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Abstract. We investigate the existence of some sporadic rank-r ⩾ 1
Ulrich vector bundles on suitable 3-fold scrolls X over the Hirzebruch
surface F0, which arise as tautological embeddings of projectivization
of very-ample vector bundles on F0 that are uniform in the sense of
Brosius and Aprodu–Brinzanescu, cf. [11] and [4] respectively.
Such Ulrich bundles arise as deformations of “iterative” extensions by
means of sporadic Ulrich line bundles which have been contructed in our
former paper [30] (where instead higher-rank sporadic bundles were not
investigated therein). We explicitely describe irreducible components of
the corresponding sporadic moduli spaces of rank r ⩾ 1 vector bundles
which are Ulrich with respect to the tautological polarization on X. In
some cases, such irreducible components turn out to be a singleton,
in some other such components are generically smooth, whose positive
dimension has been computed and whose general point turns out to be
a slope-stable, indecomposable vector bundle.
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Introduction

Let X be a smooth, irreducible projective variety of dimension n ⩾ 1 and let
OX(H) be a very ample line bundle on X. A vector bundle U on X is said to be
Ulrich with respect to OX(H) if it satisfies suitable cohomological conditions
involving some multiples of the polarization OX(H) (cf. e.g. Definition 1.1
below and [9, Theorem 2.3] for equivalent conditions).

Ulrich bundles originally appeared in Commutative Algebra, in the pa-
per [40] by B. Ulrich, as bundles enjoying suitable extremal cohomological
properties. After that, attention on Ulrich bundles entered in the realm of Al-
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gebraic Geometry with the paper [28] where, among other things, the authors
compute the Chow form of a projective variety X under the assumption that
X supports Ulrich bundles of some rank r.

In recent years there has been a huge amount of work on Ulrich bundles,
investigating several questions on such bundles like e.g. their existence, the
minimal rank for an Ulrich vector bundle supported by the pair (X,OX(H))
(such a minimal rank is also called the Ulrich complexity of (X,OX(H)) and
denoted by ucOX(H)(X)), as well as their stability, their moduli space structure,
etcetera (for nice surveys the reader is referred to e.g. [23, 26]). A lot has
been proved for some specific classes of projective varieties, e.g. curves (cf.
e.g. [27]), Segre and Veronese varieties (cf. e.g. [39]), Grassmann varieties
(cf. e.g. [25]), varieties of minimal degree (cf. e.g. [6]), hypersurfaces (cf.
e.g. [7, 8]), several classes of surfaces (cf. e.g. [13, 14, 15]), of threefolds (cf.
e.g. [2, 3, 9, 16, 17, 18, 19, 20, 21, 22, 12, 23]) and even of special classes of
higher dimensional varieties (c.f. e.g. [29, 34]; cf. also [26] for a general overview
on known results on Ulrich bundles). However, even in the case of surfaces,
there are still several open questions to be answered in their full generality
(for example, either classification of arithmetically Cohen-Macaulay varieties
as being of finite, tame or wild Ulrich type, as in [27, 29], or classification
of moduli spaces, as in [12, 35], parametrizing isomorphim classes of stable
Ulrich vector bundles, or the birational geometry of such moduli spaces, as e.g.
in [24]).

In our former paper [30], we focused on 3-fold scrolls X = Xe arising as
embedding, via very-ample tautological line bundles OP(Ee)(1), of projective
bundles P(Ee), where Ee are very-ample rank-2 vector bundles on Fe with Chern
classes c1(Ee) numerically equivalent to 3Ce + bef and c2(Ee) = ke, where Ce

and f generators of Num(Fe) and where be and ke are integers satisfying some
natural numerical conditions (cf. Assumptions 1.7 below). In this set-up, one
gets 3-fold scrolls Xe ⊂ Pne , with ne := 4be − ke − 6e + 4, which are non–
degenerate, non-special, of degree de := deg(Xe) = 6be − 9e− ke and sectional
genus ge := 2be − 3e − 2, whose hyperplane section line bundle is denoted by
ξe := OXe

(1) and we studied the behaviour of such 3-fold scrolls (Xe, ξe) in
terms of some Ulrich bundles they can support.

A reason for such interest came from the fact that the existence of Ulrich
bundles on geometrically ruled surfaces has been considered in [5, 1, 13] while
in [31] the existence of Ulrich bundles of rank 1 and 2 on low-degree smooth
3–fold scrolls over a surface was investigated and, among such 3–folds, there
are scrolls over Fe with e = 0, 1.

In the above set-up, among other things, in [30] we proved the following:

Theorem A ([30, Main Theorem and Main Corollary]). For any integer e ⩾ 0,
consider the Hirzebruch surface Fe and let OFe(α, β) denote the line bundle
αCe + βf on Fe, where Ce and f are generators of Num(Fe). Let (Xe, ξe) ∼=
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(P(Ee),OP(E)(1)) be a 3-fold scroll over Fe, where Ee is as in Assumptions 1.7
and where φ : Xe → Fe denotes the scroll map. Then:

(a) Xe does not support any Ulrich line bundle w.r.t. the tautological polar-
ization ξe unless e = 0. In this latter case, the unique Ulrich line bundles
on X0 are the following:

(i) L1 := ξ0 + φ∗OF0(2,−1) and L2 := ξ0 + φ∗OF0(−1, b0 − 1);

(ii) for any integer t ⩾ 1, M1 := 2ξ0 + φ∗OF0(−1,−t − 1) and M2 :=
φ∗OF0(2, 3t− 1), which only occur for b0 = 2t, k0 = 3t.

(b) Set e = 0 and let r ⩾ 2 be any integer. Then the moduli space of rank-r
vector bundles Ur on X0 which are Ulrich w.r.t. ξ0 and with first Chern
class

c1(Ur) =


rξ0 + φ∗OF0

(3, b0 − 3) + φ∗OF0

(
r−3
2 , (r−3)

2 (b0 − 2)
)
,

if r is odd,

rξ0 + φ∗OF0(
r
2 ,

r
2 (b0 − 2)), if r is even.

is not empty and it contains a generically smooth component M(r) of
dimension

dim(M(r)) =

{
(r2−1)

4 (6b0 − 4), if r is odd,
r2

4 (6b0 − 4) + 1, if r is even.

The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle,
of slope w.r.t. ξ0 given by µ(Ur) = 8b0 − k0 − 3. If moreover r = 2, then
U2 is also special (cf. Def. 1.3 above).

(c) When e > 0, let r ⩾ 2 be any integer. Then the moduli space of rank-r
vector bundles Ur on Xe which are Ulrich w.r.t. ξe and with first Chern
class

c1(Ur) =


rξe + φ∗OFe(3, be − 3) + φ∗OFe

(
r−3
2 , r−3

2 (be − e− 2)
)
,

if r is odd,

rξe + φ∗OFe

(
r
2 ,

r
2 (be − e− 2)

)
, if r is even.

is not empty and it contains a generically smooth component M(r) of
dimension

dim(M(r)) =


(

(r−3)2

4 + 2
)
(6be − 9e− 4) + 9

2 (r − 3)(2be − 3e),

if r is odd,
r2

4 (6be − 9e− 4) + 1, if r is even.
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The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle,
of slope w.r.t. ξe given by µ(Ur) = 8be − ke − 12e− 3. If moreover r = 2,
then U2 is also special.

(d) In particular,

(i) when e = 0, the Ulrich complexity of X0 w.r.t. ξ0 is ucξ0(X0) = 1;
moreover X0 supports slope-stable vector bundles of any rank r ⩾ 1
which are Ulrich w.r.t. ξ0, i.e. there are no slope-stable-Ulrich-rank
gaps on X0 w.r.t. the chosen Chern class;

(ii) when otherwise e > 0, the Ulrich complexity of Xe w.r.t. ξe is
ucξe(Xe) = 2; nonetheless Xe supports slope-stable vector bundles
of any rank r ⩾ 2 which are Ulrich w.r.t. ξe, i.e. the only slope-
stable-Ulrich-rank gap w.r.t. the chosen Chern class is r = 1.

Part (a) of Theorem A above highlights in particular that, when e = 0,
3-fold scrolls X0 support Ulrich line bundles, namely M1 and M2, which have a
certain sporadic behavior as they actually exist only for pairs (b0, k0) = (2t, 3t),
for any integer t ⩾ 1 where, we recall that the integer pair (b0, k0) comes from
c1(E0) = 3C0 + b0f , c2(E0) = k0 (cf. also (3), (6) below) whereas line bundles
L1 and L2 actually exist for all pairs (b0, k0) associated to E0 very-ample on
F0. For this reason, M1 and M2 will be called sporadic Ulrich line bundles on
X0 whereas L1 and L2 non-sporadic Ulrich line bundles.

We want to stress that parts (b) and (d)-(i) of Theorem A above have been
proved in [30] via iterative constructions of Ulrich vector bundles Ur, of any
rank r ⩾ 2, with the use of deformations of non-trivial extensions involving only
non-sporadic Ulrich line bundles L1 and L2 as in part (a)-(i) of Theorem A.

