1,gxmk
)

2

}
. (13)

Taking limit as k → ∞ and using conditions (10) and (11), we obtain that

lim
k→∞

Mfg(xmk−1, xnk−1) = lim
k→∞

bpb(gxmk
, gxnk

) = R.

Also, condition (13) ensures that lim
k→∞

α(gxmk−1, gxnk−1) = 1.

Let

Zk := α(gxmk−1, gxnk−1) ,

Yk := bpb(gxmk
, gxnk

)

Xk :=Mfg(xmk−1, xnk−1) .

Then Yk < Xk for every k ∈ N and lim
k→∞

Zk = 1, lim
k→∞

Yk = lim
k→∞

Xk = R > 0.

It now follows from condition (T2) that

0 ≤ lim sup
k→∞

T
(
Zk,Yk,Xk

)
< 0,
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which is a contradiction and so we have R = 0. Hence, we deduce that

lim
n,m→∞

pb(gxn, gxm) = 0.

Therefore, (gxn) is a 0-Cauchy sequence in g(X). As g(X) is 0-complete, there
exists an u = gν ∈ g(X) for some ν ∈ X such that gxn → u and pb(u, u) = 0.

Therefore,

lim
n,m→∞

pb(gxn, gxm) = lim
n→∞

pb(gxn, u) = pb(u, u) = 0.

By Property (∗) there is a subsequence (gxni
) of (gxn) such that (gxni

, gν) ∈
E(G̃) and α(gxni , gν) ≥ 1 for all i ≥ 1.

Next, we shall show that f and g have a point of coincidence in g(X). We
note that

Mfg(xni , ν) = max

{
pb(gxni

, gν), pb(gxni
, gxni+1),

pb(gν,fν)
2 ,

pb(gxni
,fν)+pb(gν,gxni+1)

2b

}
.

If Mfg(xni
, ν) = 0, then pb(gν,fν)

2 = 0 and hence gν = fν = u. So we
assume that Mfg(xni

, ν) > 0.
If pb(fxni

, fν) > 0, then we obtain from condition (1) that

0 ≤ T
(
α(gxni , gν), bpb(fxni , fν),Mfg(xni , ν)

)
< Mfg(xni , ν)− bα(gxni , gν)pb(fxni , fν).

That is,
bα(gxni , gν)pb(fxni , fν) < Mfg(xni , ν),

which gives that

bpb(fxni
, fν) ≤ bα(gxni

, gν)pb(fxni
, fν) < Mfg(xni

, ν).

Moreover, if pb(fxni , fν) = 0, then

0 = bpb(fxni
, fν) < Mfg(xni

, ν).

Therefore,
bpb(fxni

, fν) < Mfg(xni
, ν) for all i ∈ N.

Now,

0 ≤ pb(fν, gν)

≤ bpb(fν, fxni
) + bpb(fxni

, gν)− bpb(fxni
, fxni

)

< Mfg(xni
, ν) + bpb(gxni+1, gν)

≤ max

 pb(gxni
, gν), pb(gxni

, gxni+1),
pb(gν,fν)

2 ,

bpb(gxni
,gν)+bpb(gν,fν)+pb(gν,gxni+1)

2b


+ bpb(gxni+1, gν).
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Taking limit as i→ ∞, we obtain that

0 ≤ pb(fν, gν) ≤
pb(gν, fν)

2
.

This implies that pb(fν, gν) = 0 and so, fν = gν = u. Therefore, u is a point
of coincidence of f and g.

For uniqueness, we assume that there exists u∗ ∈ X such that fx = gx = u∗

for some x ∈ X with pb(u
∗, u∗) = 0 and u ̸= u∗. By property (∗∗), we have

(u, u∗) ∈ E(G̃) and α(u, u∗) ≥ 1. Then,

0 ≤ T
(
α(gν, gx), bpb(fν, fx),Mfg(ν, x)

)
= T

(
α(u, u∗), bpb(u, u

∗),Mfg(ν, x)
)

< Mfg(ν, x)− bα(u, u∗)pb(u, u
∗).

