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ABSTRACT. In this article, we introduce the concept of generalized
(o, T)-G-contractive mappings in partial b-metric spaces endowed with
a digraph G and obtain a new coincidence point and common fized
point result for a pair of self mappings satisfying such contractive con-
dition. Our main result will extend and unify several known results in
the existing literature and also brings some new results as consequences.
Finally, we give an application of our main result to obtain a unique
solution of an integral equation.
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1. Introduction

It is well known that the Banach contraction theorem [6] in complete metric
spaces is an important and useful tool in modern analysis. It has many appli-
cations in different fields of mathematics and applied sciences. Several authors
have successfully generalized this famous theorem in different directions. There
exist a lot of generalizations of the notion of metric spaces such as b-metric
space, introduced by Bakhtin [5], partial metric space by Matthews [24], and
dislocated metric space by Hitzler et al. [20]. In [30], S. Shukla introduced the
concept of a partial b-metric as a generalization of the notions of b-metric and
partial metric and established some fixed point results in such spaces.

Coincidence point and common fixed point results for a pair of mappings
satisfying some contractive type conditions in various spaces have been studied
extensively by many researchers. In recent investigations, the study of fixed
point theory via simulation functions takes a vital role in many aspects. In
2015, Khojasteh et al. [22] initiated the idea of Z-contraction by using a simu-
lation function and generalized the Banach contraction theorem by combining
various types of nonlinear contractions. Afterwards, Argoubi et al. [4] and
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Rolddn et al. [28] modified the existing idea of simulation functions in different
ways and established some common fixed point results utilizing this modified
class of simulation functions. In [10], S. H. Cho introduced the concept of .Z-
contractions and unified some existing metric fixed point results. Very recently,
Gubran et al. [19] introduced a new simulation function involving three vari-
ables, called a tri-simulation function which is also designed to unify several
known contractions. The study of fixed point theory combining a graph is a
new development in the domain of single valued and multi valued fixed point
theory. Echenique [13] studied fixed point theory by using graphs and then
Espinola and Kirk [14] applied fixed point results in graph theory. Motivated
by the idea given in [15, 19, 22] and some recent works on partial b-metric and
b-metric spaces with a graph (see [2, 3, 7, 16, 23, 25, 26, 27, 29]), we refor-
mulated some important coincidence point and common fixed point results in
partial b-metric spaces endowed with a digraph by using tri-simulation func-
tions. Also, we construct some non trivial examples to examine the strength
of the hypotheses of our main result.

2. Some Basic Concepts

In this section we recall some basic notations, definitions and necessary results
that will be needed in the sequel.

DEFINITION 2.1 ([11]). Let X be a nonempty set and b > 1 be a given real
number. A function d : X x X — RT is said to be a b-metric on X if the
following conditions hold:

(1) d(z,y) =0 if and only if x = y;

(1) d(z,y) =d(y,z) for allz,y € X;
(130) d(z,y) <b(d(z,z) +d(z,y)) foralz,y, z € X.
The pair (X,d) is called a b-metric space.

It is valuable to note that the family of b-metric spaces is effectively larger
than that of the ordinary metric spaces.

DEFINITION 2.2 ([24]). A partial metric on a nonempty set X is a function
p: X x X — RY such that for all z, y, z € X:

(1) p(z,2) =ply,y) =p(z,y) = v =y;
(p2) p(z,2) < p(z,y);

(p3) p(z,y) = p(y,2);

(pa) p(z,y) < plx,2) +p(z,9) — (2, 2).
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The pair (X, p) is called a partial metric space.

EXAMPLE 2.3 ([24]). Let X = [0,00) and let p(x,y) = max{z, y} for all
z,y € X. Then (X, p) is a partial metric space but p is not a metric on X.

DEFINITION 2.4 ([30]). A partial b-metric on a nonempty set X is a function
pp: X x X — RT such that for some real number b > 1 and all x, y, z € X :

(po1) po(@,2) = po(y,y) = po(z,y) =z =y;
(pv2) po(, ) < po(x,y);
(pv3) po(@,y) = po(y, z);
(Poa) o2, y) < b[po(x, 2) + po(2,y)] — po(2, 2).

The pair (X,py) is called a partial b-metric space. The number b is called the
coefficient of (X, pp).

REMARK 2.5 ([30]). In a partial b-metric space (X, py) if 2,y € X and pp(z,y) =
0, then = = y, but the converse may not be true.

It is clear that every partial metric space is a partial b-metric space with
the coefficient b = 1 and every b-metric space is also a partial b-metric space
with the same coefficient b. However, the reverse implications need not hold
true, in general.

EXAMPLE 2.6 ([30]). Let X = R*, p > 1 a constant, and pp : X x X — R+
be defined by

pb(xay) = [max{x, y}]p + |"17 - y|p7 an ye X.

Then (X, py) is a partial b-metric space with coefficient b = 2P, but it is neither
a partial metric space nor a b-metric space.

EXAMPLE 2.7 ([30]). Let (X, p) be a partial metric space and define py(z,y) =
(p(z,y))?, where p > 1 is a real number. Then p, is a partial b-metric with
coefficient b = 2P~1,

Let (X,py) be a partial b-metric space. For each x € X and for each
€ >0, put B(z,e) ={y € X :pp(z,y) <pp(x,x) +€}. Let B ={B(z,¢):2x €
X and € > 0}. Ge and Lin [17] proved that % is not a base for any topology
on X. However, they proved that £ is a subbase for some topology 7 on X
such that (X, 7) is a Tp-space.

PROPOSITION 2.8 ([17]). Let (X, py) be a partial b-metric space and (x,,) be a se-
quence in X . If (x,,) converges to x € X with respect to T, then lim py(z,,x) =

n—oo
py(z, x).

The above proposition cannot be reversed (see [17]).
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DEFINITION 2.9 ([30]). Let (X,py) be a partial b-metric space with coefficient
b>1 and let (x,) be a sequence in X. Then

(i) (z,) converges to a point x € X if lim py(zy,x) = pp(x,x). This will be
n—oQ

denoted as lim z, =z or x, — x(n — c0).
n—oo

(i) (xy,) is called a Cauchy sequence if lim  py(zy, Tm) exists and is finite.
n,Mm—00

(iii) (X,py) is said to be complete if every Cauchy sequence (x,) in X, there
exists v € X such that lm py(zp,Tm) = lIm pp(a,, z) = pp(z, ).
n,m—o0o n— oo

DEFINITION 2.10 ([12]). A sequence (xy,) in a partial b-metric space (X, pp) is
called 0-Cauchy if

lim pb(xnaxm) =0.
n,Mm—00
The space (X, pp) is said to be 0-complete if every 0-Cauchy sequence in X
converges to a point © € X such that pp(z,x) = 0, i.e., Um pp(Tn,Tm) =
n,m—00

ILm po(Tn, ) = pp(x,z) = 0.
LEMMA 2.11 ([12]). If (X, pp) is complete, then it is 0-complete.

The converse assertion of the above lemma may not hold, in general. The
following example supports this fact.