Our goal in the present paper is to focus on moduli spaces of Ulrich vector
bundles on (X0, ξ0) which arise from sporadic/mixed cases; precisely, we are
interested in:

• understanding what type of moduli spaces of rank-r ⩾ 2 vector bundles
on X0, which are Ulrich w.r.t. ξ0, arise from iterative constructions by
means of either sporadic pairs (M1,M2) or even mixed pairs (Li,Mj),
1 ⩽ i, j ⩽ 2, as in Theorem A-(a),

• computing what kind of Chern classes are determined by these types of
constructions,

• proving, for any r ⩾ 2, the existence of an irreducible component M(r)
of any such a moduli space and deducing whether such a component can
be (generically) smooth,

• computing dim(M(r)),
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• establishing slope-stability for the bundle Ur corresponding to a general
point [Ur] of any such a component M(r), and

• understanding whether there exists some slope-stable-Ulrich rank gap
w.r.t. the chosen Chern classes.

Throughout this work we will be therefore concerned with the case e = 0,
with 3-fold scrolls arising from bundles E0 as in Assumptions 1.7 over F0 =
P(O⊕2

P1 ). Using only sporadic pairs, we prove the following:

Theorem B (Sporadic cases (cf. Theorem 3.5)). Let (X, ξ) ∼= (P(E),OP(E)(1))
be a 3-fold scroll over F0, with E = E0 satisfying Assumptions 1.7. Let φ : X →
F0 be the scroll map and F be the φ-fiber. Let r ⩾ 1 be any integer.

Then the moduli space of rank-r vector bundles Ur on X which are Ulrich
w.r.t. ξ and with Chern classes

c1(Ur) :=

{
(r + 1)ξ + φ∗OF0(0,−2t) + φ∗OF0

(
(r−3)

2 , r(t− 1)
)
, if r is odd,

rξ + φ∗OF0

(
r
2 , r(t− 1)

)
, if r is even,

c2(Ur) =


ξ · φ∗OF0

(
2r2 − 2, (2t− 1)r2 − 2t+ 1

)
− (r−1)(2rt+r+14t−3)

2 F,

if r ⩾ 3 is odd,

ξ · φ∗OF0

(
2r2 − 2r, r(2rt− r − t+ 1)

)
− r(2rt+r+t−1)

2 F,

if r is even,

c3(Ur) =

{
4r3t− 2r3 − 8r2t+ 4r2 − 4rt+ 2r + 8t− 4, if r ⩾ 3 is odd,

4r3t− 2r3 − 10r2t+ 6r2 + 4rt− 4r, if r ⩾ 4 is even,

is not empty and it contains a generically smooth component M(r) of dimen-
sion

dim(M(r)) =

{
(r2−1)

4 (8t− 4), if r is odd,
r2

4 (8t− 4) + 1, if r is even,

with t ⩾ 1. The general point [Ur] ∈ M(r) corresponds to a slope-stable vector
bundle, of slope w.r.t. ξ given by µ(Ur) = 13t− 3.

In particular, there are no slope-stable-Ulrich-rank gaps on X w.r.t. the
chosen Chern classes.

When otherwise mixed pairs are considered on the one hand we show that,
in some cases, there are 0-dimensional modular components consisting only of
one point which corresponds to a (S-equivalence class of a) polystable bundle
(cf. Theorem 2.3-(1) and (4)); on the other, using similar strategy as that used



(6 of 41) M. L. FANIA AND F. FLAMINI

to prove Theorem B, one can get existence of several extra positive-dimensional,
sporadic modular components which are different from those in Theorem B.

Due to the high number of possible pairings at any rank-r step, we will limit
here to state detailed results for some significant examples of extra, positive-
dimensional sporadic modular components of Ulrich bundles on X, arising via
the use of some specific mixed pairs. In particular we have the following:

Theorem C (Mixed cases). Let (X, ξ) ∼= (P(E),OP(E)(1)) be a 3-fold scroll over
F0, with E = E0 satisfying Assumptions 1.7. Let φ : X → F0 be the scroll map
and F be the φ-fiber. Let r ⩾ 1 be any integer. Then (X, ξ) supports several
extra positive-dimensional, sporadic modular components parametrizing rank-r
vector bundles Ur on X which are Ulrich w.r.t. ξ, with given Chern classes.

In particular, for Chern class

c1 :=

{
rξ + φ∗OF0

(
(r−3)

2 , (r − 1)(t− 1) + 1
)
, if r is odd,

rξ + φ∗OF0

(
r
2 , (r − 2)(t− 1)

)
, if r is even,

the moduli space of rank-r vector bundles Ur on X which are Ulrich w.r.t. ξ
and with first Chern class as above is not empty and it contains a generically
smooth component M(r) of dimension

dim(M(r)) =

{
r2

4 (10t− 5) + r − 2t, if r is even,

t(r2 + 7r − 12)− 1
2 (4r

2 − 11r + 13), if r is odd,

with t ⩾ 1.
The general point [Ur] ∈ M(r) corresponds to a slope-stable vector bundle,

of slope w.r.t. ξ given by µ(Ur) = 13t − 3. In particular, there are no slope-
stable-Ulrich-rank gaps on X w.r.t. the chosen Chern classes.

For a proof of the previous result, the reader is referred to Theorem 2.3 and
to § 4.

The paper consists of four sections. In Section 1 we recall some generalities
on Ulrich bundles on projective varieties as well as some other preliminaries
necessary to properly define 3-fold scrolls (X, ξ) which are the core of the paper.
Section 2 focuses on moduli spaces of rank-2 Ulrich vector bundles obtained
via both sporadic (cf. Subsect. 2.1) and mixed extensions (cf. Subsect. 2.2).
Section 3 deals with the general case of higher rank r ⩾ 3, obtained via in-
ductive processes, extensions, deformations and modular theory dealing with
sporadic pairs. Finally in Section 4 we briefly discuss some results which can
be obtained, following same strategies as in Section 3, using mixed pairs.

Notation and terminology

We work throughout over the field C of complex numbers. All schemes will be
endowed with the Zariski topology. By variety we mean an integral algebraic
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scheme. We say that a property holds for a general point of a variety V if
it holds for any point in a Zariski open non–empty subset of V . We will
interchangeably use the terms rank-r vector bundle on a variety V and rank-r
locally free sheaf on V ; in particular for the case r = 1, that is line bundles
(equiv. invertible sheaves), to ease notation and if no confusion arises, we
sometimes identify line bundles with Cartier divisors interchangeably using
additive notation instead of multiplicative notation and tensor products. Thus,
if L and M are line bundles on V , the dual of L will be denoted by either L∨,
or L−1 or even −L, L⊗n will be sometimes denoted with nL as well as L⊗M
with L+M .

If P is either a parameter space of a flat family of geometric objects E defined
on V (e.g. vector bundles, extensions, etc.) or a moduli space parametrizing
geometric objects modulo a given equivalence relation, we will denote by [E ]
the parameter point (resp., the moduli point) corresponding to the geometric
object E (resp., associated to the equivalence class of E). For further non-
reminded terminology, we refer the reader to [33].

In the sequel, we will focus on smooth, irreducible, projective 3-folds and
the following notation will be used throughout this work.

• X is a smooth, irreducible, projective variety of dimension 3 (or simply
a 3-fold);

• χ(F) =
∑3

i=0(−1)ihi(X,F) denotes the Euler characteristic of F , where
F is a vector bundle of rank r ⩾ 1 on X;

• ωX denotes the canonical bundle of X as well as KX denotes a canonical
divisor;

• ci = ci(X) denotes the ith-Chern class of X, 0 ⩽ i ⩽ 3;

• d = degX = L3 denotes the degree of X in its embedding given by a
very-ample line bundle L on X;

• g = g(X), denotes the sectional genus of (X,L) defined by 2g − 2 :=
(KX + 2L)L2;

• if S is a smooth surface, ≡ will denote the numerical equivalence of divi-
sors on S whereas ∼ their linear equivalence.

1. Preliminaries

For the reader convenience we recall some general facts that we will use in the
sequel.
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Definition 1.1. Let X ⊂ PN be a smooth, irreducible, projective variety of
dimension n and let H be a hyperplane section of X. A vector bundle U on X
is said to be Ulrich with respect to OX(H) if

Hi(X,U(−jH)) = 0 for all 0 ⩽ i ⩽ n and 1 ⩽ j ⩽ n.

Remark 1.2. (i) If X supports Ulrich bundles w.r.t. OX(H) then one sets
ucH(X), called the Ulrich complexity of X w.r.t. OX(H), to be the minimum
rank among possible Ulrich vector bundles w.r.t. OX(H) on X.
(ii) If U is a vector bundle on X, which is Ulrich w.r.t. OX(H), then U ′ :=
U∨(KX + (n + 1)H) is a vector bundle of the same rank of U , which is also
Ulrich w.r.t. OX(H). The vector bundle U ′ is called the Ulrich dual of U .
From this we see that, if Ulrich bundles of some given rank r ⩾ 1 on X do
exist, then they come in pairs.

Definition 1.3. Let X ⊂ PN be a smooth, irreducible, projective variety of
dimension n and let H denote a hyperplane section of X. Let U be a rank-2
vector bundle on X which is Ulrich with respect to OX(H). Then U is said to
be special if c1(U) = KX + (n+ 1)H.

Notice that, because U in Definition 1.3 is of rank 2, then U∨ ∼= U(−c1(U));
therefore for a rank-2 Ulrich bundle U being special is equivalent to U being
isomorphic to its Ulrich dual bundle.

We now briefly remind well-known facts concerning (semi)stability and
slope-(semi)stability properties of Ulrich bundles (cf. [12, Definition 2.7]). Let
V be a vector bundle on X; recall that V is said to be semistable if for every
non-zero coherent subsheaf K ⊂ V, with 0 < rk(K) := rank of K < rk(V),
the inequality PK

rk(K) ⩽ PV
rk(V) holds true, where PK and PV are their Hilbert

polynomials. Furthermore, V is said to be stable if the strict inequality above
holds.

