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Abstract. In this paper, we produce explicit examples of mean cur-
vature flow of (2m − 1)-dimensional submanifolds which converge to
(2m − 2)-dimensional submanifolds at a finite time. These examples
are a special class of hyperspheres in Cm with a U(m)-invariant Käh-
ler metrics. We first discuss the mean curvature flow problem and then
investigate the type of singularities for them.
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1. Introduction

Mean curvature flow is a well-known geometric evolution equation for hyper-
surfaces in which each point moves with a velocity given by the mean curvature
vector. If the hypersurface is compact, the short time existence and uniqueness
of the mean curvature flow are well-known. In general, it is very hard to find
an exact solution of mean curvature flow problem. In fact there are very few
explicit examples. Round spheres in Euclidean space are non trivial examples
of evolving hypersurface under mean curvature flow which concentrically shrink
inward until they collapse at a finite time to a single point. Another instance
would be the marriage ring that under mean curvature flow shrinks to a circle.
A round cylinder also remains round and finally converges to a line. Mean
curvature flow develops singularities if the second fundamental forms of the
time dependent immersions become unbounded. It is well-known that mean
curvature flow of any closed manifold in Euclidean space develops singularities
at a finite time.

The mean curvature flow has first been investigated by Brakke [2]. Later
on, Huisken [8] showed that any closed convex hypersurface in Euclidean space
shrinks to a round point at a finite time. He then proved [9] that the same holds
for hypersurfaces in general Riemannian manifolds satisfying a strong convex-
ity condition which takes into account the geometry of the ambient space.
Brakke used geometric measure theory, but Huisken employed a more classi-
cal differential geometric approach. In order to describe singularities of the
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flow, Osher-Sethian introduced a level-set formulation for the mean curvature
flow which was investigated later by Evans-Spruck [4, 5, 6, 7] and Chen-Giga-
Goto [3]. Ilmanen [10] revealed the relation between the level-set formulation
and the geometric measure theory approach.

In this paper, we consider a class of canonical hyperspheres in Cm. We will
make an important assumption about the symmetry group, i.e., the Kähler
metric on Cm \ 0 has U(m) as the group of isometries. We study the mean
curvature flow problem for hyperspheres in Bl0Cm which reduce to an ordinary
differential equation due to invariance of the metric and mean curvature under
isometries. In general, it is not easy to compute the second fundamental form to
investigate the singularities of different types. We computed all the principal
curvatures and observed that near the exceptional divisor, all the principal
curvatures vanish except for one direction which goes to infinity. By knowing
the principal curvatures, we can compute the mean curvature and
also the square of the norm of the second fundamental form. In this work,
we demonstrate that a special class of hyperspheres in Cm, endowed with a
U(m)-invariant Kähler metrics, are specific examples of mean curvature flow
of (2m − 1)-dimensional submanifolds that converge to (2m − 2)-dimensional
submanifolds within a finite time. Initially, we address the mean curvature flow
problem and subsequently investigate the nature of singularities associated with
these flows. Our main result shows that in these examples, there is a jump in
dimension in the MCF problem. A well-known example is the Burns metric on
Bl0C2, which we will examine in Section 5 to study the mean curvature flow
problem and determine the exact time of singularity.

The rest of the paper is organized as follows. Section 2 is devoted to defi-
nitions and some well-known results that will be used throughout the paper.
Section 3 focuses on the blowup of Cm at the origin, where we discuss the con-
dition when a U(m)-invariant metric on Cm \ 0 can be extended to the blowup
of Cm at the origin. In Section 4, we state and prove a result on computing
principal curvatures on special cases that leads to the proof of our main theo-
rem. Finally, Section 5 is dedicated to the mean curvature flow in our setting
and some examples.

2. Preliminaries

This section is dedicated to recalling the fundamental definitions and key
results regarding the mean curvature flow problem, which are essential for our
subsequent discussions. We refer the reader to references [11, 12, 14, 18] for
further details.