ExXAMPLE 2.12. The space X = [0,00) N Q with py(z,y) = max{x, y} is a
0-complete partial b-metric space with coefficient b = 1, but it is not complete.
Moreover, the sequence (x,,) with z,, = 1 for each n € N is a Cauchy sequence
in (X, pp), but it is not a 0-Cauchy sequence.

REMARK 2.13 ([30]). In a partial b-metric space (X, py), the limit of a conver-
gent sequence need not be unique.

DEFINITION 2.14. A sequence (xy,) in a partial b-metric space (X, py) is said
to be bounded if the set {py(n,xm) : n, m € N} of real numbers is bounded in
R, that is, there exists M > 0 such that py(zy, xm) < M for all n, m € N.

DEFINITION 2.15 ([1]). Let T and S be self mappings of a set X. If y =Tz =
Sz for some x in X, then x is called a coincidence point of T and S and y is
called a point of coincidence of T and S.

DEFINITION 2.16 ([21]). The mappings T, S : X — X are weakly compatible, if
for every x € X, the following holds:

T(Sxz) = S(Tx) whenever Sx = Tx.
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PROPOSITION 2.17 ([1]). Let S and T be weakly compatible self mappings of a
nonempty set X. If S and T have a unique point of coincidence y = Sz = Tx,
then y is the unique common fixed point of S and T'.

DEFINITION 2.18 ([19]). Let T : [0,00) X [0,00) X [0,00) — R be a mapping.
Then T is called a tri-simulation function if it satisfies the following conditions:

(T1) T(z,y,z) < x—yz for allx, y >0, z > 0;

(T2) if (zn), (yn) and (zy,) are sequences in (0,00) such that y, < z, for all
neN, lim z, >1 and lim y, = lim x, > 0, then
n— oo n— oo n— oo

limsup T'(zn, Yn, n) < 0.

n—oo

The set of all tri-simulation functions is denoted by T .

We now give some examples of tri-simulation functions.

EXAMPLE 2.19 ([19]). Let T'(z,y,z) = Az — yz for all z, y, z € [0,00), where
A€0,1). Then T € T.

EXAMPLE 2.20 ([19]). Let T(z,y,2) = x — ¢(x) — yz for all z, y, z € [0,
where 9 : [0, 00) — [0, 00) is a lower semicontinuous function such that ¢ (¢)
ifand only if t =0. Then T € T.

EXAMPLE 2.21 ([19]). Let T'(z,y,2) = ;35 — y= for all z, y, z € [0,00). Then
TeT.

EXAMPLE 2.22 ([19]). Let T'(z,y,z) = ¥(z) —y=z for all z, y, z € [0, 00), where

¥ : [0,00) — [0,00) is Matkowski function, i.e., non-decreasing function such
that hm " (t) = 0 for all £ > 0. Observe that P(t) <t for all t > 0. Then

TeT

EXAMPLE 2.23 ([19]). Let T(z,y,2) = ¥(z) — 2¢(y) for all z, y, z € [0, c0),
where ¢, ¥ : [0,00) — [0,00) are two continuous functions such that ¥ (t) =
¢(t) =0 1if and only if t = 0 and ¢(t) <t < ¢(t) for all ¢ > 0. Then T € T.

We now assign a digraph in partial b-metric spaces (X, p,) as follows.

Let (X,py) be a partial b-metric space and let A = {(z,z) : x € X}. We
consider a digraph G whose vertex set V(G) coincides with X, and the set
E(G) of its edges contains all loops, i.e., E(G) 2 A. We also assume that G
has no parallel edges. Under these assumptions, we can identify G with the pair
(V(G),E(G)). By G~! we denote the graph obtained from G by reversing the
direction of edges, i.e., E(G™') = {(z,y) € X x X : (y,x) € E(G)}. Actually,
it will be more convenient for us to treat G as a digraph for which the set of
its edges is symmetric. Under this convention,

00)

E(G) = E(G)U B(G™Y).
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Our graph theory notations and terminology are standard and can be found
in all graph theory books, like [8, 9, 18].

DEFINITION 2.24. Let (X,py) be a partial b-metric space with the coefficient
b>1 and let G = (V(G), E(G)) be a digraph. A mapping f: X — X is called
a Banach G-contraction or simply G-contraction if there exists k € (0, %) such
that

po(fz, fy) < kpo(@,y)
for all z, y € X with (x,y) € E(G).

Any Banach contraction is a Gp-contraction, where the graph Gy is defined
by E(Gp) = X x X. But it is valuable to note that a Banach G-contraction
need not be a Banach contraction (see Remark 3.9).

REMARK 2.25. If f is a G-contraction, then f is both a G~ !-contraction and
a G-contraction.

3. Main Result

In this section we assume that (X,pp) is a partial b-metric space with the
coefficient b > 1 and G = (V(G), E(G)) is a reflexive digraph which has no
parallel edges. Let f, g : (X,pp) — (X,pp) be two mappings. We use the
following notations:

o9y, fy) polgz, fy) + polgy, fx
Mfg(1'7y) = max{pb(g:c,gy),pb(gx,fx), ( 2 )7 ( )2b ( )}
for all z, y € X.
If g = I, the identity map on X, we denote M(x,y) := Myq(x,y).

DEFINITION 3.1. Let f, g : (X,pp) — (X,p») be two mappings. Then, the
mapping [ is called a generalized (o, T')-G-contractive w.r.t. the mapping g if
there exist two functions T € T and o : X x X — [0,00) such that

T(algz, gy), bpe(fz, fy), Msg(z,y)) =0 (1)

for allz, y € X with (gz, gy) € E(G) and a(gz, gy) > 1.
Taking g = I, the above definition gives the following definition.

DEFINITION 3.2. The mapping f : (X,pp) — (X,pp) is called a generalized
(o, T)-G-contractive if there exist two functionsT € T and a : X x X — [0, 00)
such that

T(a(x, y)7 bpb(fCC, fy)v Mf(:l?, y)) >0

for all x, y € X with (x,y) € E(G) and a(x,y) > 1.
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Taking G = Gy in Definition 3.1, we get the following.

DEFINITION 3.3. Let f, g : (X,pp) — (X,pp) be two mappings. Then, the
mapping [ is called a generalized (o, T)-contractive w.r.t. the mapping g if
there exist two functions T € T and a: X x X — [0,00) such that

T(algz, gy), bps(f, fy), Myg(z,y)) 2 0
forallz,y € X and a(gz,gy) > 1.

Let f, g : X — X be such that f(X) C g(X). Let o € X be arbitrary.
Since f(X) C g(X), there exists an element z; € X such that gx; = fxo.
Continuing in this way, we can construct a sequence (gz,) in g(X) such that
gxn = frp_1,n=1,2,3, ---.

DEFINITION 3.4. Let the mappings f, g : X — X be such that f(X) C g(X)
and let a : X x X — [0,00) be another mapping. We define C’})‘QG the set of

all elements xg of X such that for allm, n=0,1,2, ---, (92, 92m) € E(GQ)
and a(gxn, gxm) > 1, for every sequence (gx,) such that gx, = frn_1, n =
1,2,3, .

Taking g = I, we denote C?G = C'J‘?“QG.

Taking G = Gy, C}"f becomes C'¢. which is the collection of all elements xq
of X such that for allm, n=0,1, 2, ---, a(gxn, grm) > 1, for every sequence
(gzy) such that gz, = frp_1,n=1,2,3,---.