That is, bα(u, u∗)pb(u, u
∗) < Mfg(ν, x) = pb(u, u

∗), since

Mfg(ν, x) = max

{
pb(gν, gx), pb(gν, fν),

pb(gx,fx)
2 , pb(gν,fx)+pb(gx,fν)

2b

}

= max

{
pb(u, u

∗), pb(u, u),
pb(u

∗,u∗)
2 ,

pb(u,u
∗)+pb(u

∗,u)
2b

}
= pb(u, u

∗).

This gives that bpb(u, u
∗) ≤ bα(u, u∗)pb(u, u

∗) < pb(u, u
∗), a contradiction.

Hence, u = u∗. Therefore, f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.17, f and g have
a unique common fixed point in g(X).

We give some examples to illustrate our main result.

Example 3.6. Let X = [0,∞) and define pb : X × X → R+ by pb(x, y) =
[max {x, y}]3+ |x−y|3 for all x, y ∈ X. Then (X, pb) is a 0-complete partial b-
metric space with the coefficient b = 8. Let G be a digraph such that V (G) = X
and E(G) = ∆ ∪ {(0, 1

2n ) : n = 1, 2, 3, · · · }.
Let f, g : X → X be defined by

fx =

{
x
5 , if x ̸= 1

3 ,

1, if x = 1
3

and gx = 4x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) >
0 ⇒ pb(gx, gy) > 0.
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Let α : X ×X → [0,∞) be defined by

α(x, y) =

{
1, if x, y ∈ [0, 1],

1
2 , otherwise.

The point x0 := 0 belongs to CαG
fg .

Let T : [0,∞)× [0,∞)× [0,∞) → R be defined by T (z, y, x) = 1
2x− yz for

all x, y, z ≥ 0.

For x = 0, y = 1
2n+2 , n ∈ N, we have gx = 0, gy = 1

2n , fx = 0, fy = 1
5 · 2n+2

and so (gx, gy) ∈ E(G̃), α(gx, gy) = 1. We now compute that pb(fx, fy) =
pb(0,

1
5 · 2n+2 ) =

2
125 · 23n+6 , pb(gx, gy) = pb(0,

1
2n ) =

2
23n , pb(gx, fx) = 0,

pb(gy, fy) = pb

(
1

2n
,

1

5 · 2n+2

)
=

1

23n
+

1

23n

(
1− 1

20

)3

=
1

23n

(
1 +

(
19

20

)3
)
<

2

23n
,

pb(gx, fy) = pb(0,
1

5 · 2n+2 ) =
2

125 · 23n+6 , pb(gy, fx) = pb(
1
2n , 0) =

2
23n .

Now,

pb(gx, fy) + pb(gy, fx)

2b
=

1

23n

(
1

125 · 29
+

1

23

)
<

1

23n
.

Thus, we obtain that Mfg(x, y) =
2

23n .

Therefore,

T (α(gx, gy), bpb(fx, fy),Mfg(x, y))

=
1

2
· 2

23n
− 8 · 2

125 · 23n+6
=

1

23n

(
1− 1

500

)
> 0.

Moreover, for 0 ≤ x = y ≤ 1
4 , we have (gx, gy) ∈ E(G̃), α(gx, gy) = 1 and

pb(fx, fy) = pb

(x
5
,
x

5

)
=

x3

125
, pb(gx, gy) = pb(4x, 4x) = 64x3,

pb(gx, fx) = pb(gy, fy) = pb(4x,
x

5
) = 64x3 +

(
19x

5

)3

,

pb(gx, fy) + pb(gy, fx)

2b
=
pb(gx, fx)

b
=

1

8

[
64x3 +

(
19x

5

)3
]
.