Definition 2.1. Let F0 : Σm −→ Mm+1 be a smooth immersion of an m-
dimensional manifold. The mean curvature flow of F0 is a family of smooth
immersions Ft : Σ −→ Mm+1 for t ∈ [0, T ) such that setting F (p, t) = Ft(p)
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the map F : Σ × [0, T ) : Σm −→ Mm+1 is a smooth solution of the following
system of PDE’s {

∂
∂tF (p, t) = H(p, t)n(p, t),

F (p, 0) = F0(p) ,

where H(p, t) and n(p, t) are respectively the mean curvature and the unit nor-
mal of the hypersurface Ft at the point p ∈ Σ.

Usually the Riemannian manifold M is called the ambient manifold and the
parameter t is considered as time. Minimal submanifolds, i.e. submanifolds
with zero mean curvature everywhere, are the stationary solutions of this flow.

There are two important results which we recalled below in the Euclidean
case. These results are well-known local theorems that we can apply in the
Riemannian case too. Consequently, we utilize them in the proof of our main
theorem on the mean curvature flow problem [12, pages 39, 40].

Proposition 2.2. If the second fundamental form is bounded in the interval
[0, T ) with T < +∞, then all its covariant derivatives are also bounded.

Proposition 2.3. If the second fundamental form is bounded in the interval
[0, T ) with T < +∞, then T cannot be a singular time for the mean curvature
flow of a compact hypersurface F : Σ× [0, T ) −→ Rn+1.

From these two propositions, we have the following.

Remark 2.4. The above estimate can be found independent of T and also
independent of initial data.

One of the most important problems in studying the mean curvature flow is
to understand the possible singularities the flow goes through. We introduce
the notion of singularity in mean curvature flow and their types in the following.

Definition 2.5. If the second fundamental form |A|2 blows up at t −→ T , then
we call T a singular time of the flow.

Definition 2.6. We say that the flow is developing a type I singularity at time
T if there exists a constant C > 1 such that we have the upper bound

maxp∈Σ|A(p, t)|2 ≤ C

T − t
.

Otherwise, we say it is a type II singularity.
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3. Kähler Metrics on the Blowup of Cm at the Origin

This section is devoted to the construction of the blowup manifold and the nec-
essary condition for extending the Kähler metrics on it. The blowup process
is an operation that replaces a point in the complex space Cm with an excep-
tional divisor, which is isomorphic to CPm−1. The blowup manifold denoted
by Bl0Cm can admit a Kähler metric typically constructed by modifying the
standard flat metric on Cm, where the blowup of Cm at the origin is defined as

Bl0Cm = {((z1, . . . , zm), [t1, . . . , tm]) ∈ Cm × CPm−1 : zitj − zjti = 0}
⊂ Cm × CPm−1 .

For more details about this topics, we refer to [1, 15, 16, 17].

There is a natural projection map π1 : Bl0Cm → Cm defined by

π1((z1, z2, . . . , zm), [t1, t2, . . . , zm]) = (z1, z2, . . . , zm) .

The inverse image π−1
1 (p) of p ∈ Cm is a line passing the point p.

The exceptional divisor E is defined as the inverse image of the origin i.e.,
π−1(0) = CPm−1.

Moreover the map π1 can be restricted to a biholomorphism

π1 : Bl0Cm \ E → Cm \ 0.

A system of charts that covers the exceptional divisor is given as follows: for
every i = 1, 2, . . . ,m,

Ui = {((z1, . . . , zm), [t1, . . . , tm]) : ti ̸= 0, zj = zitj} .

The coordinate map Φi : Ui → Cm is defined as

((z1, . . . , zm), [t1, . . . , tm]) →
(
zi,

t1
ti
, . . . ,

ti−1

ti
,
ti+1

ti
, . . . ,

tm
ti

)
,

with inverse map Φ−1
i : Cm → Ui

(z1, . . . , zm) → ((z1zi, z2zi, . . . , zi, . . . , zizm), [z1, . . . , zi−1, 1, zi+1, . . . , zm]).
(1)

For every i = 1, 2, . . . ,m, the chart Ui intersects the exceptional divisor E:

E ∩ Ui = {zi = 0} .