Recall that the slope of a vector bundle V, w.r.t. the very ample polarization

OX(H), is defined to be µ(V) := c1(V)·Hn−1

rk(V) ; then V is said to be µ-semistable,

or even slope-semistable (w.r.t. OX(H)), if for every non-zero coherent subsheaf
K ⊂ V with 0 < rk(K) < rk(V), one has µ(K) ⩽ µ(V), whereas V is said to be
µ-stable, or slope-stable, if the strict inequality holds.

The two definitions of (semi)stability are in general related as follows (cf.
e.g. [12, § 2]):

slope-stability ⇒ stability ⇒ semistability ⇒ slope-semistability.

When the bundle in question is in particular Ulrich w.r.t. OX(H), and in
this case we denote it by U to remind Ulrichness, then one has

µ(U) = deg(X) + g − 1, (1)
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where deg(X) is the degree ofX in the embedding given by OX(H) and where g
is the sectional genus of (X,OX(H)) (see e.g. [26, Proposition 3.2.5]), and the
following more precise situation holds:

Theorem 1.4. (cf. [12, Theorem 2.9]) Let X ⊂ PN be a smooth, irreducible,
projective variety of dimension n and let H be a hyperplane section of X. Let
U be a rank-r vector bundle on X which is Ulrich w.r.t. OX(H). Then:
(a) U is semistable, so also slope-semistable;
(b) If 0 → F → U → G → 0 is an exact sequence of coherent sheaves with G
torsion-free, and µ(F) = µ(U), then F and G are both vector bundles which
are Ulrich w.r.t. OX(H).
(c) If U is stable then it is also slope-stable. In particular, the notions of
stability and slope-stability coincide for Ulrich bundles.

We like to point out that the property of being Ulrich in an irreducible,
flat family of vector bundles is an open condition; indeed if the bundle U
is a deformation of an Ulrich vector bundle Ũ then U is also Ulrich as the
cohomology vanishings of Ũ(−j), for 1 ⩽ j ⩽ n, imply (by semi–continuity in
the irreducible flat family) the cohomology vanishings of U(−j).

We also like to remark that because Ulrich bundles are semistable, then any
family of Ulrich bundles with given rank and Chern classes is bounded (see for
instance [38]). In this situation, if bundles in a bounded family are simple, i.e.
End(U) ∼= C, one has:

Proposition 1.5. (see [12, Proposition 2.10]) On a non-singular projective va-
riety X, any bounded family of simple bundles E with given rank and Chern
classes, satisfying H2(E ⊗ E∨) = 0 admits a smooth modular family.

The existence of smooth modular families of simple vector bundles, along
with the fact that the property of being Ulrich in an irreducible flat family
of vector bundles is an open condition, will help us in performing recursive
constructions of Ulrich bundles in any possible rank r ⩾ 1 on the projective
varieties we are dealing with, proving also slope-stability for the general bundle
parametrized by such an irreducible family.

Let us now introduce projective varieties we are interested in, which will be
the support of Ulrich bundles we are going to contruct and study.

Definition 1.6. Let X be a smooth, irreducible, projective variety of dimen-
sion 3, or simply a 3-fold, and let L be an ample line bundle on X. The pair
(X,L) is said to be a scroll over a normal variety Y if there exist an ample line
bundle M on Y and a surjective morphism φ : X → Y with connected fibers
such that KX + (4− dim(Y ))L = φ∗(M).

If, in particular, in the above definition Y is a smooth surface and (X,L) is
a scroll over Y , then (see [10, Proposition 14.1.3]) X ∼= P(E), where E = φ∗(L)
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is a vector bundle on Y and L ∼= OP(E)(1) is the tautological line bundle on
P(E). Moreover, if S ∈ |L| is a smooth divisor, then (see e.g. [10, Theorem
11.1.2]) S turns out to be isomorphic to the blow-up of the base surface Y
along a reduced zero-dimensional scheme which is an element of c2(E). If we
denote with d the degree of the pair (X,L), namely the degree of the image
ΦL(X) ⊂ Pn of X via the complete linear system |L|, n := h0(X,L)− 1, then
one has

d := L3 = c21(E)− c2(E). (2)

In this paper we will be concerned with the case in which the base surface
Y of the scroll X, as in Definition 1.6, is the Hirzebruch surface Fe := P(OP1 ⊕
OP1(−e)), with e ⩾ 0 an integer. We let πe : Fe → P1 be the natural projection;
it is well known (cf. e.g. [33, V, Proposition 2.3]) that Num(Fe) = Z[Ce]⊕Z[f ],
where: f := π∗

e(p), for any p ∈ P1, whereas Ce denotes either the unique section
corresponding to the morphism of vector bundles on P1 OP1 ⊕ OP1(−e) →
→ OP1(−e), when e > 0, or the fiber of the other ruling different from that
induced by f , when otherwise e = 0. In particular

C2
e = −e, f2 = 0, Cef = 1.

Let Ee be a rank-2 vector bundle over Fe and let ci(Ee) be its ith-Chern class,
0 ⩽ i ⩽ 2. Then c1(Ee) ≡ aCe + bf , for some a, b ∈ Z, and c2(Ee) ∈ Z. For
the line bundle L ≡ αCe+βf we will also use notation OFe

(α, β). Throughout
this paper, we will consider the following:

Assumptions 1.7. Let e ⩾ 0, be, ke be integers such that

be − e < ke < 2be − 4e, (3)

and let Ee be a rank-2 vector bundle over Fe, with

c1(Ee) ≡ 3Ce + bef and c2(Ee) = ke,

which fits in the exact sequence

0 → Ae → Ee → Be → 0, (4)

where Ae and Be are line bundles on Fe such that

Ae ≡ 2Ce + (2be − ke − 2e)f and Be ≡ Ce + (ke − be + 2e)f (5)

From (4), in particular, one has c1(Ee) = Ae +Be and c2(Ee) = AeBe.

As observed in [30, Remark 1.8], condition (3) and the fact that ke must be
an integer give together that

be ⩾ 3e+ 2; (6)
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furthermore from (4), any bundle Ee fitting in this exact sequence turns out to
be such that hi(Ee) = 0, for any i ⩾ 1, in particular it is non-special, moreover
it is very ample, i.e. OP(Ee)(1) is a very ample line bundle on P(Ee), and uniform
in the sense of [4, 11].

Therefore, if we let φ : P(Ee) → Fe to be the scroll map as in Definition 1.6,
the pair (X,L) := (P(Ee),OP(E)(1)) is a 3-fold scroll over Fe and |OP(E)(1)|
gives rise to an embedding

Φe := Φ|OP(Ee)(1)| : P(Ee) ↪→ Xe ⊂ Pne , (7)

where Xe := Φe(P(Ee)) ⊂ Pne , ne := h0(Ee) − 1 = 4be − ke − 6e + 4, is
a smooth, irreducible, non-degenerate and non-special 3-fold scroll of degree
de := 6be − 9e − ke and sectional genus ge := 2be − 3e − 2. We denote by
ξe := OXe(H), where H a hyperplane section of Xe ⊂ Pne , and call ξe the
tautological polarization of Xe, as (Xe, ξe) ∼= (P(Ee),OP(E)(1)).

In this set-up, in [30] we proved Theorem A as in Introduction; as already
mentioned therein, Theorem A-(a) highlights that, when e = 0, 3-fold scrollsX0

support sporadic Ulrich line bundles M1 and M2, which actually exist only for
(b0, k0) = (2t, 3t), for t ⩾ 1 an integer, where (b0, k0) are s.t. c1(E0) = 3C0+b0f ,
c2(E0) = k0, with b0, k0 as in (3), (6). We want to stress that part (b) and
(d)-(i) of Theorem A have been proved in [30] using iterative constructions of
vector bundles Ur of any rank r ⩾ 2, which are Ulrich w.r.t. ξ0, obtained via
deformations, extensions and modular families (as in Proposition 1.5) arising
from non-sporadic line bundles L1 and L2 as in part (a)-(i) of Theorem A.

The present paper is therefore focused on sporadic cases as well as on mixed
cases; as explained in the Introduction.

Thus, throughout this work we will be concerned with the case e = 0
and with 3-fold scrolls arising from bundles E0 as in Assumptions 1.7 over
F0 = P(O⊕2

P1 ). To ease notation, taking into account (6), from now on we will
simply set

E := E0, X := X0, ξ := ξ0, b := b0 = 2t, k := k0 = 3t, (8)

for any integer t ⩾ 1, so that X ⊂ Pn, where n := n0 = 5t + 4, is a smooth,
irreducible, non-special and linearly normal 3-fold scroll over F0, of degree d :=
d0 = 9t, sectional genus g := g0 = 4t − 2 and whose tautological polarization
is ξ = OX(1).

2. Rank-2 Ulrich bundles arising from sporadic and
mixed extensions

From (8), consider any 3-fold scroll (X, ξ), X ⊂ Pn, arising from E satisfying
Assumptions 1.7. The fiber of the natural scroll map φ : X ∼= P(E) → F0 will
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always be denoted by F . Take further line bundles as in Theorem A-(a).

Let us consider first the two sporadic Ulrich line bundles M1 and M2 on
X of Theorem A-(a-ii), which only occur for (b, k) = (2t, 3t), where t ⩾ 1 any
integer. From [30, § 3.1-Case M] we know that

dim(Ext1(M2,M1)) = 6t− 3 ⩾ 3.

