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ABSTRACT. In this paper, we produce explicit examples of mean cur-
vature flow of (2m — 1)-dimensional submanifolds which converge to
(2m — 2)-dimensional submanifolds at a finite time. These examples
are a special class of hyperspheres in C™ with a U(m)-invariant Kih-
ler metrics. We first discuss the mean curvature flow problem and then
investigate the type of singularities for them.
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1. Introduction

Mean curvature flow is a well-known geometric evolution equation for hyper-
surfaces in which each point moves with a velocity given by the mean curvature
vector. If the hypersurface is compact, the short time existence and uniqueness
of the mean curvature flow are well-known. In general, it is very hard to find
an exact solution of mean curvature flow problem. In fact there are very few
explicit examples. Round spheres in Euclidean space are non trivial examples
of evolving hypersurface under mean curvature flow which concentrically shrink
inward until they collapse at a finite time to a single point. Another instance
would be the marriage ring that under mean curvature flow shrinks to a circle.
A round cylinder also remains round and finally converges to a line. Mean
curvature flow develops singularities if the second fundamental forms of the
time dependent immersions become unbounded. It is well-known that mean
curvature flow of any closed manifold in Euclidean space develops singularities
at a finite time.

The mean curvature flow has first been investigated by Brakke [2]. Later
on, Huisken [8] showed that any closed convex hypersurface in Euclidean space
shrinks to a round point at a finite time. He then proved [9] that the same holds
for hypersurfaces in general Riemannian manifolds satisfying a strong convex-
ity condition which takes into account the geometry of the ambient space.
Brakke used geometric measure theory, but Huisken employed a more classi-
cal differential geometric approach. In order to describe singularities of the
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flow, Osher-Sethian introduced a level-set formulation for the mean curvature
flow which was investigated later by Evans-Spruck [4, 5, 6, 7] and Chen-Giga-
Goto [3]. Ilmanen [10] revealed the relation between the level-set formulation
and the geometric measure theory approach.

In this paper, we consider a class of canonical hyperspheres in C™. We will
make an important assumption about the symmetry group, i.e., the Kéhler
metric on C™ \ 0 has U(m) as the group of isometries. We study the mean
curvature flow problem for hyperspheres in BlyC™ which reduce to an ordinary
differential equation due to invariance of the metric and mean curvature under
isometries. In general, it is not easy to compute the second fundamental form to
investigate the singularities of different types. We computed all the principal
curvatures and observed that near the exceptional divisor, all the principal
curvatures vanish except for one direction which goes to infinity. By knowing
the principal curvatures, we can compute the mean curvature and
also the square of the norm of the second fundamental form. In this work,
we demonstrate that a special class of hyperspheres in C™, endowed with a
U (m)-invariant Kéhler metrics, are specific examples of mean curvature flow
of (2m — 1)-dimensional submanifolds that converge to (2m — 2)-dimensional
submanifolds within a finite time. Initially, we address the mean curvature flow
problem and subsequently investigate the nature of singularities associated with
these flows. Our main result shows that in these examples, there is a jump in
dimension in the MCF problem. A well-known example is the Burns metric on
BlyC?, which we will examine in Section 5 to study the mean curvature flow
problem and determine the exact time of singularity.

The rest of the paper is organized as follows. Section 2 is devoted to defi-
nitions and some well-known results that will be used throughout the paper.
Section 3 focuses on the blowup of C™ at the origin, where we discuss the con-
dition when a U(m)-invariant metric on C” \ 0 can be extended to the blowup
of C™ at the origin. In Section 4, we state and prove a result on computing
principal curvatures on special cases that leads to the proof of our main theo-
rem. Finally, Section 5 is dedicated to the mean curvature flow in our setting
and some examples.

2. Preliminaries

This section is dedicated to recalling the fundamental definitions and key
results regarding the mean curvature flow problem, which are essential for our
subsequent discussions. We refer the reader to references [11, 12, 14, 18] for
further details.