We now take the smooth (1, 1)-form on Cm \ 0 given by

ω =
√
−1∂∂̄ log(S),
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where S =
∑m

i=1 |zi|2.
The pull back π∗

1ω of the smooth form ω =
√
−1∂∂̄ log(S) on Cm \ 0 extends

to the Fubini Study metric on the exceptional divisor E = CPm−1, which is
given in local coordinates (1) as follows

π∗
1ω = ∂∂̄ log(|zi|2(|z21 |+ |z2|2 · · ·+ |zi−1|2 + 1 + |zi+1|2 + · · ·+ |zm|2)

= ∂∂̄ log(|z1|2 + |z2|2 · · ·+ |zi−1|2 + 1 + |zi+1|2 + · · ·+ |zm|2). (2)

One can easily see that (2) is the Fubini Study metric on the exceptional
divisor E in homogeneous coordinates [z1, . . . , zi−1, 1, zi+1, . . . , zm].

For a smooth function g : Cm → R+ depending on S =
∑m

i=1 |zi|2, the
smooth form

ω =
√
−1∂∂̄f(S) =

√
−1∂∂̄(logS + g(S)) , (3)

gives a Kähler metric on Cm \{0} if and only if 1
S +gS > 0 and gS +SgSS > 0.

The next proposition explains the necessary and sufficient condition for the
Kähler form (3) on Cm \ 0 to be extended to Bl0Cm.

Proposition 3.1. The smooth form ω =
√
−1∂∂̄(logS + g(S)) on Cm \ {0}

extends to Kähler metric on Bl0Cm if and only if gS(0) > 0, 1
S + gS > 0 and

gS + SgSS > 0.

Proof. For the sake of simplicity, we only prove the case when m = 2. The
general case follows from the same argument, we leave the details for briefness.

Given the projection map

π1 : Bl0C2 → C2,

on the chart U1 we have S = |z1|2(1 + |z2|2) and E ∩ U1 = {z1 = 0} . The pull
back of the Kähler metric (3) to Bl0C2 is given in coordinates (1) by

π∗
1ω =

[
(1 + |z2|2)(gS + SgSS) z1z̄2(gS + SgSS)

z2z̄1(gS + SgSS) |z1|2(gS + |z1|2|z2|2gSS) +
1

1+|z2|2

]
.

The restriction of π∗
1ω to the exceptional divisor E is:

π∗
1ω|E =

[
(1 + |z2|2)gS(0) 0

0 1
1+|z2|2

]
.

Clearly π∗
1ω|E is positive definite if and only if gS(0) > 0.

In the same way on U2, the pull back

π∗
1ω =

[ 1
1+|z1|2 + |z2|2(gS + |z1|2|z2|2gSS) z1z̄2(gS + SgSS)

z2z̄1(gS + SgSS) (1 + |z1|2)(gS + SgSS)

]
,
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can be restricted to the exceptional divisor as follows:

π∗
1ω|E =

[ 1
1+|z1|2 0

0 (1 + |z1|2)gS

]
.

Clearly, π∗
1ω|E is positive definite if and only if gS(0) > 0.

Remark 3.2. If gS(0) = 0, then π∗
1ω|E defines a metric only along the ex-

ceptional divisor. Therefore the condition gS(0) ̸= 0 guarantees the non de-
generacy of the metric orthogonal to the exceptional divisor. The other two
conditions 1

S + gS > 0 and gS + SgSS > 0 are considered because ω must be a
Kähler metric on Cm \ 0.

4. Principal Curvatures of Hyperspheres

In this section, we compute the second fundamental form for hyperspheres
under special conditions. In order to investigate the mean curvature flow for our
examples, we need to know the principal curvatures which are the eigenvalues
of the second fundamental form.

Let Σ be an d-dimensional smooth submanifold in an d+1-dimensional man-
ifold M and g be the Riemannian metric on M with Levi–Civita connection ∇.

Definition 4.1. The second fundamental form of Σ is defined by

Πn(X,X) = g (∇X(X), n) , (4)

where X ∈ TpM and n ∈ (TpΣ)
⊥.