It now follows from the above computation that

Mfg(x, y) = 64x3 +

(
19x

5

)3

.
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In this case, we have

T (α(gx, gy), bpb(fx, fy),Mfg(x, y)) =
1

2

[
64x3 +

(
19x

5

)3
]
− 8.

x3

125

= 8x3
(
4− 1

125

)
+

1

2

(
19x

5

)3

≥ 0.

Therefore,
T (α(gx, gy), bpb(fx, fy),Mfg(x, y)) ≥ 0

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and α(gx, gy) ≥ 1.

Any sequence (gxn) with the property pb(gxn, x) → 0, (gxn, gxn+1) ∈ E(G̃)
and α(gxn, gxn+1) ≥ 1 for all n ≥ 1 must be either the zero sequence or a
sequence of the following form

gxn =

{
0, if n is odd,

1
2n , if n is even

where the words ‘odd’ and ‘even’ are interchangeable. Also, pb(gxn, x) → 0
ensures that x = 0 and consequently, it follows that Property (∗) holds true.
Moreover, f and g are weakly compatible. Thus, we have all the conditions of
Theorem 3.5 and 0 is the unique common fixed point of f and g in g(X) with
pb(0, 0) = 0.

Remark 3.7. We see that in the above example, f is not a Banach G-con-
traction. Because, if we take x = y = 1

3 , then (x, y) ∈ E(G) and

pb(fx, fy) = pb(1, 1) = 1 = 27 · 1

27
> k pb(x, y)

for any k ∈ (0, 1b ).

We now give an example in favour of the Property (∗) of the graph G in
Theorem 3.5.

Example 3.8. Let X = [0,∞) and define pb : X ×X → R+ by

pb(x, y) = |x− y|3 for all x, y ∈ X.

Then (X, pb) is a 0-complete partial b-metric space with the coefficient b = 4.
Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(x, y) : x, y ∈
(0, 1] and x ≤ y}.

Let f, g : X → X be defined by

fx =

{
x
9 , if x ̸= 0,

1, if x = 0
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and gx = x
3 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) >

0 ⇒ pb(gx, gy) > 0.

Let α : X ×X → [0,∞) be defined by

α(x, y) =

1, if x, y ∈ [0, 1],

1
2 , otherwise.

The point x0 := 1
3 belongs to CαG

fg .

Let T : [0,∞)× [0,∞)× [0,∞) → R be defined by T (z, y, x) = 5
9x− yz for

all x, y, z ≥ 0.

For x, y ∈ (0, 3], we have (gx, gy) ∈ E(G̃) and α(gx, gy) = 1. Then,

pb(fx, fy) =
1

93
|x− y|3, pb(gx, gy) =

1

27
|x− y|3.

Therefore,

T (α(gx, gy),bpb(fx, fy),Mfg(x, y)) =
5

9
Mfg(x, y)− bpb(fx, fy)

≥ 5

9
pb(gx, gy)− 4pb(fx, fy)

=
5

9× 27
|x− y|3 − 4

93
|x− y|3 =

11

729
|x− y|3 ≥ 0.

Thus,
T (α(gx, gy), bpb(fx, fy),Mfg(x, y)) ≥ 0

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and α(gx, gy) ≥ 1.

We now show that the graph G does not satisfy the Property (∗). For
xn = 3

n , gxn = 1
n and hence pb(gxn, 0) → 0. Also, (gxn, gxn+1) ∈ E(G̃) and

α(gxn, gxn+1) = 1 for all n ∈ N. But there exists no subsequence (gxni) of
(gxn) such that (gxni

, 0) ∈ E(G̃). It is obvious that f and g have no point
of coincidence in g(X). This proves that Theorem 3.5 remains invalid without
the Property (∗) of the graph G.

Remark 3.9. In Example 3.8, f is not a Banach contraction. For instance, if
we take x = 0, y = 1, then

pb(fx, fy) = pb

(
1,

1

9

)
=

(
8

9

)3

=

(
8

9

)3

pb(x, y) > k pb(x, y)

for any k ∈ (0, 1b ).