Thus there are non-trivial extensions

0 → M1 → F → M2 → 0 (9)

of M2 by M1, i.e. F is a rank-2 vector bundle on X which corresponds to a
non-zero vector of the vector space Ext1(M2,M1). Similarly,

dim(Ext1(M1,M2)) = 2t+ 1 ⩾ 3,

so there are also non-trivial extensions

0 → M2 → F ′ → M1 → 0 (10)

of M1 by M2.
Observe that the dimensions of the above family of extensions are different

positive integers unless t = 1. We like to point out that in such a case, i.e.
when t = 1, then b = 2, i.e. c1(E) = 3C0 + 2f , so being E very-ample with
c1(E)2 = 12, by [37, Corollary 2.6-(ii)] it follows that E = OF0(1, 1)⊕OF0(1, 2).
Moreover since on F0 one can exchange the two distinct rulings C0 and f , then
c1(E) = 3C0 + 2f = 2C0 + 3f , is the same. In such case X ⊂ P9 has degree 9,
sectional genus 2 and it is isomorphic to P1 × F1 (see [36, (3.12), (3.4)], or [32,
Prop. (3.1)]).

Turning back to the general case, notice that the vector bundles F and F ′

are both rank-2 vector bundles which are Ulrich w.r.t. ξ, such that

c1(F) = c1(F ′) = c1(M1) + c1(M2) = 2ξ + φ∗OF0
(1, 2t− 2),

c2(F) = c2(F ′) = c1(M1) · c1(M2) = ξ · φ∗OF0
(4, 6t− 2)− (5t+ 1)F.

(11)

Moreover, by (1), one has

µ(M1) = µ(M2) = µ(F) = µ(F ′) = d+ g − 1 = 13t− 3. (12)

From Theorem 1.4, F and F ′ are both strictly semistable, so they are S-
equivalent (in the GIT sense, c.f. e.g. [12, p. 1250083-9] and [30, Remark ;3.2,
Claim 3.3]) to M1 ⊕ M2, i.e. they give rise to a point in the moduli space
Mss(2; c1, c2), where

c1 := 2ξ + φ∗OF0(1, 2t− 2), c2 := ξ · φ∗OF0(4, 6t− 2)− (5t+ 1)F,
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parametrizing (S-equivalence classes of) rank-2 semistable sheaves with the
given Chern classes.

If instead one considers mixed extensions, namely using both line bundles
of type Li as in Theorem A-(a-i), 1 ⩽ i ⩽ 2, (which are non-sporadic on X as
they exist for any pair (b, k) satisfying (3) and (6)) and line-bundles of type
Mj , with 1 ⩽ j ⩽ 2, one has non–trivial extensions only in the following cases
(cf. computations as in [30, § 3.1]):

Cases 2.1. Non-zero extension spaces are:

(1) Ext1(L1,M1), where dim(Ext1(L1,M1)) = 1 and non-trivial extensions
F1 are such that

c1(F1) = c1(L1) + c1(M1) = 3ξ + φ∗OF0
(1,−t− 2),

c2(F1) = c1(L1) · c1(M1) = ξ · φ∗OF0
(9, 3t− 3)− (8t+ 1)F ;

(2) Ext1(M2, L1), where dim(Ext1(M2, L1)) = 10t − 5 ⩾ 5 and non-trivial
extensions are such that

c1(F2) = c1(L1) + c1(M2) = ξ + φ∗OF0
(4, 3t− 2)),

c2(F2) = c1(L1) · c1(M2) = ξ · φ∗OF0
(2, 3t− 1) + (6t− 4)F ;

(3) Ext1(L2,M1), where dim(Ext1(L2,M1)) = 10t − 5 ⩾ 5 and non-trivial
extensions F3 are such that

c1(F3) = c1(L2) + c1(M1) = 3ξ + φ∗OF0
(−2, t− 2),

c2(F3) = c1(L2) · c1(M1) = ξ · φ∗OF0
(3, 7t− 3) + (2− 7t)F ;

(4) Ext1(M2, L2), where dim(Ext1(M2, L2)) = 1 and non-trivial extensions
F4 with

c1(F4) = c1(L2) + c1(M2) = 3ξ + φ∗OF0
(1, 5t− 2),

c2(F4) = c1(L2) · c1(M2) = ξφ∗OF0
(2, 3t− 1) + (t− 1)F.

Reasoning as for sporadic extensions (9) and (10) and looking at
Chern-classes computations above, one determines different moduli spaces
Mss(2; c1, c2), according to the chosen Chern classes c1 and c2.

2.1. Rank-two Ulrich bundles arising from sporadic
extensions

Here we focus on sporadic extensions (9) and (10), i.e. extensions arising from
the two sporadic line bundles M1 and M2 as in Theorem A-(a-ii). We prove
the following result.
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Theorem 2.2. Let (X, ξ) ∼= (P(E),OP(E)(1)) be a 3-fold scroll over F0, with
E = E0 as in Assumptions 1.7. Let φ : X → F0 be the scroll map and F be the
φ-fiber. Then, for any t ⩾ 1, the moduli space of rank-2 vector bundles U on
X, which are Ulrich w.r.t. ξ and with Chern classes

c1(U) = 2ξ+φ∗OF0(1, 2t−2) and c2(U) = ξ ·φ∗OF0(4, 6t−2)−(5t+1)F, (13)

is not empty and it contains a generically smooth irreducible component M :=
M(2), of dimension

dim(M) = 8t− 3,

whose general point [U ] ∈ M corresponds to a special and slope-stable vector
bundle, of slope µ(U) = 13t− 3 w.r.t. ξ.

Furthermore, deformations of Ulrich bundles F and F ′ as in (9) and (10)
belong to the aforementioned component M.

Proof. The proof is similar to that of [30, Theorem3.1]. For the reader’s con-
venience we will recall here main arguments for the proof.

We consider bundles F arising from non–trivial extensions (9), where
dim(Ext1(M2,M1)) = 6t−3 ⩾ 3. Any such F is Ulrich w.r.t. ξ, thus, from (1),
one has µ(F) = 13t− 3.

Since, for the same reason, µ(M1) = µ(M2) = 13t − 3 and since further-
more M1 and M2 are both slope–stable, of the same slope w.r.t. ξ and non–
isomorphic, by [12, Lemma4.2], any such bundle F is simple, i.e. h0(F⊗F∨) =
1, in particular it is indecomposable.

With the use of (9) and its dual sequence, one can easily show that h2(F ⊗
F∨) = 0 = h3(F ⊗ F∨) and that χ(F ⊗ F∨) = −8t+ 4. Indeed, tensoring (9)
with F∨ one gets

0 → M1 ⊗F∨ → F ⊗F∨ → M2 ⊗F∨ → 0; (14)

moreover, dualizing (9) gives

0 → M∨
2 → F∨ → M∨

1 → 0 (15)

which, if tensored by M1 and M2, respectively, gives

0 → M∨
2 ⊗M1(= 2ξ + φ∗OF0

(−3,−4t)) → M1 ⊗F∨ → OX → 0 (16)

0 → OX → M2 ⊗F∨ → M2 ⊗M∨
1 (= −2ξ + φ∗OF0

(3, 4t)) → 0 (17)

Because F is simple, then h0(X,F⊗F∨) = 1; the other cohomology vector-
spaces
Hi(X,F ⊗ F∨), 1 ⩽ i ⩽ 3, can be easily computed from the cohomology
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sequence associated with (16) and (17). Indeed, hi(OX) = 0 if i ⩾ 1 and
h0(OX) = 1, whereas

Hi(X,−2ξ + φ∗OF0(3, 4t))
∼= H3−i(X,φ∗OF0(−2,−2− 2t)) (18)
∼= H3−i(F0,OF0(−2,−2− 2t))

∼= Hi−1(P1,OP1(2t)) =

{
0 if i = 0, 2, 3
2t+ 1 if i = 1

and, as it was done in [30, Case M]

Hi(2ξ + φ∗OF0
(−3,−4t) =

{
0 if i = 0, 2, 3
6t− 3 if i = 1

(19)

From the previous computations and (14), it thus follows that h2(F⊗F∨) =
0 = h3(F ⊗ F∨). Once again from (14), one has that

χ(F ⊗ F∨) = χ(M1 ⊗F∨) + χ(M2 ⊗F∨) = −8t+ 4,

and thus, from the previous vanishings and from simplicity of F1, one finds
h1(F ⊗ F∨) = 1− χ(F ⊗ F∨) = 8t− 3.

Simplicity of F and h2(F ⊗ F∨) = 0 give, by Proposition 1.5 (cf. also [12,
Proposition 2.10]), that there exists a smooth modular family for F . Further-
more, since F is Ulrich w.r.t. ξ, with Chern classes as in (11), i.e. c1(F) =
2ξ + φ∗OF0

(1, 2t− 2) and c2(F) = ξ · φ∗OF0
(4, 6t− 2)− (5t+ 1)F , the general

element U of the smooth modular family to which F belongs corresponds to a
rank-2 vector bundle, with same Chern classes (namely as those of F), which
is Ulrich w.r.t. ξ, as it follows from the facts that, in irreducible flat fami-
lies, Ulrichness is an open condition (by semi-continuity) and Chern classes are
invariants.