DEFINITION 2.1. Let Fy : ™ — M™%! be a smooth immersion of an m-
dimensional manifold. The mean curvature flow of Fy is a family of smooth
immersions Fy : ¥ —s M™% for t € [0,T) such that setting F(p,t) = Fy(p)
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the map F : ¥ x [0,T) : ¥™ — M™% is a smooth solution of the following
system of PDE’s

2 F(p,t) = H(p,t)n(p. 1),
F(p,0) = Fo(p),

where H(p,t) and n(p,t) are respectively the mean curvature and the unit nor-
mal of the hypersurface Fy at the point p € X.

Usually the Riemannian manifold M is called the ambient manifold and the
parameter t is considered as time. Minimal submanifolds, i.e. submanifolds
with zero mean curvature everywhere, are the stationary solutions of this flow.

There are two important results which we recalled below in the Euclidean
case. These results are well-known local theorems that we can apply in the
Riemannian case too. Consequently, we utilize them in the proof of our main
theorem on the mean curvature flow problem [12, pages 39, 40].

PROPOSITION 2.2. If the second fundamental form is bounded in the interval
[0,T) with T < +00, then all its covariant derivatives are also bounded.

PrROPOSITION 2.3. If the second fundamental form is bounded in the interval
[0,T) with T < +oo, then T cannot be a singular time for the mean curvature
flow of a compact hypersurface F : ¥ x [0,T) — R,

From these two propositions, we have the following.

REMARK 2.4. The above estimate can be found independent of T" and also
independent of initial data.

One of the most important problems in studying the mean curvature flow is
to understand the possible singularities the flow goes through. We introduce
the notion of singularity in mean curvature flow and their types in the following.

DEFINITION 2.5. If the second fundamental form |A|?* blows up att — T, then
we call T a singular time of the flow.

DEFINITION 2.6. We say that the flow is developing a type I singularity at time
T if there exists a constant C > 1 such that we have the upper bound

C
mazpex|A(p, 1) < T—1

Otherwise, we say it is a type I singularity.
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3. Kédhler Metrics on the Blowup of C™ at the Origin

This section is devoted to the construction of the blowup manifold and the nec-
essary condition for extending the Kéhler metrics on it. The blowup process
is an operation that replaces a point in the complex space C™ with an excep-
tional divisor, which is isomorphic to CP™~!. The blowup manifold denoted
by BloC™ can admit a K&hler metric typically constructed by modifying the
standard flat metric on C™, where the blowup of C™ at the origin is defined as

Blocm == {((2’1, N ,,Z’Tn)7 [tl, e ,tmD S Cm X (Cpmil : Zitj - thi == O}
cCm™xcpmt.
For more details about this topics, we refer to [1, 15, 16, 17].

There is a natural projection map 71 : BloC™ — C™ defined by

Wl((Z],ZQ,...,Zm), [tlatQa"'7zm]> = (21722,...,2m> .

The inverse image wfl(p) of p € C™ is a line passing the point p.

The exceptional divisor F is defined as the inverse image of the origin i.e.,
7 1(0) =Ccpm-1L

Moreover the map 7 can be restricted to a biholomorphism

m : BloC™\ E — C™\0.

A system of charts that covers the exceptional divisor is given as follows: for
every 1t =1,2,...,m,

U; = {((zla--'azm)v [tlv'--atm]) it 7é O,Zj = Zitj}.

The coordinate map ®; : U; — C™ is defined as

t1 ti—1 tig1 tm
((Zla azm,)7[ 1 ) m]) (Z’Lv tiv ) ti ) tq, ) ) ti > ’

with inverse map ®; ' : C™ — U,
(215 oy 2m) = (2126, 22Ziy o5 Ziy e oo ZiZm)s (215 -+ oy Zic 1y 1, Zig 1y o o Zm))-

(1)

For every ¢ = 1,2,...,m, the chart U; intersects the exceptional divisor F:
We now take the smooth (1,1)-form on C™ \ 0 given by

w = v/—1901log(9),
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where S =" |22

The pull back 7fw of the smooth form w = /—199log(S) on C™ \ 0 extends
to the Fubini Study metric on the exceptional divisor E = CP™ !, which is
given in local coordinates (1) as follows

miw = 80log(|zi*(|23] + |22+ - 4 zia [P + 1+ [z [P 4+ 4 [2n]?)
= 80log(|21]* + |22 - + |zica P + 1+ zipa P 4+ [zl (2)

One can easily see that (2) is the Fubini Study metric on the exceptional
divisor E in homogeneous coordinates [z1,...,2i—1,1, Zit1, -, Zm].