Before presenting our main result, we state a property of the graph G, call
it Property (x).

PROPERTY (x): If (ga1) is a sequence in (X,pp) such that py(gzg,z) — 0,
(92, 9Tk 11) € E(G) and a(gwg, grry1) > 1 for all & > 1, then there exists a

subsequence (gxg,) of (gzx) such that (gxg,,z) € E(G) and a(gzy,,x) > 1 for
all ¢ > 1.

Taking g = I, the above property reduces to Property (x):

PROPERTY (x): If (z1) is a sequence in a partial b-metric space (X, p,) such

that py(or, ) — 0, (2, 2r41) € E(GQ) and a(zg, zpr1) > 1 for all & > 1,

then there exists a subsequence (zy,;) of (xy) such that (zg,,z) € E(G) and
a(zk,,z) > 1 for all ¢ > 1.

Taking G = Gy in Property (x), we get the following property:

PROPERTY (1): If (gzx) is a sequence in (X, pp) such that py(gag,x) — 0 and
a9k, grry1) > 1 for all k& > 1, then there exists a subsequence (gxy,) of (gz)
such that a(gzg,,z) > 1 for all 4 > 1.

If (X,pp, =) is a partially ordered partial b-metric space, then by taking
a(z,y) = 1 for all x, y € X and G = Go, where the graph G5 is defined by



(8 of 27) S. K. MOHANTA AND S. DAS

,

E(Gs) ={(z,y) € X x X : & <y ory =z}, the Property (*) reduces to the
Property () which can be stated as follows:

PROPERTY (1): If () is a sequence in a partially ordered partial b-metric space
(X, py, =) such that py(zk,z) — 0 and xg, xp41 are comparable for all k > 1,
then there exists a subsequence (zy,) of (z)) such that zy,, © are comparable
forall ¢ > 1.

We now present our main result.

THEOREM 3.5. Let (X, pp) be a partial b-metric space with the coefficient b > 1
and let G = (V(G), E(G)) be a digraph. Let the mappings f, g : X — X be such
that py(fx, fy) > 0 implies that py(gzx, gy) > 0. Suppose that [ is generalized
(o, T)-G-contractive w.r.t. the mapping g. Suppose also that f(X) C g(X),
9(X) is a 0-complete subspace of X and the graph G has the Property (x).
Then f and g have a point of coincidence u(say) in g(X) with py(u,u) = 0 if
36 210,

Moreover, f and g have a unique point of coincidence in g(X) if the graph
G has the following property:

(%) If z, y are points of coincidence of f and g in g(X), then (z,y) € E(G)
and ofz,y) > 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique
common fized point in g(X).

Proof. Suppose that CJ%G # (). We choose an xg € C’?gc and keep it fixed. Since
f(X) C g(X), there exists a sequence (gz,) in X such that gz, = fx,_1, for
n €N and (9, gzm) € E(G) and a(gz,, gx,y,) > 1form, n=0,1,2, ---.

We assume that gx,, # gx,—1 for every n € N. In fact, if gz, = gx,,—;1 for
some n € N then gx, = fxr,_1 = gr,_1 which implies that gz, is a point of
coincidence of f and g.

We now prove that lim py(gz,—1,92,) = 0.
n—oo

First we note that for all n € N, (gzn—1,92,) € E(GQ), a(grn—1,9Tn) >
1 and pp(fxn—1, fxn) > 0, pp(92n_1,9x,) > 0. Therefore, it follows from
conditions (1) and (7'1) that

0 < T(O‘(gxn—la gxn), bpb(fxn—la fxn)v Mfg(xn—la In))
< Mfg('rn—la xn) - ba(gl'n—lv gxn)pb(fxn—ly f‘rn)a (2)
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where
o Po(92Tn—1,9%n), Po(9Tn—1,9%n),
Tp_1,Tn) = Max
fg( n=l n) P6(9Tn,9Tnt1) Po(9Tn—1,9Tn+1)+Db(9Tn,9Tn)
2 ) 2b

pb(gwnfh gwn)a pb(g'rn7 gmn«kl)u
< max
Pb(9T0n—1,9%n)+Pb(9Tn,9Tn+1)
2

= max {ps(9Tn—1, 9%n), Po(gTn, gTn+1)} -

It now follows from condition (2) that, for alln =1, 2, - -,

Po(9%n, gTnt1) < ba(gTn—1, 92n)Ps(9%n, GTni1)
< Myg(@n—1,2n)
< max {py(92n—1,9%n), Po(9Zn, 9Tn41)} - (3)

If max {py(92n—1,9%n), Po(9Zn, g9Tn+1)} = Pb(9Zn, gTny1), then by using (3),
we get

(9%, 9Tn11) < Po(9Tn, gTni1),

which is a contradiction. Therefore,

max {pb(gxnflv g‘rn)vpb(gxnv ganrl)} = pb(gmnflv g‘rn)

Hence from condition (3), we can compute that

Po(9%n, 9Tnt1) < bpo(9Tn, gTnt1)
< ba(9zn—1,97n)Po(9Tn, GTn+1)
< Myg(@n—1,2s)
< pu(9Tn—1,9Tn). (4)

Hence, we conclude that (py(g9z,—1,9%,)) is a decreasing sequence of posi-
tive real numbers, so there exists r > 0 such that

lm pp(gzn—1,92n) =T
n— oo

We shall show that » = 0. Assume that r > 0. Then by taking limit as
n — 00, it follows from condition (4) that

lim bpb(gxnugx’n+1) =T,
n—o00

i Mo 0) =7

and

lim a(gx,-1,9z,) = 1.
n— oo



(10 of 27) S. K. MOHANTA AND S. DAS

Let z, := a(9Tn—1,9%n); Yn = 0pp(92n, 9Tns1) and t, := Myg(2n_1,2n)
for all n € N. Then, vy, < t, for all n € N and lim 2z, = 1, lim y, =
n—oo

n— oo

lim ¢, =r > 0. From (72), we obtain

n— oo

0< hmsupT(Zmynatn) <0,

n—oo
which is a contradiction. This implies that for all n € N|
lim_py(gan_1,g7n) = 0. (5)

We now proceed to show that (gz,) is a bounded sequence in (X, p;). To
obtain this assertion, we suppose that the sequence (gz;,) is not bounded. Then
there exists a subsequence (g, ) of (gz,) such that n; = 1 and for each k € N,
ng+1 is the smallest integer satisfying

pb(gxnk+17gxnk) >1 and pb(gxlagxnk) <1

for all ny, <l <npy; — 1.

We note that (92n,,,~1,9%n,—1) € E(GQ), (9%, —1,9%n,—1) > 1 and

pb(gxnk+l7gxnk) >1 épb(fxnkﬁ»l_l?fx”k_l) >0
= pb(gxnk+1—17gxnk—1) >0
= Mfg(xnm—l*l?xnk*l) > 0.