Lemma 4.2. Suppose X and n are local vector fields on M such that
1. ||X||2g and ||n||2g are constants ,
2. for all p ∈ Σ, X(p) ∈ TpΣ and n(p) ∈ (TpΣ)

⊥.
Then

Πn(X,X) = −g([X,n], X).

Proof. We have

Πn(X,X) = g (∇X(X), η) = −g(∇X(n), X) = −g([X,n] +∇n(X), X)

= −g([X,n], X) +
1

2
n(||X||g) = −g([X,n], X),

which completes the proof.

We now state and prove the main result of this section, and calculate the
second fundamental form for hyperspheres with some particular assumptions.
In this result, the ambient space is M = Cm \ 0, so, we can consider the
Euclidean metric on M .
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Proposition 4.3. Suppose that g0 and g are Euclidean and Riemannian met-
rics on M respectively. Let e1, ..., ed+1 be orthonormal local vector fields for M
with respect to g0 i.e., g0(ei, ej) = δij. Σ ⊂ M is an m-dimensional submani-
fold such that for each p ∈ Σ we have ed+1(p) ⊥ TpΣ. Let n = ed+1 and A, η, µ
be local functions on M such that their restrictions on Σ are constants. We
have the following conditions:

1. g(ed+1, ed+1) = A2 , g(ed, ed) = µ2;
2. g(ei, ei) = η2 if 1 ≤ i ≤ d− 1;
3. g(ei, ej) = 0 ∀i ̸= j;
4. [ed, ed+1] ∈ R⟨ed, ed+1⟩.

Now if ΠΣ(g0) = τg0 for some τ ∈ R, then

Πg(ei, ej) =

[
(η2A−1τ + ηA−1∇nη)Im−1 0

0 µ2A−1τ + µA−1∇nµ

]
.

Proof. We fix some notations which will be used in the proof.
Let [n, ei] =

∑d+1
j=1 aijej for 1 ≤ i ≤ d. Then,

• aii = g0([n, ei], ei) = −g0([ei, n], ei) = Πg0(e1, e1) = τ .
• 0 = 2Πg0(ei, ej) = g0([ei, n], ej) + g0([ej , n], ei) = aij + aji.

Notice that {η−1e1, ..., η
−1ed−1, µ

−1ed, A
−1n} is an orthonormal frame for

the metric g. We prove the proposition in the following steps.

Step 1: By Lemma 4.2, we have

Π(η−1e1, η
−1e1) = −g([η−1e1, A

−1n], η−1e1)

= −g(η−1A−1[e1, n]−A−1∇n(η
−1e1), η

−1e1)

= −η−1A−1g([e1, n], η
−1e1) + η−1A−1∇n(η

−1)g(e1, e1)

= −η−2A−1g([e1, n], e1) +A−1η∇n(η
−1)

= −η−2A−1g([e1, n], e1)−A−1η−1∇n(η)

= −A−1(τ + η−1∇nη) ,

where we employed the property of Lie bracket and the fact that ∇e1A
−1 = 0

on Σ. For the last step we use the following relation

g([e1, n], e1) = a11g11 = τη2.

Step 2: The same calculation shows that

Π(η−1ei, η
−1ei) = A−1(τ + η−1∇nη),

for 1 ≤ i ≤ d− 1, and

Π(µ−1ed, µ
−1ed) = g([µ−1ed, A

−1n], µ−1ed).
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Similarly to Step 1, we have

Π(µ−1ed, µ
−1ed) = A−1(τ + µ−1∇nµ).

Now similar to the last calculation, we get Π(ei, ej) = 0 for each 1 ≤ i < j ≤
d− 1.

In the next step we show that Π(η−1e1, µ
−1ed) = 0.

Step 3: Since

2Π(η−1e1, µ
−1ed) = g([η−1e1, n], µ

−1ed) + g([µ−1ed, n], η
−1e1) ,

we have

[η−1e1, n] = η−1[e1, n]−∇nη
−1e1 = η−1Σaijej −∇nη

−1e1 ,

and
[µ−1ed, n] = µ−1[ed, n]−∇nµ

−1ed = µ−1Σadjej −∇nµ
−1ed .