However, f is a Banach G-contraction since for all x, y ∈ X with (x, y) ∈
E(G), we have

pb(fx, fy) =
1

729
pb(x, y),
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where 1
729 ∈ (0, 1b ).

We now examine the role of the weak compatibility condition in Theo-
rem 3.5. In fact, we shall show that this condition is necessary in Theorem 3.5
to obtain a common fixed point.

Example 3.10. Let X = R and define pb : X ×X → R+ by pb(x, y) = |x− y|2
for all x, y ∈ X. Then (X, pb) is a 0-complete partial b-metric space with
the coefficient b = 2. Let G be a digraph such that V (G) = X and E(G) =
∆ ∪ {(x, y) : x, y ∈ [0, 1] and x ≤ y}.

Let f, g : X → X be defined by

fx =

{
x
4 , if x ̸= 2

5 ,

1, if x = 2
5

and gx = 3x−11 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X and pb(fx, fy) >
0 ⇒ pb(gx, gy) > 0.

Let α : X ×X → [0,∞) be defined by

α(x, y) =

{
1, if x, y ∈ [0, 1],

1
2 , otherwise.

The point x0 := 4 belongs to CαG
fg .

Let T : [0,∞)× [0,∞)× [0,∞) → R be defined by T (z, y, x) = 1
4x− yz for

all x, y, z ≥ 0.
If 11

3 ≤ x, y ≤ 4, then (gx, gy) ∈ E(G̃) and α(gx, gy) = 1. We now compute
that pb(fx, fy) = pb(

x
4 ,

y
4 ) =

1
16 |x− y|2, pb(gx, gy) = 9|x− y|2.

Therefore,

T (α(gx, gy), bpb(fx, fy),Mfg(x, y)) =
1

4
Mfg(x, y)− bpb(fx, fy)

≥ 1

4
pb(gx, gy)− 2pb(fx, fy) =

9

4
|x− y|2 − 1

8
|x− y|2 =

17

8
|x− y|2 ≥ 0.

Thus,
T (α(gx, gy), bpb(fx, fy),Mfg(x, y)) ≥ 0

for all x, y ∈ X with (gx, gy) ∈ E(G̃) and α(gx, gy) ≥ 1.
It is obvious that any sequence (gxn) with (gxn, gxn+1) ∈ E(G̃) and

α(gxn, gxn+1) ≥ 1 for all n ≥ 1 must be a sequence in [0, 1]. Also, pb(gxn, x) →
0 ⇒ |gxn − x| → 0 ⇒ x ∈ [0, 1] which proves that the graph G has the Prop-
erty (∗).

We note that f(4) = g(4) = 1 but g(f(4)) ̸= f(g(4)) which ensures that f
and g are not weakly compatible. However, all other conditions of Theorem 3.5
are fulfilled. We observe that 1 is the unique point of coincidence of f and g
without being any common fixed point.
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4. Some Consequences of the Main Result

In this section our aim is to present some important coincidence point and fixed
point results which will justify the extension of our main result.

Theorem 4.1. Let (X, pb) be a 0-complete partial b-metric space with the coef-
ficient b ≥ 1 and let G = (V (G), E(G)) be a digraph. Let f : X → X be a map-
ping with the property that pb(fx, fy) > 0 implies that pb(x, y) > 0. Suppose

that f is generalized (α, T )-G-contractive and the graph G has the Property (∗)́.
Then f has a fixed point u(say) in X with pb(u, u) = 0 if CαG

f ̸= ∅.
Moreover, f has a unique fixed point in X if the graph G has the following

property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃) and α(x, y) ≥ 1.

Proof. The proof follows from Theorem 3.5 by taking g = I, the identity map
on X.