Using conditions (1) and (71), we obtain
0< T(a(gxnk+1*17gxnk71)7bpb(gxnk+l7gxnk)’ Mfg(xnk+1*1"/1’.nk*1)>
< Mfg(‘rnk,+1*17xnk*1) - ba(gxnk_ﬂflagxnkfl)pb(gxnk_*_mgxnk»
That is,
ba(gxnk_,_lflugmnkfl)pb(gmnk_,_ugxnk) < Mfg(xnk+1717xnk71)7 (6)
where

Mfg(mnk+1fl7 xnkfl)

pb(gxnk+1—1agxnk—1)7pb(gxnk+1—1; gxnk+1)a
= max
Pb(9Tn, —1,9%n, ) Po(9%n; ;1 —1,9%n,)+Po(9Tn) —1,9Tn, ;)
2 ) 2b

pb(gxnk+1 -1, gxnk—l)apb(gxnkJrl—M gxnkJrl )7

Po(9Tn, —1,9T
S max nkz B ”k),

2bpy (9% ny, g —1:9%n;, —1)+0P6(9Tn) —1,9%n; ) +bPb(9Tny 1 —1,9%Tn, ;)
20

pb(gxnwrl—l ) gxnk+1)7
= max

Pu(9Tny, —1,9%n, ) +Po(9Tn, 1 —1,9%n, 1) }
pb(gxnkJrl_l?gxnk—l) + 2
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We now compute that

pb(gxnk—hgxnk) + pb(gmnk+1—1a gmnk+1)
2

pb(gxnk+1717 gl‘nkfl) +

< bpu(9Tnypy 15 9Ty, ) + 006(9T s 5 Gy —1)
4 pb(gxnk-—l , gxnk) + pb(gxnk+1_17 gm”k+1)

2
Po(9%n,—1, 9%n,) + Po(9Znsii—15 9Tnsy)
S b+bpb(g$nk,g$nw1) + Nk N 5 Nk+1 Nk+1
— b+ (2b + ]‘)pb(gxnk—17g’rnk) +pb(gx”k+1_17gxnk+1)
B .
Therefore,
Mfg(xnk-%-l*l?xnk*l)
pb(gznk+1_1’gz"k+l)7
< max b+ (2b+1)pb(gTny —1,9%n,, )2+Pb(g$nk+1—17.‘]$nk+1) ’

Hence, it follows from condition (6) that

b < bpp(9Tnyyys 9Tny)
< ba(gxnk_'_lfh gxnkfl)pb(gxnk+1 ’ gxnk)
< Mfg(xnkﬂ*lvxnk*l)

pb(gxnk+1—1’ gxnk+1)’
< max .
= b (2b+1)po(9Tny —1,9Tn, )+P6(9Tny 1 —1,9Tng )

2

Taking limit as ¥ — oo and using condition (5), we get

kh_)n;o Mfg(xnk+1*17xnk*1) =1, (7)
lim bpb(gxnk+1vgxnk) =b (8)
k—o0
and
lim (92, ., —1,9Tn,-1) = 1. (9)
k—o0
Let

Wk‘ = a(gl'nk_*_lflagxnkfl)»
Vk = bpb(gxnk+1vgxnk) )
Uk := Mfg(xnk+1—1vxnk—1) .
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Then Vi, < Uy for all k € N. By using conditions (9), (7) and (8), we get
lim Wy =1 and klim U, = klim Vi = b > 0. By condition (72), we obtain
— 00 — 00

k—o0

that
0< limsupT(Wk, Vi, Uk) <0,

k—o0

which is a contradiction. This ensures that the sequence (gx,) cannot have
any unbounded subsequence. Thus (gz,,) is a bounded sequence in (X, py).

Now, we shall show that (gx,) is a 0-Cauchy sequence. Let
R, = sup{ps(gzi,gz;) >0:4, j >n},neN.

Since the sequence (gz,,) is bounded, R, < +oo for every n € N. But (R,)
being a decreasing sequence of positive real numbers, there exists R > 0 such
that

lim R, = R. (10)

n—oQ

We assume that R > 0. Then by the definition of R,, it follows that for
every natural number k, there exist ng, miy € N such that my, nx > k,
P6(9Tm,, gTn, ) > 0 and

1
Ry — z < po(9Tmy, 9Tn,, ) < Ri.

Taking limit as k — oo, we have
lim py(92m,, 9%n,) = R > 0. (11)
k—o0

We note that for every k € N,

pb(gxmk7gxnk) >0= pb(fxmk—lafxnk—l) >0
= 6(9Tmy—1, 9Tn,—1) >0
= Mfg(mmkflvxnkfl) >0

and a(gTm,—1,9%n,—1) > 1, (9Tmp—1,9%n,—1) € E(G).
Using conditions (1) and (T'1), we get

0< T(a(gxmk—l7gx’ﬂk_1)7 bpb(g‘rmkvgxnk)7 Mfg(xmk—lvxnk—l))
< Mfg(xmkfhxnkfl) - ba(gxmkflagxnkfl)pb(gxmngnk)

That is,

ba(gxmk—l ) gxnk—l)pb(g'xnuC ) g-rnk) < Mfg (xnzk—lv xnk—l)a (12)
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where

Mfg(xmkflﬂxnkfl)

Po(9Tmy 15 9%, ~1), Po(9Tm; 15 9Tmy. )
= max
pb(gwnk—hgwnk) pb(ga:?nkfl 'GTny )+pb(gwnk71,gwmk)
2 ’ 2b

pb(gxmk—la gxnk—l)apb(gxmk—h gxmk),

P6(Gmg—1,0%ny)
2 b

2bpp (9% m ) —1,9%n;, —1)+bPb (9%n, —1,9%n, ) +bPb(9Tm ) —1,9%m,, )
2b

pb(gzmk—17g:€mk)7
= max .

< max

b (9Tn, —1,9%n,, ) +Pb(9Tm, —1,9Tm,,)
Po(9Tmy 1, 9Tn;—1) + . b . :

pb(ngnk—l 5 g'rmk)v
< max .

pb(gxnk—hgl'nk )+Pb(9$mk71,g$mk)

Ri_1+ 5

By using the definition of R,,, it follows from condition (12) that

Po(9Tmy, 9Tny) < bP(9Zmy s 920y,
S ba(gxmkflagmnkfl)pb(gxmmgxnk)
< Mfg(xmkfl’xnkfl)

pb(gxmk—h 9GTm,, )a
< max - (13)

pb(gxnkflqunk )+pb(gw'mk717gw7nk)

Rr_1+ 5

Taking limit as & — oo and using conditions (10) and (11), we obtain that

lim Myg(my—1,%n,—1) = lm bpy(9Tm,, gTn,) = R.
k—o0 k— o0

Also, condition (13) ensures that klim o(gTmy—1,9Tn,—1) = 1.
— 00
Let

Zy = a(9Tmy—1, 9Tny—1) 5
Vi = bpp(9Tm, , 90, )
Xk = Mfg(xmk—la‘rnk—l) .
Then YV, < Xj, for every k € Nand lim Z; =1, lim Y, = lim &, = R > 0.
k—o0 k—o00 k—o00

It now follows from condition (72) that

0 < limsup T'(Z, Vi, Xi) <0,

k—o0
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which is a contradiction and so we have R = 0. Hence, we deduce that

lim  py(g2n, gzm) = 0.