Hence, we obtain

2Π(η−1e1, µ
−1ed) = µ−1η−1g([e1, n], ed)− µ−1∇nη

−1g(e1, ed)

+ µ−1η−1g([ed, n], e1)− η−1∇nµ
−1g(ed, e1)

= µ−1η−1g([e1, n], ed) + g([ed, n], e1))

= µ−1η−1(Σaijej , ed) + g(Σadjej , e1))

= µ−1η−1(a1dg(ed, ed) + ad1g(e1, e1))

= µ−1η−1ad1(−g(ed, ed) + g(e1, e1)).

Since [ed, n] ∈ span⟨ed, n⟩, so ad1 = ... = ad−1 = 0, and thus we conclude
that

Π(η−1e1, µ
−1ed) = 0 ,

which completes the proof.

We consider Cm \0 with Kähler metric g = ∂∂f(S) = (fSδij +fSS z̄izj)dzi∧
dz̄j , Σ = {(z1, z2, . . . , zm) ∈ Cm : S = R2 = |z1|2+|z2|2+· · ·+|zm|2} ⊂ Cm, the
normal vector n and J(n) = in and moreover an orthonormal basis e1, ..., e2m−2

for ⟨n, J(n)⟩⊥. Let e2m−1 = J(n) and e2m = n , the metric g is written by:[
fSI2m−2 0

0 (fS + fSSS)I2

]
.
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Theorem 4.4. The principal curvatures of the family Σ2m−1
S ⊂ Cm \ 0 with a

U(m)-invariant Kähler metric ω =
√
−1∂∂f(S) are as follows:

λ1 = λ2 = ... = λ2m−2 = −
√
fS + fSSS

fS
√
S

, λ2m−1 = −fS + 3SfSS + S2fSSS

(fS + fSSS)
3
2

√
S

.

where S = Σm
i=1|zi|2.

Proof. In the setting of the Proposition 4.3, we have Σ = S2m−1(r) and M =
Cm \0. Furthermore, we have A2 = µ2 = fS +fSSS and η2 = fS . Additionally
we get η−1∇nη = S

fS
fSS and µ−1∇nµ =

√
S

µ2 (2fSS + SfSSS).

Now by computing g−1Π(g), we obtain the following principal curvatures

λ1 = ... = λ2m−2 = −
√
fS + SfSS

fS
√
S

, λ2m−1 = − (fS + 3SfSS + S2fSSS)

(fS + fSSS)
3
2

√
S

,

which was required.

5. Mean Curvature Flow

In this section, we prove our main result, presenting the mean curvature
flow with initial data given by a special class of hyperspheres in Cm with a
U(m)-invariant Kähler metric. In the following lemma, we compute the mean
curvature, which is the sum of the eigenvalues of the second fundamental form.

Lemma 5.1. The mean curvature of the family Σ2m−1
S ⊂ Cm \ 0 with U(m)-

invariant Kähler metric ω =
√
−1∂∂̄f(S) is given as follows:

H(S) = − (2m− 2)(fS + SfSS)
2 + fS(fSSSS

2 + 3SfSS + fS)

(2m− 1)(fS + SfSS)
3
2

√
SfS

.

In the following two lemmas, we compute the square of the norm of the second
fundamental form to determine whether the mean curvature flow contains a
singularity or not. These lemmas are essential for proving our main result.

Lemma 5.2. Let A be the second fundamental form of the family of Σ2m−1
S ⊂

Cm \ 0 with U(m)-invariant Kähler metric ω =
√
−1∂∂f(S). Then the square

of its norm, |A|2 is as follows:

(2m− 2)(fS + fSSS)
4 + f2

S(fS + 3SfSS + S2fSSS)
2

f2
S(fS + fSSS)3S

.
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Proof. The principal curvatures for the hyperspheres are:

λ1 = λ2 = ... = λ2m−2 = −
√
fS + fSSS

fS
√
S

, λ2m−1 = −fS + 3SfSS + S2fSSS

(fS + fSSS)
3
2

√
S

.