Theorem 4.2. Let (X, pb) be a partial b-metric space with the coefficient b ≥ 1
and let f, g : X → X be mappings with the property that pb(fx, fy) > 0 implies
that pb(gx, gy) > 0. Suppose that f is generalized (α, T )-contractive w.r.t. the
mapping g. Suppose also that f(X) ⊆ g(X), g(X) is a 0-complete subspace
of X and α has the Property (†). Then f and g have a point of coincidence
u(say) in g(X) with pb(u, u) = 0 if Cα

fg ̸= ∅.
Moreover, f and g have a unique point of coincidence in g(X) if α has the

following property:

If x, y are points of coincidence of f and g in g(X), then α(x, y) ≥ 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique
common fixed point in g(X).

Proof. The proof can be obtained from Theorem 3.5 by considering G = G0,
where G0 is the complete graph (X,X ×X).

Theorem 4.3. Let (X, pb) be a 0-complete partial b-metric space and let f :
X → X be a mapping with the property that pb(fx, fy) > 0 implies that
pb(x, y) > 0. Suppose that there exists T ∈ T such that

T
(
1, bpb(fx, fy),Mf (x, y)

)
≥ 0

for all x, y ∈ X. Then f has a unique fixed point u(say) in X with pb(u, u) = 0.

Proof. The proof follows from Theorem 3.5 by taking g = I, G = G0 and
α(x, y) = 1 for all x, y ∈ X.
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Theorem 4.4. Let (X, pb) be a 0-complete partial b-metric space and let f :
X → X be a mapping with the property that pb(fx, fy) > 0 implies that
pb(x, y) > 0. Suppose that f satisfies the following condition:

bpb(fx, fy) ≤ ψ(Mf (x, y)) for all x, y ∈ X,

where ψ : [0,∞) → [0,∞) is a non-decreasing function such that lim
n→∞

ψn(t) = 0

for all t > 0. Then f has a unique fixed point u(say) in X with pb(u, u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.22.

Theorem 4.5. Let (X, d) be a complete b-metric space with the coefficient b ≥ 1
and let f : X → X be a mapping satisfying the following condition:

d(fx, fy) ≤ βMf (x, y) for all x, y ∈ X,

where β ∈ [0, 1b ) is a constant. Then f has a unique fixed point in X.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.19 and pb = d.

We now present the b-metric version of Banach contraction theorem.

Theorem 4.6. Let (X, d) be a complete b-metric space with the coefficient b ≥
1 and let f : X → X be a mapping satisfying d(fx, fy) ≤ βd(x, y) for all
x, y ∈ X, where β ∈ [0, 1b ) is a constant. Then f has a unique fixed point
in X.

Proof. Since d(x, y) ≤Mf (x, y), the conclusion of the theorem follows directly
from Theorem 4.5.

Remark 4.7. Theorem 4.6 shows that our main result is a generalization of
the well known Banach contraction theorem.

The following is the b-metric version of Fisher’s theorem.

Theorem 4.8. Let (X, d) be a complete b-metric space with the coefficient b ≥ 1
and let f : X → X be a mapping satisfying

d(fx, fy) ≤ k[d(fx, y) + d(fy, x)]

for all x, y ∈ X, where k ∈ [0, 1
2b2 ) is a constant. Then f has a unique fixed

point in X.
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Proof. Since

d(fx, fy) ≤ k[d(fx, y) + d(fy, x)] = 2kb
d(fx, y) + d(fy, x)

2b
≤ βMf (x, y) ,

where β = 2kb ∈ [0, 1b ), the conclusion of the theorem follows directly from
Theorem 4.5.

We now present analogue of Kannan’s fixed point theorem in b-metric
spaces.

Theorem 4.9. Let (X, d) be a complete b-metric space with the coefficient b ≥ 1
and let f : X → X be a mapping satisfying

d(fx, fy) ≤ a1 d(fx, x) + a2 d(fy, y)

for all x, y ∈ X, where a1, a2 ≥ 0 with a1 + 2a2 <
1
b . Then f has a unique

fixed point in X.