n,m— oo

Therefore, (gx,,) is a 0-Cauchy sequence in g(X). As g(X) is O-complete, there
exists an u = gv € g(X) for some v € X such that gz, — u and py(u,u) = 0.
Therefore,

lim  py(92n, gTm) = Hm py(9an,u) = py(u,u) = 0.
n,m—0o0 n—o00

By Property (x) there is a subsequence (gz,,) of (gz,) such that (gx,,,gv) €

E(GQ) and a(gzy,,gv) > 1 for all 4 > 1.
Next, we shall show that f and g have a point of coincidence in g(X). We
note that

Po(9%n;, gV), Pb(9Tn, s 9Tn,+1), }

pu(gv,fv) Po(9Zn;, fV)+pe(gv,gTn,+1)
2 ’ 2b

If Myg(2y,,v) = 0, then W = 0 and hence gv = fv = u. So we
assume that Myq(2,,,v) > 0.
If py(fan,, fr) > 0, then we obtain from condition (1) that

0 < T(a(gn,, gv), bpo(fn,, fv), Mig(xn,,v))
< Mfg<xnwl/) - ba(gxnwgy)pb(fxnmfy)'

M) = s

That is,

ba(gn,, gv)po(fan,, fv) < Myg(Tn,,v),
which gives that

bpb(fxniafy) S ba(gmni,gu)pb(fmm,fu) < qu(xnl,l/)
Moreover, if py(fx,,, fv) = 0, then
0= bpb(fxn“ fz/) < Mfg(xnwl/)'

Therefore,

bpy(fn,, fv) < Myg(2y,,v) for all i € N,

Now,

0 <py(fr,gv)
< bpb(fy7 fxnl) + bpb(fxnﬂgy) - bpb(fxnlvfxnl)
< Mfg(xnia v) + bpy(9%n, 11, 9v)

pb(gwnl ; gy)apb<gxni ; gxn-;+1)a M7

bpy (9%, ,gv)+bps(gV, fv)+Pb(9V;9Tn, +1)
25

< max

+ bpy (9T, 41, gv)-
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Taking limit as ¢ — oo, we obtain that

0 < py(fr,gv) < M.

This implies that py(fv, gv) = 0 and so, fv = gv = u. Therefore, u is a point
of coincidence of f and g.

For uniqueness, we assume that there exists u* € X such that fr = gz = u*
for some x € X with p,(u*,u*) = 0 and v # u*. By property (xx), we have

(u,u*) € E(G) and a(u,u*) > 1. Then,

0< T(a(gl/, 9x), bpy (fv, fz), Myg(v, x))
= T(a(u, u™), bps(u, u™), Mgq(v, w))
< Myg(v, ) — ba(u, u™)pp(u, u*).

That is, ba(u, u*)py(u, u*) < Myy(v, ) = pp(u, u*), since

pu(gv, gz), pu(gv, fv), }

Myq(v,z) = max{ py (g, f) pb(gvyfz)tpb(gzyfw
2 2

pb(uaU*)7pb(ua U), Ma
= Imax

po (u,u”)+pp(u”,u)
2b

= pp(u,u”).

This gives that bpy(u, u*) < ba(u, u*)pp(u, u*) < pp(u,u*), a contradiction.
Hence, u = u*. Therefore, f and g have a unique point of coincidence in g(X).

If f and g are weakly compatible, then by Proposition 2.17, f and g have
a unique common fixed point in g(X). O

We give some examples to illustrate our main result.
EXAMPLE 3.6. Let X = [0,00) and define p, : X x X — RT by py(z,y) =
[max {z, y}]> + |z —y|? for all z, y € X. Then (X, pp) is a O-complete partial b-
metric space with the coefficient b = 8. Let G be a digraph such that V(G) = X
and BE(G) = AU{(0,5:):n=1,2,3,---}.

Let f, g : X — X be defined by

and gz = 4z for all z € X. Obviously, f(X) C g(X) = X and pp(fz, fy) >
0 = po(gw,gy) > 0.



(16 of 27) S. K. MOHANTA AND S. DAS

Let a: X x X — [0,00) be defined by

(2.9) 1, ifz,y€l0,1],
a(z,y) =
%, otherwise.

The point zq := 0 belongs to C¢<.

Let T : [0,00) x [0,00) x [0,00) — R be defined by T'(z,y,z) = 1z — yz for
all z, y, z > 0.

Formz&yzﬁ, nEN,wehavegx:ng:%,fmZO, ]”1125_2#”+2

and so (gz,gy) € E(G), a(gz,gy) = 1. We now compute that py(fz, fy) =
pb(O, 5‘21n+2) = 125.§3n+65 pb(QLQ?J) = pb(07 2%) = 23%7 pb(ng fl') = Oa

11
po(gy, fy) = po (QH 5zn+2)
ISR Y D L B PR CAR
T 230 " 93n 20) ~ 23n 20 23n”

po(9, fy) = po(0, s572) = To5—25mrss Du(9Y, f2) = pu(5=,0) = 5.
Now,

o9z, fy) +polgy fo) _ 1 (1 1Y) _ 1
2b 23n \125.29 © 23

Thus, we obtain that My (z,y) = 535
Therefore,

T(a(gx,gy), bps(fz, fy), Mpg(z,y))

S22 1/ 1Y
T2 23 125 - 23046~ 23n 500 '

Moreover, for 0 <z =y < %, we have (gz,gy) € E(G), a(gz,gy) =1 and

73

Tr X B
po(fz, fy) = po (3’ g) = 15’ po(g, gy) = py(4z, 4z) = 642,

x 19z 3
py(9, fr) = pu(gy, fy) = po(4z, g) = 642° + (5> ,

(g, fy) +polgy, f) _ (g, fo) 1 l64x3 N (1995)3] .

20 B b 8 5

It now follows from the above computation that

3
19
Myy(x,y) = 642° + (;) :
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In this case, we have

Therefore,
T(a(gz,gy), bps(fz, fy), Mpg(z,y)) >0

for all z, y € X with (gz, gy) € E(G) and a(gz, gy) = 1.

Any sequence (gx,,) with the property py(gzn, ) = 0, (92n, gZnt1) € E(G)
and a(gzy,gTnt1) > 1 for all n > 1 must be either the zero sequence or a
sequence of the following form

{Q if n is odd,
gry =

1 . .
5w, if nis even

where the words ‘odd’ and ‘even’ are interchangeable. Also, py(gzn,z) — 0
ensures that x = 0 and consequently, it follows that Property (x) holds true.
Moreover, f and g are weakly compatible. Thus, we have all the conditions of
Theorem 3.5 and 0 is the unique common fixed point of f and g in g(X) with

pb(oa 0) =0.
REMARK 3.7. We see that in the above example, f is not a Banach G-con-
traction. Because, if we take =y = %, then (z,y) € E(G) and

p(fsfy) = (1) = 1= 2T+ o= > k()

for any k € (0, §).
We now give an example in favour of the Property (x) of the graph G in
Theorem 3.5.

EXAMPLE 3.8. Let X = [0,00) and define py : X x X — RT by
py(z,y) = |z —y|? for all , y € X.

Then (X, py) is a O-complete partial b-metric space with the coefficient b = 4.
Let G be a digraph such that V(G) = X and E(G) = AU{(z,y) : x,y €
(0,1] and = < y}.