Now we can compute |A|2 as follows:

|A|2 = λ2
1 + λ2

2 + ...+ λ2
2m−1 = (2m− 2)λ2

1 + λ2
2m−1

=
(2m− 2)(fS + fSSS)

4 + f2
S(fS + 3SfSS + S2fSSS)

2

f2
S(fS + fSSS)3S

.

Lemma 5.3. For each g with the following conditions,

gS(0) > 0,
1

S
+ gS > 0, and gS + SgSS > 0,

|A|2 blows up only at S = 0.

Proof. We have

|A|2 =
(2m− 2)(gS + gSSS)

4 + ( 1
S + gS)

2(gS + 3SgSS + S2gSSS)
2

( 1
S + gS)2(gS + gSSS)3S

.

We know that g is a smooth function and does not blowup. When S = 0, the
numerator is always positive by the above conditions of g. Thus the singularity
only happens when S = 0.

Now we prove the main result of this paper in which we investigate the
mean curvature flow for our setting. The examples presented in this work
illustrate specific examples of mean curvature flow of submanifolds converging
to submanifolds of one lower dimension at a finite time.

Theorem 5.4. Consider Cm \ 0 with a U(m)-invariant Kähler metric ω =√
−1∂∂f(S), where f(S) = logS + g(S) and g is an analytic function with the

following conditions:

gS(0) > 0,
1

S
+ gS > 0, and gS + SgSS > 0.

There exists ϵ > 0 such that if Ro < ϵ, we can choose one hypersphere with
radius R0 in such a way that the mean curvature flow with initial condition
ΣR(0) = ΣR0 converges to the exceptional divisor at a finite time and we have
a singularity of Type I.
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Proof. The mean curvature flow problem for the hyperspheres ΣS is the fol-
lowing ordinary differential equation

dR(t)

dt
= H(R(t)) .

We can choose ϵ > 0 such that if we start the flow with the initial data R(0) =
R0 < ϵ, the mean curvature does not vanish and is negative. In Lemma 5.3,
we observe that there is only one singularity at R(t) = 0. Therefore, the time
of singularity (Tsing) happens whenever R(t) = 0. This means that if the flow
starts at t = 0, then |A|2 is bounded for all t ∈ [0, Tsing). By the expression in
Lemma 5.1, we can write the mean curvature flow problem as

dR(t)

dt
=

1

Rα(t)
K(R(t)) ,

for some α > 0, where K(R(t)) is an analytic function without singularity and
its Taylor series near R(t) = 0 is given by

K(R(t)) =

∞∑
n=0

Kn(0)

n!
Rn(t) .

We thus obtain

Rα(t)
dR(t)

dt
=

∞∑
n=0

Kn(0)

n!
Rn(t) ,

and by applying integral, we have

1

α+ 1
Rα+1(t) = K(0)t+

∞∑
n=1

Kn(0)

(n+ 1)!
Rn+1(t) + C ,

for some constant C. Moreover, with initial condition R(0) = R0 we get C =
Rα+1

0

α+1 −
∑∞

n=1
Kn(0)
(n+1)!R

n+1
0 . Since we have the singularity only at R(t) = 0, so

Tsing =
1

K(0)
(

∞∑
n=1

Kn(0)

(n+ 1)!
Rn+1

0 − Rα+1
0

α+ 1
).

We can easily conclude that the time of singularity is finite. By Lemma 5.3,
we deduce that there is only one singularity at R(t) = 0 and that |A|2 is
bounded and does not blow up before R(t) = 0. We can now employ Proposi-
tions 2.2 and 2.3, and conclude that the flow does not stop (i.e., keep restarting)
and converges to R(t) = 0, which is the exceptional divisor in Bl0Cm. More-
over, We can write the square of the norm of the second fundamental form as



(12 of 15) F. GHANBARI AND SAMREENA

|A|2 = W (R(t))
R2(t) , where W (R(t)) is an analytic function without singularity. Its

Taylor series then near R(t) = 0 is

W (R(t)) =

∞∑
n=0

Wn(0)

n!
Rn(t) .