Proof. Since d(fx, fy) ≤ a1 d(fx, x) + a2 d(fy, y) ≤ (a1 + 2a2)Mf (x, y) =
βMf (x, y), where β = (a1+2a2) ∈ [0, 1b ), the conclusion of the theorem follows
directly from Theorem 4.5.

Theorem 4.10. Let (X, pb) be a 0-complete partial b-metric space and let f :
X → X be a mapping with the property that pb(fx, fy) > 0 implies that
pb(x, y) > 0. Suppose that f satisfies the following condition:

bpb(fx, fy) ≤
Mf (x, y)

Mf (x, y) + 1
for all x, y ∈ X.

Then f has a unique fixed point u(say) in X with pb(u, u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.21.

Theorem 4.11. Let (X, d) be a complete b-metric space with the coefficient
b ≥ 1 and let f : X → X be a mapping satisfying the following condition:

bd(fx, fy) ≤Mf (x, y)− ψ(Mf (x, y)) for all x, y ∈ X,

where ψ : [0,∞) → [0,∞) is a lower semicontinuous function such that ψ(t) = 0
if and only if t = 0. Then f has a unique fixed point in X.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.20 and pb = d.
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Theorem 4.12. Let (X, d) be a complete b-metric space endowed with a partial
ordering ⪯ and let f : X → X be a mapping. Suppose that there exists T ∈ T
such that

T (1, bd(fx, fy),Mf (x, y)) ≥ 0

for all comparable elements x, y ∈ X. Suppose also that the triple (X, d,⪯) has
the Property (‡). If there exists x0 ∈ X such that xn, xm are comparable for
all n, m = 0, 1, 2, · · · , where xn = fxn−1, ∀n ∈ N, then f has a fixed point in
X. Moreover, f has a unique fixed point in X if the following property holds:

If x, y are fixed points of f in X, then x and y are comparable.

Proof. The proof can be obtained from Theorem 3.5 by taking pb = d, g = I,
α(x, y) = 1 for all x, y ∈ X and G = G2, where the graph G2 is defined by
E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}.

Theorem 4.13. Let (X, pb) be a 0-complete partial b-metric space and let f :
X → X be a mapping with the property that pb(fx, fy) > 0 implies that
pb(x, y) > 0. Suppose that f satisfies the following condition:

ϕ(bpb(fx, fy)) ≤ ψ(Mf (x, y)) for all x, y ∈ X,

where ϕ, ψ : [0,∞) → [0,∞) are two continuous functions such that ψ(t) =
ϕ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0. Then f has a
unique fixed point u(say) in X with pb(u, u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.23.

Remark 4.14. It is valuable to note that several well known but important
fixed point results in metric, partial metric and b-metric spaces can be ob-
tained by suitable choices of tri-simulation function T ∈ T , digraph G and the
function α.

5. An Application to the Integral Equation

In this section we utilize Theorem 3.5 to obtain a unique solution of the fol-
lowing integral equation

x(t) =

∫ ξ

0

F (t, r, x(r))dr, (14)

where ξ > 0, F : [0, ξ]× [0, ξ]× R → R, x : [0, ξ] → R are continuous functions
and the integral is taken in Riemann sense.
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Let X = C[0, ξ] be the set of all real valued continuous functions defined
on [0, ξ]. We define pb : X ×X → R+ by

pb(x, y) = sup
0≤t≤ξ

|x(t)− y(t)|p for all x, y ∈ X,

where p > 1. Then it is easy to verify that (X, pb) is a 0-complete partial
b-metric space with the coefficient b = 2p−1. In the next theorem X represents
the above partial b-metric space and NF (x, y)(t) is defined as follows:

NF (x, y)(t) = max



|x(t)− y(t)|,
∣∣∣∫ ξ

0
F (t, r, x(r))dr − x(t)

∣∣∣ ,
|∫ ξ

0
F (t,r,y(r))dr−y(t)|

2
1
p

,(
|∫ ξ

0
F (t,r,x(r))dr−y(t)|p+|∫ ξ

0
F (t,r,y(r))dr−x(t)|p

2b

) 1
p


,

where x, y ∈ X and t ∈ [0, ξ].