For a smooth function g : C™ — R, depending on S = > 1" |2]?, the
smooth form

w=+v—190f(S) = V/—199(log S + ¢(S)), (3)

gives a Kdhler metric on C™ \ {0} if and only if % 4+g9s > 0and gs+ Sgss > 0.
The next proposition explains the necessary and sufficient condition for the
Kahler form (3) on C™ \ 0 to be extended to BlyC™.

PROPOSITION 3.1. The smooth form w = /—199(log S + g(S)) on C™ \ {0}
extends to Kahler metric on BloC™ if and only if gs(0) > 0, é +gs >0 and
gs +S5gss > 0.

Proof. For the sake of simplicity, we only prove the case when m = 2. The
general case follows from the same argument, we leave the details for briefness.

Given the projection map
Tt Blo(CQ — (C2,

on the chart U; we have S = |21]?(1 + |22]?) and ENU; = {2 = 0}. The pull
back of the Kihler metric (3) to BloC? is given in coordinates (1) by

— (1 + [22/*)(9s + Sgss) 2172(9s + S9ss)
T 24(gs + Sgss) 211*(gs + |21[221%gs5) + Ti5p ]

The restriction of mjw to the exceptional divisor E is:

o [+ ]22)gs(0) 0
7r1w|E = 0 1 .
14]z2]?
Clearly miw|g is positive definite if and only if gg(0) > 0.
In the same way on Us, the pull back

— ﬁ + |22 (g5 + |z11?|22/gs5s) 2122(gs + S9gss) }
2221(9s + S9gss) (14 |z11*)(g9s + Sgss)
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can be restricted to the exceptional divisor as follows:

= 0

* _ 1+|2z1

TH1W|E =

=TT @ ales

Clearly, miw|g is positive definite if and only if g¢(0) > 0. O

REMARK 3.2. If g5(0) = 0, then 7mjw|g defines a metric only along the ex-
ceptional divisor. Therefore the condition gg(0) # 0 guarantees the non de-
generacy of the metric orthogonal to the exceptional divisor. The other two
conditions % + gs > 0 and gs + Sgss > 0 are considered because w must be a
Kéhler metric on C™ \ 0.

4. Principal Curvatures of Hyperspheres

In this section, we compute the second fundamental form for hyperspheres
under special conditions. In order to investigate the mean curvature flow for our
examples, we need to know the principal curvatures which are the eigenvalues
of the second fundamental form.

Let ¥ be an d-dimensional smooth submanifold in an d+ 1-dimensional man-
ifold M and g be the Riemannian metric on M with Levi—Civita connection V.

DEFINITION 4.1. The second fundamental form of X is defined by
HH(X7X):Q(VX(X)7n) ) (4)
where X € T,M and n € (T,%)".

LEMMA 4.2. Suppose X and n are local vector fields on M such that

1. |IX1]2 and ||n||? are constants,

2. for allp € 2, X(p) € T, and n(p) € (T,X)*.
Then

I, (X, X) = —g([X,n], X).
Proof. We have
(X, X) = g (Vx(X),n) = —9(Vx(n), X) = —g([X,n] + V. (X), X)
1

which completes the proof. O

We now state and prove the main result of this section, and calculate the
second fundamental form for hyperspheres with some particular assumptions.
In this result, the ambient space is M = C™ \ 0, so, we can counsider the
Euclidean metric on M.
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PROPOSITION 4.3. Suppose that go and g are Euclidean and Riemannian met-
rics on M respectively. Let ey, ...,eqy1 be orthonormal local vector fields for M
with respect to go i.e., go(ei, e;) = ;5. £ C M is an m-dimensional submani-
fold such that for each p € ¥ we have eqi1(p) L T,X. Let n = eqq1 and A,n, p
be local functions on M such that their restrictions on % are constants. We
have the following conditions:

1. glearr, earr) = A%, g(ea, ea) = 1?;
2. glei,ei)=n* if1<i<d-1;
3. glei,e;) =0 Vi#j;
4, [ed, 6d+1] S R(ed, €d+1>.
Now if lIs(g0) = 790 for some T € R, then

(P A Y + ATV ) Ly 0

Hg(eiﬁej) = 0 /12A71T+,LLA71VH,U, .