Finally, one shows that U is also slope–stable w.r.t. ξ. Indeed, by Theo-
rem 1.4–(b) (cf. also [9, § 3, (3.2)]), if U were not a stable bundle, being Ulrich it
would be presented as an extension of Ulrich line bundles on X. In such a case,
by the classification of Ulrich line bundles on X given in Theorem A-(a), by
Chern classes reasons we see that the only possibilities for U to arise as an ex-
tension of Ulrich line bundles should be either extensions (9) or extensions (10).
In both cases the dimension of (the projectivization) of the corresponding ex-
tension space is either 6t− 4 or 2t. On the other hand, by semi-continuity on
the smooth modular family, one has

hj(U ⊗ U∨) = 0 = hj(F ⊗ F∨), 2 ⩽ j ⩽ 3, and

h0(U ⊗ U∨) = 1 = h0(F ⊗ F∨),

thus

h1(U ⊗ U∨) = 1− χ(U ⊗ U∨) = 1− χ(F ⊗ F∨) = h1(F ⊗ F∨) = 8t− 3,
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as computed above. In other words, the smooth modular family whose general
element is U is of dimension 8t − 3, which is bigger than both 6t − 4 and
2t, for any t ⩾ 1. This shows that U general in the smooth modular family
corresponds to a stable, and so also slope-stable bundle (cf. Theorem 1.4-(c)
above).

By slope-stability of U , we deduce that the moduli space of rank-2 Ulrich
bundles with Chern classes as in (11) is not empty and it contains an irreducible
component M = M(2) where [U ] ∈ M is a smooth point, as h2(U ⊗ U∨) = 0.
Thus, M is generically smooth, of dimension h1(U ⊗U∨) = 8t− 3, from which
one also deduces that [U ] is a general point in M. Moreover, being Ulrich
from (1) one gets µ(U) = 13t− 3.

Note further that U∨ ∼= U(−c1(U)), as U is of rank 2, and that

KX + 4ξ = −2ξ + φ∗OF0
(1, 2t− 2) + 4ξ = 2ξ + φ∗OF0

(1, 2t− 2)

= c1(F) = c1(U)

and thus

U∨ ∼= U(−c1(U)) = U(−KX − 4ξ),

i.e. that U∨(KX + 4ξ) ∼= U in other words U is isomorphic to its Ulrich dual
bundle, that is U is special, as stated.

To prove the last part of the statement, one uses same arguments as in [30,
Claim 3.3]. Namely one shows that M1 ⊕ M2 is a smooth point of the Quot-
scheme parametrizing simple bundles with given Hilbert polynomal, so there
exists a unique irreducible component R of such a Quot scheme, containing
therefore also bundles F and F ′ as in (9) and (10) and all their deformations,
in particular containing U . This component R then projects, via GIT quotient,
onto the modular component M as in the statement.

2.2. Rank-two Ulrich bundles arising from mixed
extensions

Here we consider instead mixed extensions as in Cases 2.1 above. One has the
following result.

Theorem 2.3. Let (X, ξ) ∼= (P(E),OP(E)(1)) be a 3-fold scroll over F0, with
E = E0 as in Assumptions 1.7. Let φ : X → F0 be the scroll map and F be
the φ-fiber. Then the moduli spaces of rank-2 vector bundles U on X which are
Ulrich w.r.t. ξ and with Chern classes, respectively,

(1) c1(U) = 3ξ+φ∗OF0
(1,−t−2) and c2(U) = ξ ·φ∗OF0

(9, 3t−3)−(8t+1)F ,

(2) c1(U) = ξ+φ∗OF0(4, 3t−2)) and c2(U) = ξ ·φ∗OF0(2, 3t−1)+(6t−4)F ,
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(3) c1(U) = 3ξ+φ∗OF0
(−2, t−2) and c2(U) = ξ ·φ∗OF0

(3, 7t−3)+(2−7t)F ,

(4) c1(U) = ξ + φ∗OF0
(1, 5t− 2) and c2(U) = ξ · φ∗OF0

(2, 3t− 1) + (t− 1)F

are not empty. Each of them contains a generically smooth irreducible compo-
nent M := M(2) of dimension, respectively,

dim(M) =


0, in case (1),

10t− 6, in case (2),

10t− 6, in case (3),

0, in case (4),

In cases (1) and (4), M consists of only one point represented by a polystable
bundle (more precisely, in case (1) one has M = {[L1⊕M1]} whereas in case (4)
one has M = {[L2 ⊕ M2]}). In cases (2) and (3) the general point [U ] ∈ M
corresponds to a special and slope-stable vector bundle, of slope µ(U) = 13t− 3
w.r.t. ξ.

Proof. The proof goes similarly as that of Theorem 2.2. The main difference
resides in the fact that computations are performed by using extension bundles
as in Cases 2.1.

In case (1), we take into account bundles F1 arising from non-trivial exten-
sions in Ext1(L1,M1), where dim(Ext1(L1,M1)) = 1. From [12, Lemma4.2],
F1 is simple so h0(F1 ⊗ F∨

1 ) = 1. The remaining cohomologies hi(F1 ⊗ F∨
1 ),

1 ⩽ i ⩽ 3, can be easily computed as follows: tensoring with F∨
1 the exact

sequence defining F1, one gets

0 → M1 ⊗F∨
1 → F1 ⊗F∨

1 → L1 ⊗F∨
1 → 0; (20)

taking moreover the dual sequence of that defining F1 and tensoring it with,
respectively, M1 and L1 gives

0 → M1 ⊗ L∨
1 (= ξ + φ∗OF0

(−3,−t)) → M1 ⊗F∨
1 → OX → 0 (21)

0 → OX → L1 ⊗F∨
1 → L1 ⊗M∨

1 (= −ξ + φ∗OF0
(3, t)) → 0. (22)

Clearly hi(OX) = 0 if i ⩾ 1 and h0(OX) = 1; it remains to compute hi(X, ξ +
φ∗OF0(−3,−t)) and hi(X,−ξ + φ∗OF0(3, t)), for i ⩾ 0. Notice that

Hi(X,−ξ + φ∗OF0
(3, t)) ∼= Hi(F0, 0) = 0 for i ⩾ 0,

whereas
Hi(X, ξ + φ∗OF0(−3,−t)) ∼= Hi(E ⊗ OF0(−3,−t)).

From (4) and (5) we have that E fits in

0 → 2C0 + tf → E → C0 + tf → 0.



(18 of 41) M. L. FANIA AND F. FLAMINI

If we let E(−3,−t) := E ⊗ OF0
(−3,−t) and if we tensor this exact sequence

with OF0
(−3,−t), we get

0 → −C0 → E(−3,−t) → −2C0 → 0. (23)

From the cohomology sequence associated to (23) it follows therefore that

hi(X, ξ + φ∗OF0
(−3,−t)) = hi(F0, E(−3,−t)) =

{
0 if i = 0, 2, 3
1 if i = 1

Thus, from (25), (26) and (24), it follows that h2(F1⊗F∨
1 ) = 0 = h3(F1⊗F∨

1 )
and

χ(F1 ⊗F∨
1 ) = χ(L1 ⊗F∨

1 ) + χ(M1 ⊗F∨
1 ) = 1 + 0 = 1,

so, from simplicity of F1 and the previous vanishings, one has h1(F1 ⊗ F∨
1 ) =

1 − χ(F1 ⊗ F∨
1 ) = 0. Since any bundle F1 arising from non-trivial extensions

in Ext1(L1,M1) is strictly-semistable, from S-equivalence of such bundles, we
get the statement.

In case (2), we consider bundles F2 arising from non-trivial extensions in
Ext1(M2, L1), where dim(Ext1(M2, L1)) = 10t− 5 ⩾ 5. From [12, Lemma4.2],
one gets that F2 is simple, i.e. h0(F2 ⊗F∨

2 ) = 1. The remaining cohomologies
hi(F2 ⊗ F∨

2 ), 1 ⩽ i ⩽ 3, can be easily computed as above. We tensor by F∨
2

the exact sequence defining F2 to get

0 → L1 ⊗F∨
2 → F2 ⊗F∨

2 → M2 ⊗F∨
2 → 0. (24)

Moreover, taking the dual sequence of that defining F2 and tensoring it with,
respectively, L1 and M2 gives

0 → M∨
2 ⊗ L1(= ξ + φ∗OF0

(0,−3t)) → L1 ⊗F∨
2 → OX → 0 (25)

0 → OX → M2 ⊗F∨
2 → M2 ⊗ L∨

1 (= −ξ + φ∗OF0
(0, 3t)) → 0 (26)

Clearly hi(OX) = 0 if i ⩾ 1 and h0(OX) = 1, so we need to compute hi(X, ξ+
φ∗OF0(0,−3t)) and hi(X,−ξ + φ∗OF0(0, 3t)). Notice that

Hi(X,−ξ + φ∗OF0
(0, 3t)) ∼= Hi(F0, 0) = 0 for i ⩾ 0,

whereas

Hi(X, ξ + φ∗OF0
(0,−3t)) ∼= Hi(E ⊗ OF0

(0,−3t)).

From (4) and (5) we have that E fits in

0 → 2C0 + tf → E → C0 + tf → 0.
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Set E(0,−3t) := E ⊗ OF0
(0,−3t) = E(0,−3t) and tensor the previous exact

sequence with OF0
(0,−3t), so we get

0 → 2C0 − 2tf → E(0,−3t) → C0 − 2tf → 0. (27)

From the cohomology sequence associated to (27) one gets

hi(X, ξ + φ∗OF0
(0,−3t) = hi(F0, E(0,−3t)) (28)

=

{
0 if i = 0, 2, 3
10t− 5 if i = 1

Thus, from (25), (26) and (24), it follows that h2(F2⊗F∨
2 ) = 0 = h3(F2⊗F∨

2 )
and

χ(F2 ⊗F∨
2 ) = χ(L1 ⊗F∨

2 ) + χ(M2 ⊗F∨
2 ) = −10t+ 7,

so, from simplicity of F2 and the previous vanishings, one has h1(F1 ⊗ F∨
1 ) =

10t− 6. The conclusion is exactly as in the proof of Theorem 2.2.