Let f, g : X — X be defined by

{; if 2 #0,

fa =
1, ifx=0
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and gr = % for all # € X. Obviously, f(X) C g(X) = X and py(fz, fy) >
0= py(gz, gy) > 0.
Let a: X x X — [0,00) be defined by

1, ifz, yelo0,1],

alx,y) = ) .
5, otherwise.
The point xg := % belongs to C’J?QG.

Let T : [0,00) x [0,00) x [0,00) — R be defined by T'(z,y,z) = 3x — yz for
all z, y, z > 0.

For z, y € (0, 3], we have (gz, gy) € E(G) and a(gz,gy) = 1. Then,

1 1
po(fz, fy) = 97|$ - y|37 (92, 9y) = 2*7|x - 9\3'

Therefore,

T(algz, 99).bm (7. £9), My (e,)) = 2 My (e,) — bpu(f. 1)

5

> §pb(gx,gy) —dpy(fr, fy)

11
729

4
=9X27Ix—yl3—97w—y|3= |z —y[* > 0.

Thus,
T (g, gy), bps(fx, fy), Mpg(z,y)) > 0

for all z, y € X with (gz,gy) € E(G) and a(gz, gy) > 1.

We now show that the graph G does not satisfy the Property (x). For
T, = %, gz, = % and hence py(g2n,0) — 0. Also, (92n,9zns1) € E(G) and
a(gTn, gTn+1) = 1 for all n € N. But there exists no subsequence (gz,,) of
(g,) such that (gz,,,0) € E(G). It is obvious that f and g have no point
of coincidence in g(X). This proves that Theorem 3.5 remains invalid without

the Property (x) of the graph G.

REMARK 3.9. In Example 3.8, f is not a Banach contraction. For instance, if
we take £ =0, y = 1, then

po(fz, fy) =po (1, ;) = (§>3 = (2)3%(%,2/) > kpy(2,y)

for any k € (0, §).
However, f is a Banach G-contraction since for all z, y € X with (x,y) €
E(G), we have

w(fz, fy) = ﬁlgpb(w,y),
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1
where =35 € (0, 7).

We now examine the role of the weak compatibility condition in Theo-
rem 3.5. In fact, we shall show that this condition is necessary in Theorem 3.5

to obtain a common fixed point.
EXAMPLE 3.10. Let X = R and define p, : X x X — RT by py(x,7y) = |z — y|?
for all z, y € X. Then (X,py) is a 0-complete partial b-metric space with
the coefficient b = 2. Let G be a digraph such that V(G) = X and E(G) =
AU{(z,y):z,y€[0,1] and = < y}.

Let f, g : X — X be defined by

T : 2
o lfiZ??éga
R e

and gz = 3z—11 for all x € X. Obviously, f(X) C ¢g(X) = X and py(fz, fy) >

0= py(gz, gy) > 0.
Let a: X x X — [0,00) be defined by

( ) 17 ifx7y€ [07 1]?
alr,y) =
L otherwise.

3
The point zg := 4 belongs to CJ‘?‘QG.
Let T : [0,00) x [0,00) x [0,00) — R be defined by T'(z,y,z) = & — yz for
all z, y, z > 0.
Ifl1 <z, y <4, then (gz
that pb(fw fy) p(§,4) =

Therefore,

,gy) € ( 7)) and a(gz, gy) = 1. We now compute
%Ifﬂ yI?, pegz, gy) = 9z — y|?.

T(a(gsc,gy), bpb(fxa fy)’ Mfg(l’,y)) 7Mfg(x,y) - bpb(fma fy)

Ne

1 17
po(97, 9y) — 2pu(f, fy) = < |z —y|* — gle = y)* = <= y|* > 0.

1
4

>~

Thus,
T(algz, gy), bps(fx, fy), Myg(z,y)) > 0

for all z, y € X with (gz, gy) € E(é) and a(gz, gy) > 1.

It is obvious that any sequence (gx,) with (9z,,gz,11) € E(G) and
a(9Zn, gTny1) > 1 for all n > 1 must be a sequence in [0, 1]. Also, pp(g2n, ) —
0 = |gxn — x| = 0 = x € [0,1] which proves that the graph G has the Prop-
erty (x).

We note that f(4) = g(4) = 1 but ¢g(f(4)) # f(g(4)) which ensures that f
and g are not weakly compatible. However, all other conditions of Theorem 3.5
are fulfilled. We observe that 1 is the unique point of coincidence of f and g
without being any common fixed point.



(20 of 27) S. K. MOHANTA AND S. DAS

4. Some Consequences of the Main Result

In this section our aim is to present some important coincidence point and fixed
point results which will justify the extension of our main result.

THEOREM 4.1. Let (X, pp) be a 0-complete partial b-metric space with the coef-
ficient b > 1 and let G = (V(G), E(G)) be a digraph. Let f : X — X be a map-
ping with the property that py(fz, fy) > 0 implies that py(x,y) > 0. Suppose
that f is generalized (o, T')-G-contractive and the graph G has the Property (*)
Then f has a fized point u(say) in X with py(u,u) =0 if C'?‘G £ 0.

Moreover, f has a unique fixed point in X if the graph G has the following
property:

(% *) If z, y are fized points of f in X, then (z,y) € E(G) and o(z,y) > 1.

Proof. The proof follows from Theorem 3.5 by taking g = I, the identity map
on X. U

THEOREM 4.2. Let (X, pp) be a partial b-metric space with the coefficient b > 1
and let f, g : X — X be mappings with the property that py(fz, fy) > 0 implies
that py(gz, gy) > 0. Suppose that f is generalized (o, T')-contractive w.r.t. the
mapping g. Suppose also that f(X) C g(X), g(X) is a 0-complete subspace
of X and « has the Property (). Then f and g have a point of coincidence
u(say) in g(X) with py(u,u) = 0 if CF, # 0.

Moreover, f and g have a unique point of coincidence in g(X) if o has the
following property:

If 2, y are points of coincidence of f and g in g(X), then a(x,y) > 1.

Furthermore, if f and g are weakly compatible, then f and g have a unique
common fized point in g(X).

Proof. The proof can be obtained from Theorem 3.5 by considering G = Gy,
where Gy is the complete graph (X, X x X). O

THEOREM 4.3. Let (X,py) be a 0-complete partial b-metric space and let f :
X — X be a mapping with the property that py(fx, fy) > 0 implies that
py(z,y) > 0. Suppose that there exists T € T such that

T (1, bps(fa, fy), My(z,y)) =0
forallz, y € X. Then f has a unique fized point u(say) in X with py(u,u) = 0.

Proof. The proof follows from Theorem 3.5 by taking ¢ = I, G = G and
alz,y)=1forall z, y € X. O
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THEOREM 4.4. Let (X,py) be a 0-complete partial b-metric space and let f :
X — X be a mapping with the property that py(fx, fy) > 0 implies that
pu(x,y) > 0. Suppose that [ satisfies the following condition:

bpo(fz, fy) < (Mg (x,y)) for allz,y € X,

where ¥ : [0,00) = [0,00) is a non-decreasing function such that lim ¥™(¢t) =0
n—oo

for allt > 0. Then f has a unique fized point u(say) in X with py(u,u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking 7' as in
Example 2.22. U

THEOREM 4.5. Let (X, d) be a complete b-metric space with the coefficient b > 1
and let f: X = X be a mapping satisfying the following condition:

d(fz, fy) < BMy(z,y) for allz, y € X,
where 8 € [0, %) is a constant. Then f has a unique fized point in X.