Proof. We fix some notations which will be used in the proof.
Let [n,e;] = Z‘]Hi a;jej for 1 <4 < d. Then,
* aii = go([n, &, e;) = —go([ei, n], e;) = Iy, (e1,€1) = 7.
o 0 =2l (ei, ;) = gol[es,n], €5) + go(lej, nl, €i) = aij + aji-

Notice that {n~les,....,n " teq_1,u teq, A~In} is an orthonormal frame for
the metric g. We prove the proposition in the following steps.

Step 1: By Lemma 4.2, we have

I(n~ter,n " er) = —g(ln~'er, A= "n],n " es)

= —g(n'A  er,n] = A7V, (7 er), 7 en)
=—77_1A g(ler,n],n” 61)+77 YAV, (7 g(ers en)
=—n A7 g(ler,n],e1) + A"V (n )

=—n2A7 g([er,n],e1) — A7 V(1)
=-A"r+n"'Van),

where we employed the property of Lie bracket and the fact that V., A= =
on Y. For the last step we use the following relation

g(le1,n], e1) = anngin = ™"
Step 2: The same calculation shows that
(e, n te)) = AN + 07" Vo),
for1<i<d-—1, and

—1

H(Miledv,uiled) :g([/’l’iledaAiln]hu ed)'



(8 of 15) F. GHANBARI AND SAMREENA

Similarly to Step 1, we have
W(p teq, ptea) = AT + p~ ' V).

Now similar to the last calculation, we get II(e;,e;) =0 for each 1 <i < j <
d—1.
In the next step we show that II(n~tey, u~teq) = 0.

Step 3: Since
201(n~ter, p~ea) = g([n~ ter,nl, ™ ea) + g([u ™ ea,nl, " ter)
we have
[ e, n] =n e, n] — Van teg = n_lzaijej — Van e,
and
[,ufled,n] = /ufl[ed,n] — Vo teg = ;flEadjej — Vau teg.

Hence, we obtain

200 (n~ter, p”tea) = p~ " g(ler, nl,ea) — T Van " g(er, ea)
+ a7t g(leasn) er) =0T VanT g(ea, en)
7 tg(ler, ], eq) + g([ea, nl, e1))

0~ (Zaije;, ea) + g(Sagie;, e1))

N arag(eq, eq) + aargler, er))

"' aar(—g(ea, eq) + gle1, e1)).

Since [eq,n] € span{eq,n), S0 aq1 = ... = ag—1 = 0, and thus we conclude
that
I(n e, p eq) =0,
which completes the proof. O
We consider C™\ 0 with Kéhler metric g = 90f(S) = (fsdij + fsszizj)dzi A
dzj, L ={(z1,22,...,2m) € C™ : S = R? = |21 +|22]*++ - -+]|2m|?} € C™, the

normal vector n and J(n) = in and moreover an orthonormal basis ey, ..., €2, —2
for (n, J(n))*. Let egp_1 = J(n) and e, = n , the metric g is written by:

fslom—o 0
0 (fs + fssS)I2| "
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THEOREM 4.4. The principal curvatures of the family E%mfl C C™\ 0 with a
U(m)-invariant Kdhler metric w = /—190f(S) are as follows:

N Vst fssS _ fs+3Sfss+S%fsss
M=X=.. =Xy =", Aojp_1 = — B .
fsV'S (fs + fss9)2V/S

where S = X" |22
Proof. In the setting of the Proposition 4.3, we have ¥ = $?"~!(r) and M =
C™\ 0. Furthermore, we have A2 = 2 = fs + fss5S and 1?> = fs. Additionally
we get 71V, = £ fog and p~ Vo = Y3 (2fss + Sfsss)-

Now by computing g~ !TI(g), we obtain the following principal curvatures

o  Vfs+S8Ffss ~ (fs+3Sfss+ S5%fsss)
AM=..=Xmao=—"""F7"", Aam—1 = — 3 )
fsV'S (fs + fss9)2VS
which was required. O

5. Mean Curvature Flow

In this section, we prove our main result, presenting the mean curvature
flow with initial data given by a special class of hyperspheres in C™ with a
U (m)-invariant Kéhler metric. In the following lemma, we compute the mean
curvature, which is the sum of the eigenvalues of the second fundamental form.