Case (3) goes as case (2). We consider bundles F3 arising from non-trivial
extensions in Ext1(L2,M1) which, from Cases 2.1, is of dimension 10t− 5 ⩾ 5.
From [12, Lemma4.2] F3 is simple so h0(F3 ⊗ F∨

3 ) = 1. If we tensor by F∨
3

the exact sequence defining F3 we get

0 → M1 ⊗F∨
3 → F3 ⊗F∨

3 → L2 ⊗F∨
3 → 0;

taking also the dual sequence of that defining F3 and tensoring it with, respec-
tively, M1 and L2 gives

0 → L∨
2 ⊗M1(= ξ + φ∗OF0

(0,−3t)) → M1 ⊗F∨
3 → OX → 0

0 → OX → L2 ⊗F∨
3 → L2 ⊗M∨

1 (= −ξ + φ∗OF0
(0, 3t)) → 0.

Observing that the above exact sequences are identical to (25) and (26), one
computes the remaining cohomologies hi(F1 ⊗ F∨

1 ), 1 ⩽ i ⩽ 3, exactly as in
case (2) and concludes as in the statement.

Similarly, case (4) goes as case (1). We cosider bundles F4 arising from
non-trivial extensions in Ext1(M2, L2), which is 1-dimensional. From [12,
Lemma4.2] it follows that F4 is simple so h0(F4 ⊗ F∨

4 ) = 1. To compute
the remaining cohomologies hi(F4 ⊗ F∨

4 ), 1 ⩽ i ⩽ 3, we tensor with F∨
4 the

exact sequence defining F4 and get

0 → L2 ⊗F∨
4 → F4 ⊗F∨

4 → M2 ⊗F∨
1 → 0;

taking moreover the dual sequence of that defining F4 and tensoring it with,
respectively, L2 and M2 gives

0 → L2 ⊗M∨
2 (= ξ + φ∗OF0(−3,−t)) → L2 ⊗F∨

4 → OX → 0

0 → OX → M2 ⊗F∨
4 → M2 ⊗ L∨

2 (= −ξ + φ∗OF0(3, t)) → 0.
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Observing that the above exact sequences are identical to (21) and (22), one
can conclude exactly as in case (1).

3. Higher-rank sporadic Ulrich bundles on 3-fold scrolls
over F0

In this section we will construct higher-rank, slope-stable, Ulrich vector bundles
using both iterative extensions, by means of the two sporadic Ulrich line bundles

M1 = 2ξ + φ∗OF0(−1,−t− 1) and its Ulrich dual

M2 = φ∗OF0(2, 3t− 1),
(29)

as in Theorem A-(a-ii), and deformations of such vector-bundle extensions in
suitable modular families, generalizing the strategy used in § 2.1 to construct
sporadic rank-2 Ulrich bundles.

Recall that, from § 2.1, we have

dim(Ext1(M2,M1)) = h1(M1 −M2) = 6t− 3 ⩾ 3. (30)

In order to perform recursive constructions, to ease notation we set once and for
all G1 := M1. From (30), the general element of Ext1(M2,G1) = Ext1(M2,M1)
is a non-splitting extension

0 → G1 = M1 → G2 → M2 → 0, (31)

where G2 := F , as in the proof of Theorem 2.2, is a rank-2 simple vector bundle
on X, which is Ulrich w.r.t. ξ and with

c1(G2) = c1(M1) + c1(M2) = 2ξ + φ∗OF0
(1, 2t− 2), and

c2(G2) = c1(M1) · c1(M2) = ξ · φ∗OF0
(4, 6t− 2)− (5t+ 1)F,

as in (13). With a small abuse of notation, we will identify extension (31)
with the corresponding rank-2 vector bundle G2, therefore we will state that
[G2] ∈ Ext1(M2,G1) is a general element of this extension space.

If, in the next step, we considered further extensions Ext1(M2,G2), it is easy
to see that the dimension of such an extension space drops by one with respect
to that of Ext1(M2,G1). Therefore, proceeding in this way, after finitely many
steps we would have Ext1(M2,Gr) = {0}, i.e. Gr+1 = M2 ⊕ Gr, for any r ⩾ r0,
for some positive integer r0. To avoid this fact, similarly as in [20, § 4], we
proceed by taking alternating sporadic extensions, namely

0 → G2 → G3 → M1 → 0, 0 → G3 → G4 → M2 → 0, . . . ,
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and so on, that is, defining

ϵr :=

{
1, if r is odd,

2, if r is even,
(32)

we take successive [Gr] ∈ Ext1(Mϵr ,Gr−1), for all r ⩾ 2, defined by:

0 → Gr−1 → Gr → Mϵr → 0. (33)

The fact that we always get non–trivial such extensions, for any r ⩾ 2, will
be proved in Corollary 3.2 below. In any case all vector bundles Gr, recursively
defined as in (33), are of rank r and Ulrich w.r.t. ξ, since extensions of Ulrich
bundles w.r.t. ξ are again Ulrich w.r.t. ξ. From the fact that any Gr is
recursively defined, Chern classes of Gr, for any r ⩾ 2, are obtained as linear
combination, with coefficients depending on r, of c1(Mi) or c1(Mi) ·c1(Mj), for
1 ⩽ i, j ⩽ 2. Precisely, Chern classes of Gr are:

c1(Gr) :=


(r + 1)ξ + φ∗OF0(0,−2t) + φ∗OF0

(
(r−3)

2 , r(t− 1)
)
,

if r is odd,

rξ + φ∗OF0

(
r
2 , r(t− 1)

)
, if r is even,

(34)

c2(Gr) =


ξ · φ∗OF0

(
2r2 − 2, (2t− 1)r2 − 2t+ 1

)
− (r−1)(2rt+r+14t−3)

2 F,

if r ⩾ 3 is odd,

ξ · φ∗OF0

(
2r2 − 2r, r(2rt− r − t+ 1)

)
− r(2rt+r+t−1)

2 F,

if r is even,

c3(Gr) =

{
4r3t− 2r3 − 8r2t+ 4r2 − 4rt+ 2r + 8t− 4, if r ⩾ 3 is odd,

4r3t− 2r3 − 10r2t+ 6r2 + 4rt− 4r, if r ⩾ 4 is even.

For any r ⩾ 1, from (1), the slope of Gr w.r.t. ξ is µ(Gr) = 13t− 3. Moreover,
from Theorem 1.4-(a), any such bundle Gr is strictly semistable and slope-
semistable, being obtained by extensions of Ulrich bundles.

Remark 3.1. We want to stress non-sporadic/non-mixed extensions studied in
[30], namely extensions using line bundle pair (L1, L2) as in Theorem A-(a-i),
existing for any pair (b, k) satisfying (3) and (6) when e = 0, have different
Chern classes c2 and c3. Thus, even when we restrict to the cases (b, k) =
(2t, 3t), with t ⩾ 1 any integer, moduli spaces determined by (deformations of)
bundles Gr as in (33) are different moduli spaces from those constructed in [30]
when (b, k) = (2t, 3t), t ⩾ 1.
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Among other things, the next result will allow us to prove the aforemen-
tioned claim that, from (33), we always get non-trivial extensions (cf. Corol-
lary 3.2). This fact, together with what proved in Lemma 3.3 below, will also
imply the existence of simple, so indecomposable, Ulrich vector bundles w.r.t.
ξ for any rank r ⩾ 2 (cf. Corollary 3.3 below).

Lemma 3.1. Let M denote any of the two line bundles M1 and M2 as in (29).
Then, for all integers r ⩾ 1, we have

(i) h2(Gr ⊗M∨) = h3(Gr ⊗M∨) = 0,

(ii) h2(G∨
r ⊗M) = h3(G∨

r ⊗M) = 0,

(iii) h1(Gr ⊗M∨
ϵr+1

) ⩾ min{6t− 3, 2t+ 1} ⩾ 3.

Proof. For r = 1, by definition, we have G1 = M1; therefore G1 ⊗ M∨ and
G∨
1 ⊗M are either equal to OX , if M = M1, or equal to M1−M2 and M2−M1,

respectively, if M = M2. Therefore (i) and (ii) hold true by computations as
in § 2.1. As for (iii), by (32) we have that Mϵ2 = M2 thus h1(G1 ⊗ M∨

2 ) =
h1(M1−M2) = 6t−3, as is § 2.1, the latter being always greater than or equal
to min{6t− 3, 2t+ 1} ⩾ 3.

Therefore, we will assume r ⩾ 2 and proceed by induction.
Regarding (i), since it holds for r = 1, assuming it holds for r − 1, then by

tensoring (33) with M∨ we get that

hj(Gr ⊗M∨) = 0, j = 2, 3,

because hj(Gr−1 ⊗ M∨) = 0, for j = 2, 3, by inductive hypothesis whereas
hj(Mϵr ⊗M∨) = 0, for j = 2, 3, since Mϵr ⊗M∨ is either OX , or M2 −M1, or
M1 −M2.