Clearly, we have

|A|2 =
W 0(0)

R2(t)
+

W 1(0)

R(t)
+

W 2(0)

2
+

∞∑
n=3

Wn(0)

n!
Rn−2(t),

and thus we get

lim
t→ Tsing

(Tsing−t)|A|2 = lim
t→ Tsing

(Tsing−t)
W 0(0)

R2(t)
+ lim

t→ Tsing

(Tsing−t)
W 1(0)

R(t)

+ lim
t→ Tsing

(Tsing − t)
W 2(0)

2
+ lim

t→ Tsing

(Tsing − t)
∞∑

n=3

Wn(0)

n!
Rn−2(t).

But R(t) goes to zero as t goes to Tsing, so we can see that

lim
t→ Tsing

(Tsing − t)
W 2(0)

2
= lim

t→ Tsing

(Tsing − t)

∞∑
n=3

Wn(0)

n!
Rn−2(t) = 0.

Since dR(t)
dt = H(R(t)), we have

R′(Tsing) =
dR(t)

dt
|t=Tsing

= H(R(Tsing)) = H(0) = ∞.

By using L’Hôpital’s rule, we conclude that

lim
t→ Tsing

(Tsing − t)
W 1(0)

R(t)
= lim

t→ Tsing

−W 1(0)

R′(t)
< ∞.

We also compute that limt→ Tsing
R(t)H(R(t)) ̸= 0. Again by using L’Hôpital’s

rule we see that

lim
t→ Tsing

(Tsing − t)
W 0(0)

R2(t)
< ∞,

and consequently,
lim

t→ Tsing

(Tsing − t)max|A|2 < ∞.

Thus the singularity is of Type I.
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The assumption of analyticity in the above Theorem is not restrictive. Many
interesting Kähler metrics are analytic. For example, as proved by Hopf and
Morrey constant scalar curvature Kähler metrics satisfy this hyphothesis [13].

Remark 5.5. We observe that when S(t) → 0, then λ1 = ... = λ2m−2 → 0
and λ2m−1 → ∞. This means that when S(t) → 0, one of the principal
directions collapses and the hypersphere converges to the exceptional divisor,
which is holomorphic submanifold of Bl0Cm. Since holomorphic submanifolds
of complex manifolds are minimal, so one would naturally expect that the
principal curvature vanishes there.

In some examples we can estimate ϵ as +∞ including the Burns metric.
Example 5.6 provides an instance of the mean curvature flow problem for the
Burns metric.

Example 5.6. Consider Bl0C2 with the Burns metric ω =
√
−1∂∂(log(S)+S).

We can choose an arbitrary hypersphere ΣR0
as initial condition for the mean

curvature flow. The mean curvature flow of the hypersphere converges to S2

at a finite time and we have the singularity of Type I.

Proof. The mean curvature flow problem for the hyperspheres ΣS is the fol-
lowing ODE

dR(t)

dt
= H(R(t)).

Now the principal curvatures of ΣS with Burns metric are

λ1 = λ2 =
−R

(R2 + 1)
, λ3 =

−1

R
.

Moreover, the mean curvature of these families and |A|2 are given by

H(R(t)) =
−1

3

3R2(t) + 1

R(t)(R2(t) + 1)
, |A|2 =

2R4(t) + (R2(t) + 1)2

R2(t)(R2(t) + 1)2
.

Therefore the mean curvature problem is equivalent to

dR(t)

dt
=

−1

3

3R2(t) + 1

R(t)(R2(t) + 1)
.

The solution of the equation with initial data R(0) = R0 would be

R2(t)

2
+

1

3
log(3R2(t) + 1) = −t+ c.

Thus, |A|2 blows up only when R(t) = 0. With the initial condition R(0) = R0

we get the time of singularity as follows

Tsing =
R2

0

2
+

1

3
log(3R2

0 + 1).
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The time of singularity is finite and the flow exists for all t ∈ [0, Tsing). We can
also check that there exists a positive constant C such that |A|2 < C/|Tsing−t|.
Hence, the singularity is of Type I.
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