LEMMA 5.1. The mean curvature of the family 2=t c €™\ 0 with U(m)-
invariant Kahler metric w = /—190f(S) is given as follows:

(2m —2)(fs + Sfss)* + fs(fsssS? + 35 fss + fs).

H(S) = - (2m —1)(fs + Sfss)3 VS fs

In the following two lemmas, we compute the square of the norm of the second
fundamental form to determine whether the mean curvature flow contains a
singularity or not. These lemmas are essential for proving our main result.

LEMMA 5.2. Let A be the second fundamental form of the family of Z?gm_l C
C™\ 0 with U(m)-invariant Kdhler metric w = +/—100f(S). Then the square
of its norm, |A|? is as follows:

(2m —2)(fs + fssS)* + f5(fs +3Sfss + 5% fsss)*
f3(fs + fss5)3S .
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Proof. The principal curvatures for the hyperspheres are:

N Vst [ssS _ fs+3Sfss+S%fsss
M=X=...=Ap =", Aojp_1 = — B .
fS\/§ (fs+fssS)2\/§

Now we can compute |A|? as follows:

AP =X+ A3+ 25, = (2m = 2)AT + A,
(2m —2)(fs + fssS)* + f3(fs +3Sfss + S*fsss)?
f2(fs + fssS)3S '

LEMMA 5.3. For each g with the following conditions,

1
gs(0) >0, 3 +9gs >0, and gs + Sgss > 0,

|A|? blows up only at S = 0.
Proof. We have

(2m — 2)(gs + 9s55)* + (% + 95)?(9s + 3Sgss + S%gsss)?

A]* = 1 2 3
(5 +9s)*(9s +9gssS)3S

We know that g is a smooth function and does not blowup. When S = 0, the
numerator is always positive by the above conditions of g. Thus the singularity
only happens when S = 0. O

Now we prove the main result of this paper in which we investigate the
mean curvature flow for our setting. The examples presented in this work
illustrate specific examples of mean curvature flow of submanifolds converging
to submanifolds of one lower dimension at a finite time.

THEOREM 5.4. Consider C™ \ 0 with a U(m)-invariant Kdhler metric w =
V—109f(S), where f(S) =log S+ g(S) and g is an analytic function with the
following conditions:

1
gs(0) > 0, 3 +gs >0, and gs + Sgss > 0.
There exists € > 0 such that if R, < €, we can choose one hypersphere with
radius Ry in such a way that the mean curvature flow with initial condition
Y Rr(0) = YR, converges to the exceptional divisor at a finite time and we have
a singularity of Type 1.
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Proof. The mean curvature flow problem for the hyperspheres Yg is the fol-
lowing ordinary differential equation

dR(t)

0 H(R().
We can choose € > 0 such that if we start the flow with the initial data R(0) =
Ry < €, the mean curvature does not vanish and is negative. In Lemma 5.3,
we observe that there is only one singularity at R(t) = 0. Therefore, the time
of singularity (Tsiny) happens whenever R(t) = 0. This means that if the flow
starts at ¢ = 0, then |A|? is bounded for all ¢ € [0, Ty;pny). By the expression in
Lemma 5.1, we can write the mean curvature flow problem as

dR(t) 1

dt  Ro(t)

K(R(1)),

for some a > 0, where K (R(t)) is an analytic function without singularity and
its Taylor series near R(t) = 0 is given by

K(R(t) =) Kngo) R™(t).

n=0

n

We thus obtain

g () T 5> KO gy,

n=0

and by applying integral, we have

1 petigy = k)t 4+ i
n=1

a+1

K"(0) pnia
n+1)!R e +o,

(

for some constant C. Moreover, with initial condition R(0) = Ry we get C' =
R(()Y‘Fl B ZOO K™ (0)

T el (n+1)le+1' Since we have the singularity only at R(t) = 0, so

1 & K™(0) RGH
Tsin = Rn+1 . .
g K(O)(;(n+1)! 0 a+1)

We can easily conclude that the time of singularity is finite. By Lemma 5.3,
we deduce that there is only one singularity at R(t) = 0 and that |A|? is
bounded and does not blow up before R(t) = 0. We can now employ Proposi-
tions 2.2 and 2.3, and conclude that the flow does not stop (i.e., keep restarting)
and converges to R(t) = 0, which is the exceptional divisor in BlyC™. More-
over, We can write the square of the norm of the second fundamental form as
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|A|? = W}éf((tt))), where W(R(t)) is an analytic function without singularity. Its

Taylor series then near R(t) =0 is

w(0)
n!