A similar reasoning, tensoring the dual of (33) by M , proves (ii).
To prove (iii), tensor (33) by M∨

ϵr+1
and use that h2(Gr−1 ⊗ M∨

ϵr+1
) = 0

by (i). Thus we have the surjection

H1(Gr ⊗M∨
ϵr+1

) ↠ H1(Mϵr ⊗M∨
ϵr+1

),

which implies that h1(Gr⊗M∨
ϵr+1

) ⩾ h1(Mϵr ⊗M∨
ϵr+1

). According to the parity
of r, we have that Mϵr ⊗ M∨

ϵr+1
equals either M1 − M2 or M2 − M1. From

computations as in § 2, h1(M1 −M2) = 6t− 3 whereas h1(M2 −M1) = 2t+ 1.
Notice that

min{6t− 3, 2t+ 1} =

{
6t− 3 = 2t+ 1 = 3, if t = 1,

2t+ 1 ⩾ 5, if t ⩾ 2.

Therefore one concludes.



SPORADIC MODULI SPACES OF URLICH BUNDLES (23 of 41)

Corollary 3.2. For any integer r ⩾ 1 there exist on X rank-r vector bundles
Gr, which are Ulrich w.r.t. ξ, with Chern classes as in (34), of slope w.r.t. ξ
given by µ(Gr) = 13t − 3 and which arise as non-trivial extensions as in (33)
if r ⩾ 2.

Proof. For r = 1, we have G1 = M1 and the statement holds true from Theorem
A-(a-ii) and computations in § 2.

For any r ⩾ 2, notice that Ext1(Mϵr ,Gr−1) ∼= H1(Gr−1 ⊗M∨
ϵr ). Therefore,

from Lemma 3.1-(iii) there exist non–trivial extensions as in (33), which there-
fore give rise to bundles Gr which are Ulrich with respect to ξ, whose Chern
classes are exactly as those computed in (34). Since they are Ulrich bundles,
the statement about their slope w.r.t. ξ directly follows from (1).

From Corollary 3.2, at any step we can always pick non–trivial extensions of
the form (33) and we will henceforth do so. Next result uses similar strategies
as in [30, Lemma4.3].

Lemma 3.2. Let r ⩾ 1 be an integer. Then we have

(i) h1(Gr+1 ⊗M∨
ϵr+1

) = h1(Gr ⊗M∨
ϵr+1

)− 1,

(ii) h1(Gr⊗M∨
ϵr+1

) =


(r+1)

2 h1(M1−M2)− (r−1)
2 = r+1

2 (6t− 3)− (r−1)
2 ,

if r is odd,
r
2h

1(M2−M1)− (r−2)
2 = r

2 (2t+ 1)− (r−2)
2 ,

if r is even.

(iii) h2(Gr ⊗ G∨
r ) = h3(Gr ⊗ G∨

r ) = 0,

(iv) χ(Gr⊗M∨
ϵr+1

) =


(r+1)

2 (1− h1(M1 −M2))− 1 = (r+1)
2 (4− 6t)− 1,

if r is odd,
r
2 (1− h1(M2 −M1)) = −rt,

if r is even.

(v) χ(Mϵr ⊗ G∨
r ) =


(r−1)

2 (1− h1(M1 −M2)) + 1 = (r−1)
2 (4− 6t) + 1,

if r is odd,
r
2 (1− h1(M2 −M1)) = −rt,

if r is even.

(vi) χ(Gr ⊗ G∨
r ) =


(r2−1)

4 (2−h1(M1−M2)−h1(M2−M1))+1=
(r2−1)

4 (4−8t)+1,

if r is odd,
r2

4 (2−h1(M1−M2)−h1(M2−M1))=
r2

4 (4−8t),

if r is even.
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Proof. (i) Consider the exact sequence in (33), with r replaced by r + 1.
From Ext1(Mϵr+1

,Gr) ∼= H1(Gr ⊗ M∨
ϵr+1

) and from the fact that the exact
sequence defining Gr+1 is constructed by taking a non–zero vector [Gr+1] ∈
Ext1(Mϵr+1 ,Gr), it follows that the coboundary map

H0(OX)
∂−→ H1(Gr ⊗M∨

ϵr+1
)

arising from

0 → Gr ⊗M∨
ϵr+1

→ Gr+1 ⊗M∨
ϵr+1

→ OX → 0, (35)

is non–zero, so it is injective; thus, (i) follows from the cohomology of (35).

(ii) Here one uses induction on r. For r = 1, the right hand side of the formula
yields 6t− 3 which is h1(G1 ⊗M∨

2 ) = h1(M1 −M2), see (30). When otherwise
r = 2, the right hand side of the formula is 2t + 1 which is h1(G2 ⊗ M∨

1 ) =
h1(M2 −M1) = 2t+ 1, as seen in (30), and from the exact sequence

0 → OX → G2 ⊗M∨
1 → M2 −M1 → 0,

obtained by (33) with r = 2 and tensored withM∨
1 , and the fact that hj(OX) =

0, for j = 1, 2.
Assuming by induction that formula as in (ii) holds true up to some given

integer r ⩾ 2, one has to show that it holds also for r + 1. Considering (33),
with r replaced by r + 1, and tensoring it by M∨

ϵr+2
we thus obtain

0 → Gr ⊗M∨
ϵr+2

→ Gr+1 ⊗M∨
ϵr+2

→ Mϵr+1
⊗M∨

ϵr+2
→ 0 (36)

If r is even, then by definition Mϵr+2
= M2 whereas Mϵr+1

= M1. Thus
h0(Mϵr+1

⊗M∨
ϵr+2

) = h0(M1−M2) = 0 and h1(Mϵr+1
⊗M∨

ϵr+2
) = h1(M1−M2) =

6t − 3. On the other hand, by Lemma 3.1-(i), h2(Gr ⊗ M∨
ϵr+2

) = 0. Thus,
from (36), we get:

h1(Gr+1 ⊗M∨
ϵr+2

) = 6t− 3 + h1(Gr ⊗M∨
ϵr+2

) = 6t− 3 + h1(Gr ⊗M∨
ϵr ),

as r and r + 2 have the same parity. Using (i), we have h1(Gr ⊗ M∨
ϵr ) =

h1(Gr−1 ⊗M∨
ϵr )− 1 therefore, by inductive hypothesis with r− 1 odd, we have

h1(Gr−1 ⊗M∨
ϵr ) =

r
2 (6t− 3)− (r−2)

2 . Summing up, we have

h1(Gr+1 ⊗M∨
ϵr+2

) = (6t− 3) +
r

2
(6t− 3)− (r − 2)

2
− 1,

which is easily seen to be equal to the right hand side expression in (ii), when
r is replaced by r + 1.
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If r is odd, the same holds for r + 2 whereas r + 1 is even. In this case
Mϵr+2

= M1, Mϵr+1
= M2 so h1(Mϵr+1

⊗M∨
ϵr+2

) = h1(M2 −M1) = 2t+ 1 and
one applies the same procedure as in the previous case.

(iii) We again use induction on r. For r = 1, formula (iii) states that hj(M1 −
M1) = hj(OX) = 0, for j = 2, 3, which is certainly true.

Assume now that (iii) holds up to some integer r ⩾ 1; we have to prove that
it holds also for r + 1. Consider the exact sequence (33), where r is replaced
by r + 1, and tensor it by G∨

r+1. From this we get that, for j = 2, 3,

hj(Gr+1 ⊗ G∨
r+1) ⩽ hj(Gr ⊗ G∨

r+1) + hj(Mϵr+1
⊗ G∨

r+1) = hj(Gr ⊗ G∨
r+1), (37)

the latter equality follows from hj(Mϵr+1 ⊗ G∨
r+1) = 0, j = 2, 3, as in Lemma

3.1-(ii).

Consider the dual exact sequence of (33), where r is replaced by r+1, and
tensor it by Gr. Thus, Lemma 3.1-(i) yields that, for j = 2, 3, one has

hj(Gr ⊗ G∨
r+1) ⩽ hj(Gr ⊗M∨

ϵr+1
) + hj(Gr ⊗ G∨

r ) = hj(Gr ⊗ G∨
r ). (38)

Now (37)–(38) and the inductive hypothesis yield hj(Gr+1 ⊗ G∨
r+1) = 0, for

j = 2, 3, as desired.

(iv) For r = 1, (iv) reads χ(M1−M2) = −h1(M1−M2) = 3− 6t, which is true
since hj(M1 − M2) = 0 for j = 0, 2, 3. For r = 2, (iv) reads χ(G2 ⊗ M∨

1 ) =
1−h1(M2−M1) = −2t and this holds true because if we take the exact sequence
(33), with r = 2, tensored by M∨

1 then

χ(G2 ⊗M∨
1 ) = χ(OX) + χ(M2 −M1) = 1− h1(M2 −M1) = 1− (2t+ 1),

as hj(M2 −M1) = 0 for j = 0, 2, 3.

Assume now that the formula holds up to a certain integer r ⩾ 2, we have
to prove that it also holds for r + 1. From (36) we get

χ(Gr+1 ⊗M∨
ϵr+2

) = χ(Gr ⊗M∨
ϵr+2

) + χ(Mϵr+1
⊗M∨

ϵr+2
).

If r is even, the same is true for r + 2 whereas r + 1 is odd. Therefore,

χ(Gr+1 ⊗M∨
ϵr+2

) = χ(Gr ⊗M∨
2 ) + χ(M1 −M2)

= χ(Gr ⊗M∨
2 )− h1(M1 −M2).