Proof. The proof follows directly from Theorem 4.3 and by taking 7' as in
Example 2.19 and p, = d. U

We now present the b-metric version of Banach contraction theorem.

THEOREM 4.6. Let (X, d) be a complete b-metric space with the coefficient b >
1 and let f : X — X be a mapping satisfying d(fzx, fy) < Bd(z,y) for all
xz,y € X, where g € [0, %) is a constant. Then f has a unique fized point

m X.

Proof. Since d(x,y) < M¢(z,y), the conclusion of the theorem follows directly
from Theorem 4.5. O

REMARK 4.7. Theorem 4.6 shows that our main result is a generalization of
the well known Banach contraction theorem.

The following is the b-metric version of Fisher’s theorem.

THEOREM 4.8. Let (X, d) be a complete b-metric space with the coefficient b > 1
and let f: X — X be a mapping satisfying

d(fx, fy) < kld(fz,y) +d(fy,z)]

for all z,y € X, where k € [0, ﬁ) 1s a constant. Then f has a unique fized

point in X.
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Proof. Since

d(fz,y) +d(fy,»)

d(fz, fy) < kld(fz,y) + d(fy,z)] = 2kb 5

< BMy(x,y),

where 8 = 2kb € [0, %), the conclusion of the theorem follows directly from
Theorem 4.5. O

We now present analogue of Kannan’s fixed point theorem in b-metric
spaces.

THEOREM 4.9. Let (X, d) be a complete b-metric space with the coefficient b > 1
and let f: X — X be a mapping satisfying

d(f{L', fy) < a d(fl',if) + az d(fyvy)

for all x, y € X, where ay, as > 0 with a1 + 2a2 < % Then f has a unique
fixed point in X.

Proof. Since d(fz, fy) < a1 d(fz,z) + a2 d(fy,y) < (a1 + 2a2)My(x,y) =

BMy(x,y), where f = (a1 +2a2) € [0, %), the conclusion of the theorem follows
directly from Theorem 4.5. O

THEOREM 4.10. Let (X, py) be a 0-complete partial b-metric space and let f :
X — X be a mapping with the property that py(fzx, fy) > 0 implies that
pu(z,y) > 0. Suppose that [ satisfies the following condition:

M
bpy(fz, fy) < LCIY) 1 forallz,y € X.

My (z,y) +
Then f has a unique fixed point u(say) in X with py(u,u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.21. O

THEOREM 4.11. Let (X,d) be a complete b-metric space with the coefficient
b>1andlet f: X — X be a mapping satisfying the following condition:

bd(fx, fy) < My(z,y) — Y (Ms(x,y)) for all x, y € X,

where ¢ : [0,00) — [0, 00) is a lower semicontinuous function such that ¥(t) = 0
if and only if t =0. Then f has a unique fized point in X.

Proof. The proof follows directly from Theorem 4.3 and by taking 7' as in
Example 2.20 and p, = d. U
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THEOREM 4.12. Let (X,d) be a complete b-metric space endowed with a partial
ordering = and let f : X — X be a mapping. Suppose that there exists T € T
such that

T(Lbd(fxa .fy)’ Mf('rv y)) >0

for all comparable elements x, y € X. Suppose also that the triple (X, d, <) has

the Property (1). If there exists g € X such that x,, x,, are comparable for

alln,m=0,1,2, ---, where x, = fr,_1, Vn € N, then [ has a fized point in

X. Moreover, f has a unique fized point in X if the following property holds:
If x, y are fixed points of f in X, then x and y are comparable.

Proof. The proof can be obtained from Theorem 3.5 by taking p, =d, g = I,
a(z,y) =1 for all z, y € X and G = G2, where the graph G5 is defined by
E(Gy)={(z,y) e X x X :z <yory=<zx} 0

THEOREM 4.13. Let (X, pp) be a 0-complete partial b-metric space and let f :
X — X be a mapping with the property that py(fz, fy) > 0 implies that
po(z,y) > 0. Suppose that [ satisfies the following condition:

o(bpy(fz, fy)) < w(Mg(x,y)) for all z, y € X,

where ¢, ¥ : [0,00) — [0,00) are two continuous functions such that ¥(t) =
d(t) =0 if and only if t =0 and ¥(t) <t < ¢(t) for allt > 0. Then [ has a
unique fized point u(say) in X with py(u,u) = 0.

Proof. The proof follows directly from Theorem 4.3 and by taking T as in
Example 2.23. O

REMARK 4.14. It is valuable to note that several well known but important
fixed point results in metric, partial metric and b-metric spaces can be ob-

tained by suitable choices of tri-simulation function T" € T, digraph G and the
function «a.

5. An Application to the Integral Equation

In this section we utilize Theorem 3.5 to obtain a unique solution of the fol-
lowing integral equation

£
(1) = /O Pt r, (r))dr, (14)

where € >0, F:[0,£] x [0,£] x R = R, z:[0,£] — R are continuous functions
and the integral is taken in Riemann sense.
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Let X = CJ0,&] be the set of all real valued continuous functions defined
on [0,£]. We define pp : X x X — RT by

po(w,y) = sup |z(t) —y(t)|P for all z, y € X,
0<t<¢

where p > 1. Then it is easy to verify that (X,pp) is a 0-complete partial
b-metric space with the coefficient b = 2P~!. In the next theorem X represents
the above partial b-metric space and Np(z,y)(t) is defined as follows:

|z (t) fo (t,r,z(r))dr —z(t)|,

|f& F(twy(r)}dr—y(t)\
Np(z,y)(t) = max 2% ’ ’

1

( | € F(tra(r)dr—y() [ +| [£ F(try(r)dr—a(t) p) B
2b

where z, y € X and ¢ € [0,¢].
THEOREM 5.1. Suppose that X = C[0,£] and the following hypotheses hold:
(i) F:]0,£] x [0,&] x R — R is continuous;

(i3) for allt, r € [0,&], there exists a continuous function n : [0,€] x[0,€] = R
such that

|F(t,ryx(r)—F(t,ry(r)| < B%n(t,r)NF(x,y)(t) for all z,y € X (15)

and

3
sup / n(t,r)dr <1, (16)
0<t<£J0

1
where 0 < 8 < 7
Then the integral equation (14) has a unique solution in X.