Theorem 5.1. Suppose that X = C[0, ξ] and the following hypotheses hold:

(i) F : [0, ξ]× [0, ξ]× R → R is continuous;

(ii) for all t, r ∈ [0, ξ], there exists a continuous function η : [0, ξ]× [0, ξ] → R
such that

|F (t, r, x(r))−F (t, r, y(r))| ≤ β
1
p η(t, r)NF (x, y)(t) for all x, y ∈ X (15)

and

sup
0≤t≤ξ

∫ ξ

0

η(t, r)dr ≤ 1, (16)

where 0 ≤ β < 1
b .

Then the integral equation (14) has a unique solution in X.

Proof. Let f : X → X be defined by (fx)(t) =
∫ ξ

0
F (t, r, x(r))dr for all x ∈ X

and for all t ∈ [0, ξ]. Then the existence of a solution to the integral equa-
tion (14) is equivalent to the existence of a fixed point of f . We now compute
that

NF (x, y)(t) = max


|x(t)− y(t)|, |(fx)(t)− x(t)|,
|(fy)(t)−y(t)|

2
1
p

,(
|(fx)(t)−y(t)|p+|(fy)(t)−x(t)|p

2b

) 1
p

 .
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Therefore,

(NF (x, y)(t))
p
= max


|x(t)− y(t)|p, |(fx)(t)− x(t)|p,
|(fy)(t)−y(t)|p

2 ,(
|(fx)(t)−y(t)|p+|(fy)(t)−x(t)|p

2b

)


≤ max

{
pb(x, y), pb(fx, x),

pb(fy,y)
2 ,

pb(fx,y)+pb(fy,x)
2b

}
=Mf (x, y). (17)

Utilizing conditions (15), (16) and (17), for all x, y ∈ X and t ∈ [0, ξ], we
obtain that

|(fx)(t)− (fy)(t)|p =

∣∣∣∣∣
∫ ξ

0

(F (t, r, x(r))− F (t, r, y(r)))dr

∣∣∣∣∣
p

≤

(∫ ξ

0

|F (t, r, x(r))− F (t, r, y(r))|dr

)p

≤

(∫ ξ

0

β
1
p η(t, r)NF (x, y)(t)dr

)p

= β (NF (x, y)(t))
p

(∫ ξ

0

η(t, r)dr

)p

≤ βMf (x, y)

(∫ ξ

0

η(t, r)dr

)p

≤ βMf (x, y).

Therefore,

pb(fx, fy) = sup
0≤t≤ξ

|(fx)(t)− (fy)(t)|p ≤ βMf (x, y) for all x, y ∈ X, (18)

where 0 ≤ β < 1
b .

We note that pb(fx, fy) > 0 implies that pb(x, y) > 0. Let us consider the
tri-simulation function T : [0,∞)× [0,∞)× [0,∞) → R defined by T (z, y, x) =
λx− yz for all x, y, z ∈ [0,∞), where λ = βb ∈ [0, 1).

Let us take g = I, the identity map on X, G = G0, where G0 is the
complete graph (X,X × X) and α(x, y) = 1 for all x, y ∈ X. It now follows
from condition (18) that

T (α(gx, gy), bpb(fx, fy),Mf (x, y)) = λMf (x, y)− bpb(fx, fy) ≥ 0

for all x, y ∈ X.
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Thus all the hypotheses of Theorem 3.5 holds good and hence f has a
unique fixed point x (say) in X. This means that x is the unique solution for
the integral equation (14).
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