W(R(t) =

n=0

R™M1).

Clearly, we have

_ W) WHO) | WE(0) |~ W0) e
|A|2_ 20 + R + 5 nz:::g p R 2(t)7

and thus we get

wO(0) W(0)
] . J— 2: 1 . —_ _ ] . —_ _
S, Toing =0IAR = N (Taing =) Ty +, I, (Toina =075

+  lim (Tsing — t) we (O) + lim (Tsing - t) i Wn(O) Rn_Q(t)

t— Tsing 2 t— Tsing s n!
But R(t) goes to zero as t goes to Ty, S0 we can see that
. WQ(O) . = Wn(o) n—2
tahlr“rslmg (Tsing — 1) D) = Hh;lslmg (Tsing — 1) Z;) TR (t)=0.

Since dzgt) = H(R(t)), we have

dR(t)

/
Tsin =

|t=Tsiny = H(B(Tsing)) = H(0) = o0.
By using L’Hopital’s rule, we conclude that

W (0) —W(0)
li Teing — = 1 _ .
i (Teing —t)7pry= =, im  —pgy <o

We also compute that lim;_, 7

ving B(t)H (R(t)) # 0. Again by using L'Hopital’s
rule we see that

0

< o0,
15 Toing Rt ~ %

and consequently,

lim  (Tying — t)maz|A]? < cc.
t— Tsing

Thus the singularity is of Type 1. U
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The assumption of analyticity in the above Theorem is not restrictive. Many
interesting Kéhler metrics are analytic. For example, as proved by Hopf and
Morrey constant scalar curvature K&hler metrics satisfy this hyphothesis [13].

REMARK 5.5. We observe that when S(t) — 0, then A\ = ... = Agpp_2 — 0
and Ag;,—1 — o0o. This means that when S(¢) — 0, one of the principal
directions collapses and the hypersphere converges to the exceptional divisor,
which is holomorphic submanifold of BlyC". Since holomorphic submanifolds
of complex manifolds are minimal, so one would naturally expect that the
principal curvature vanishes there.

In some examples we can estimate ¢ as +oo including the Burns metric.
Example 5.6 provides an instance of the mean curvature flow problem for the
Burns metric.

EXAMPLE 5.6. Consider BlyC? with the Burns metric w = /—199(log(S)+59).
We can choose an arbitrary hypersphere X, as initial condition for the mean
curvature flow. The mean curvature flow of the hypersphere converges to S2
at a finite time and we have the singularity of Type I.

Proof. The mean curvature flow problem for the hyperspheres Yg is the fol-
lowing ODE

dR(t)
—= = H(R(t)).
O (L0)
Now the principal curvatures of ¥ g with Burns metric are
-R -1
M=A=————, A3=—.
1 2 <R2 + 1) ) 3 R

Moreover, the mean curvature of these families and |A|? are given by
-1 3R*(H)+1 AP = 2R (t) + (R*(t) +1)?
3 R(t)(R2(t) +1)’  R2(t)(R2(t) +1)2

Therefore the mean curvature problem is equivalent to

dR(t) -1 3R*(t)+1
dt 3 R@)(RX(t)+1)
The solution of the equation with initial data R(0) = Ry would be
2t 1
Rz( ) +3 log(BR*(t) + 1) = —t +c.

Thus, |A|? blows up only when R(t) = 0. With the initial condition R(0) = Ry
we get the time of singularity as follows

H(R(t)) =

R 1
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The time of singularity is finite and the flow exists for all ¢ € [0, Ts;n4). We can
also check that there exists a positive constant C such that |A|? < C/|Tsing —t|.
Hence, the singularity is of Type I. O
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