Proof. Let f: X — X be defined by (fz)(¢ fo (t,r,x(r))dr for all z € X
and for all ¢ € [0,£]. Then the existence of a solutlon to the integral equa-
tion (14) is equivalent to the existence of a fixed point of f. We now compute

that
lz(t) —y @), |(f2)(t) — z(t)],

[EIOEN0]
Np(z,y)(t) = max v

( [(f=) &)=y P +](fy) (&) == (t)[" ) g
2b
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Therefore,

(t) =y (@7, [(f2)(t) — (D)7,

1 —1 P
(N, ) ()" = max {0,

( [(f2) (O —y@OP+[(fy) (@) —z(®)[” )
2b

fy:9)
pb(xvy)7pb(fxax)7pb(2 ’
< =M . 1
- max{ pb(fr,y);;)pb(fy,z) 7@y) (7

Utilizing conditions (15), (16) and (17), for all z, y € X and ¢ € [0,£], we
obtain that

p

3
[(fo)(t) = (Fy) @) = /0 (F'(t,r,x(r)) = F(t,r,y(r))dr

13 P
< ( ; |F(t,r,2(r)) —F(tvr,y(r))ldr>
£ P

< (/0 Bpn(t,r)NF(%y)(t)d?“)

¢
=B (Nr(z,9)(t)" (/0 n(tw)d?“)

p

p

3
< BMy(x,y) (/O n(t,T)dT> < B My (x,y).
Therefore,

m(fz, fy) = OS<I:E§ |(f2)(t) — (fy)OIF < BMp(z,y) forall z, y € X, (18)

where 0 < 8 < %.

We note that py(fx, fy) > 0 implies that py(x,y) > 0. Let us consider the
tri-simulation function T : [0, 00) x [0,00) x [0,00) — R defined by T'(z,y, x)
Az — yz for all z, y, z € [0,00), where A = 8b € [0, 1).

Let us take g = I, the identity map on X, G = Gy, where Gq is the

complete graph (X, X x X) and a(x,y) =1 for all z, y € X. It now follows
from condition (18) that

T (a(gz, gy), bpu(fx, fy), My (2,y)) = AMf(z,y) — bps(fz, fy) > 0

for all z, y € X.
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Thus all the hypotheses of Theorem 3.5 holds good and hence f has a

unique fixed point z (say) in X. This means that « is the unique solution for

the

1]

(10]
(11]
(12]
(13]
(14]

(15]

(16]

(17]

integral equation (14). O

REFERENCES

M. ABBAS AND G. JUNGCK, Common fized point results for noncommuting
mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341
(2008), 416-420.

ANURADHA AND S. MEHRA, Fized point results using implicit relation on par-
tial b-metric spaces endowed with a graph, AIP Conf. Proc. 2357 (2022),
https://doi.org/10.1063/5.0081146.

M. APHANE, S. MOSHOKOA, AND F. NCONGWANE, On the 0-Cauchy completion
of a partial b-metric space, Quaestiones Mathematicae 46 (2023), 1743-1750.
H. ArRGousl, B. SAMET, AND C. VETRO, Nonlinear contractions involving sim-
ulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl.
8 (2015), 1082-1094.

I. A. BAKHTIN, The contraction mapping principle in almost metric spaces,
Funct. Anal., Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.

S. BANACH, Sur les opérations dans les ensembles abstraits et leur application
aux équations intégrales, Fund. Math. 3 (1922), 133-181.

F. BOJOR, Fized point of p-contraction in metric spaces endowed with a graph,
Annala of the University of Cralova, Mathematics and Computer Science Series
37 (2010), 85-92.

J. A. BonDY AND U. S. R. MURTY, Graph theory with applications, American
Elsevier Publishing Co., Inc., New York, 1976.

G. CHARTRAND, L. LESNIAK, AND P. ZHANG, Graph and digraph, CRC Press,
New York, USA, 2011.

S. H. CHO, Fized point theorems for £ -contractions in generalized metric spaces,
Abstract and Applied Anal. 2018 (2018), Article ID 1327691.

S. CzerRWIK, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ.
Ostrav 1 (1993), 5-11.

N. V. DunG AND V. T. L. HANG, Remarks on partial b-metric spaces and fized
point theorems, Matematigki Vesnik 69 (2017), 231-240.

F. ECHENIQUE, A short and constructive proof of Tarski’s fized point theorem,
Internat. J. Game Theory 33 (2005), 215-218.

R. EspiNOLA AND W. A. KIRK, Fized point theorems in r-trees with applications
to graph theory, Topol. Appl. 153 (2006), 1046-1055.

A. FARAJZADEH, M. DELFANI, AND S. SUANTAIL, A modification of simulation
function and its applications to fized point theory, Thai J. Math. 20 (2022),
1471-1477.

A. FARAJZADEH, M. DELFANI, AND Y. H. WANG, FExistence and uniqueness
of fized points of generalized f-contraction mappings, Journal of Mathematics
2021 (2021), Article ID 6687238.

X. GE AND S. LIN, A note on partial b-metric spaces, Mediterr. J. Math. 13
(2016), 1273-1276.



(18]
(19]
20]
(21]
(22]

23]

(28]

29]

(30]

COINCIDENCE POINT RESULTS (27 of 27)

J. I. GROsS AND J. YELLEN, Graph theory and its applications, CRC Press, New
York, USA, 1999.

R. GuBraN, W. M. ALFAQIH, AND M. IMDAD, Fized point results via tri-
simulation function, Ital. J. Pure Appl. Math. 45 (2021), 419-430.

P. HiTzLER AND A. K. SEDA, Dislocated topologies, J. Electr. Eng. 51 (2000),
3-T7.

G. JUNGCK, Common fized points for noncontinuous nonself maps on non-metric
spaces, Far East J. Math. Sci. 4 (1996), 199-215.

F. KHOJASTEH, S. SHUKLA, AND S. RADENOVIC, A new approach to the study
of fixed point theorems via simulations, Filomat 29 (2015), 1189-1194.

U. MAHESWARI, M. RAVICHANDRAN, A. ANBARASAN, L.. RATHOUR, AND V. N.
MISHRA, Some results on coupled fixed point on complex partial b-metric space,
GANITA 71 (2021), 17-27.

S. MATTHEWS, Partial metric topology, Ann. N. Y. Acad. Sci. 728 (1994), 183
197.

S. K. MOHANTA, Some fized point theorems using wt-distance in b-metric spaces,
Fasciculi Mathematici 54 (2015), 125-140.

S. K. MoHANTA, Common fized points in b-metric spaces endowed with a graph,
Math. Vesnik 68 (2016), 140-154.

S. MOSHOKOA AND F. NCONGWANE, On completeness in strong partial b-metric
spaces, strong b-metric spaces and the 0-Cauchy completions, Topol. Appl. 275
(2020), https://doi.org/10.1016/j.topol.2019.107011.

A. ROLD4N, E. KARAPINAR, C. ROLDGN, AND J. MARTiNEZ-MORENO, Coin-
cidence point theorems on metric spaces via simulation functions, J. Comput.
Appl. Math. 275 (2015), 345-355.

G. S. SALUJA, Coupled fized point results for contractive type conditions in par-
tial b-metric spaces, Annals Math. Comp. Sci. 14 (2023), 12-28.

S. SHUKLA, Partial b-metric spaces and fized point theorems, Mediterr. J. Math.
11 (2014), 703-711.

Authors’ addresses:

Sushanta Kumar Mohanta and Shubha Das
Department of Mathematics,

West Bengal State University,

Barasat, 24 Parganas (North),

Kolkata-700126, West Bengal, India

E-mail: smwbes@yahoo.in, iamshubhadas@gmail.com

Received October 24, 2024
Revised May 25, 2025
Accepted June 18, 2025