(39)

Then (35), with r replaced by r − 1, yields

χ(Gr ⊗M∨
2 ) = χ(Gr−1 ⊗M∨

2 ) + χ(OX) = χ(Gr−1 ⊗M∨
2 ) + 1. (40)
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Substituting (40) into (39) and using the inductive hypothesis with r − 1 odd,
we get

χ(Gr+1 ⊗M∨
2 ) = χ(Gr−1 ⊗M∨

2 ) + 1− h1(M1 −M2)

=
r

2
(1− h1(M1 −M2))− h1(M1 −M2)

=
(r + 2)

2
(1− h1(M2 −M1))− 1,

proving that the formula holds also for r + 1 odd.
Similar procedure can be used to treat the case when r is odd. In this case,

Mϵr+1
= M2 whereas Mϵr+2

= M1. Thus, from the above computations,

χ(Gr+1 ⊗M∨
1 ) = χ(Gr ⊗M∨

1 ) + χ(M2 −M1) = χ(Gr ⊗M∨
1 )− h1(M2 −M1).

As in the previous case, χ(Gr⊗M∨
1 ) = 1+χ(Gr−1⊗M∨

1 ) so, applying inductive

hypothesis with r− 1 even, we get χ(Gr ⊗M∨
1 ) = 1+ (r−1)

2 (1− h1(M2 −M1)).
Adding up all these quantities, we get

χ(Gr+1 ⊗M∨
ϵr+2

) = χ(Gr+1 ⊗M∨
1 ) =

r + 1

2
(1− h1(M2 −M1)),

so formula (iv) holds true also for r + 1 even.

(v) For r = 1, (v) reads χ(M1 − M1) = χ(OX) = 1, which is as stated. For
r = 2, (v) reads χ(M2⊗G∨

2 ) = 1−h1(M2−M1), which is once again as stated,
as it follows from the dual of sequence (33) tensored by M2.

Assume now that the formula holds up to a certain integer r ⩾ 2 and we
need to proving it for r+1. Dualizing (33), replacing r by r+1 and tensoring
it by Mϵr+1

we find that

χ(Mϵr+1 ⊗ G∨
r+1) = χ(Mϵr+1 ⊗M∨

ϵr+1
) + χ(Mϵr+1 ⊗ G∨

r ) (41)

= χ(OXn
) + χ(Mϵr+1

⊗ G∨
r ) = 1 + χ(Mϵr+1

⊗ G∨
r ).

The dual of sequence (33), with r replaced by r − 1, tensored by Mϵr+1
yields

χ(Mϵr+1 ⊗ G∨
r ) = χ(Mϵr+1 ⊗M∨

ϵr ) + χ(Mϵr+1 ⊗ G∨
r−1). (42)

Substituting (42) into (41) and using the fact that r + 1 and r − 1 have the
same parity, we get

χ(Mϵr+1
⊗ G∨

r+1) = 1 + χ(Mϵr+1
⊗M∨

ϵr ) + χ(Mϵr−1
⊗ G∨

r−1).

If r is even, then χ(Mϵr+1 ⊗M∨
ϵr ) = χ(M1−M2) = −h1(M1−M2) whereas,

from the inductive hypothesis with r−1 odd, χ(Mϵr−1
⊗G∨

r−1) = 1+ (r−2)
2 (1−

h1(M1 −M2)). Thus

χ(Mϵr+1
⊗ G∨

r+1) = 1− h1(M1 −M2) + 1 +
(r − 2)

2
(1− h1(M1 −M2)),
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the latter equals 1 + r
2 (1− h1(M1 −M2)), proving that the formula holds also

for r + 1 odd.
If r is odd, the strategy is similar; in this case one has χ(Mϵr+1

⊗M∨
ϵr ) =

χ(M2 − M1) = −h1(M2 − M1) and, by the inductive hypothesis with r − 1

even, χ(Mϵr−1 ⊗ G∨
r−1) =

(r−1)
2 (1− h1(M2 −M1)) so one can conclude.

(vi) We first check the given formula for r = 1, 2. We have χ(G1 ⊗ G∨
1 ) =

χ(M1 − M1) = χ(OX) = 1, which fits with the given formula for r = 1.
From (33), with r = 2, tensored by G∨

2 we get

χ(G2⊗G∨
2 ) = χ(M1⊗G∨

2 )+χ(M2⊗G∨
2 )

(v)
= χ(M1⊗G∨

2 )+1−h1(M2−M1). (43)

From the dual of (33), with r = 2, tensored by M1 we get

χ(M1 ⊗ G∨
2 ) = χ(M1 −M1) + χ(M1 −M2) (44)

= χ(OX)− h1(M1 −M2) = 1− h1(M1 −M2).

Combining (43) and (44), we get

χ(G2 ⊗ G∨
2 ) = 2− h1(M1 −M2)− h1(M2 −M1),

which again fits with the given formula for r = 2.
Assume now that the given formula is valid up to a certain integer r ⩾ 2;

we need to prove it holds for r+ 1. From (33), in which r is replaced by r+ 1,
tensored by G∨

r+1 and successively the dual of (33), with r replaced by r + 1,
tensored by Gr we get

χ(Gr+1 ⊗ G∨
r+1) = χ(Gr ⊗ G∨

r ) + χ(Gr ⊗M∨
ϵr+1

) + χ(Mϵr+1
⊗ G∨

r+1).

If r is even, then r+ 1 is odd and Mϵr+1
= M1. From (v) with (r+ 1) odd,

we get χ(Mϵr+1
⊗ G∨

r+1) = 1 + r
2 (1− h1(M1 −M2)), whereas from (iv) with r

even χ(Gr⊗M∨
ϵr+1

) = r
2 (1−h1(M2−M1)). Finally, by the inductive hypothesis

with r even, χ(Gr ⊗G∨
r ) =

r2

4 (2−h1(M1 −M2)−h1(M2 −M1)). Summing–up
the three quantities, one gets

χ(Gr+1 ⊗ G∨
r+1) = 1 +

(r + 1)2 − 1

4
(2− h1(M1 −M2)− h1(M2 −M1)),

proving that the formula holds for r + 1 odd.
If r is odd, then χ(Mϵr+1⊗G∨

r+1) =
r+1
2 (1−h1(M2−M1)), as it follows from

(v) with (r + 1) even, whereas χ(Gr ⊗M∨
ϵr+1

) = (r+1)
2 (1 − h1(M1 −M2)) − 1,

as predicted by (iv) with r odd. Finally, form the inductive hypothesis with r

odd, we have χ(Gr ⊗ G∨
r ) = 1 + (r2−1)

4 (2 − h1(M1 −M2) − h1(M2 −M1)). If
we add up the three quantities, we get

χ(Gr+1 ⊗ G∨
r+1) =

(r + 1)2

4
(2− h1(M1 −M2)− h1(M2 −M1)),
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finishing the proof.

Notice some fundamental remarks arising from the first step of the previous
iterative contruction in (33), which turns out from the proof of Theorem 2.2.
We set G1 = M1, which is an Ulrich line bundle w.r.t. ξ, of slope µ = µ(M1) =
13t−3; by considering non–trivial extensions (31), G2 turned out to be a simple
(so indecomposable) bundle, as it follows from [12, Lemma4.2] and from the
fact that G1 = M1 and Mϵ2 = M2 are both slope–stable, of the same slope
µ = 13t − 3 w.r.t. ξ and non-isomorphic line bundles. By construction, G2

turned out to be morover Ulrich, so strictly semistable, of slope µ = 13t − 3.
On the other hand, in the proof of Theorem 2.2 we showed that G2 deforms, in
an irreducible modular family, to a slope-stable Ulrich bundle U2 := U , of the
same slope w.r.t. ξ given by µ = 13t− 3, same Chern classes ci(U2) = c1(G2),
1 ⩽ i ⩽ 2. By semi-continuity in the irreducible modular family, cohomological
properties as in Lemma 3.1-(i-ii) and Lemma 3.2-(iii-iv-v-vi) hold true when G2

therein is replaced by U2. Therefore, from h2(U2⊗U∨
2 ) = 0 and simplicity of U2,

by Proposition 1.5 (cf. also [12, Proposition 2.10]) and dimensional computation
of h1(U2 ⊗U∨

2 ), U2 is a general point of the corresponding modular family and
it is also a smooth point, so that the irreducible modular family is generically
smooth. Up to shrinking to the open set of smooth points of such an irreducible
modular family, we may consider a smooth modular family of simple, slope-
stable, Ulrich bundles and the GIT-quotient relation restricted to such a smooth
modular family gives rise to an étale cover of an open dense subset of the
modular component M = M(2) (by the very definition of modular family,
cf. [12, pp. 1250083-9/10]), which is therefore generically smooth of the same
dimension of the modular family, i.e. h1(U2 ⊗ U∨

2 ), and whose general point is
[U2], described in Theorem 2.2 (cf. also Theorem B in Introduction).

By induction we can therefore assume that, up to a given integer r ⩾ 3, we
have already constructed a generically smooth, irreducible modular component
M(r−1) of the moduli space of bundles of rank (r−1), which are Ulrich w.r.t.
ξ, with Chern classes ci := ci(Gr−1) as in (34) (where in the formulas therein r
is obviously replaced by r− 1), for 1 ⩽ i ⩽ 3, and whose general point [Ur−1] ∈
M(r − 1) is slope-stable, of slope w.r.t. ξ given by µ(Ur−1) = 13t − 3 and
that satiesfies Lemma 3.1-(i-ii) and Lemma 3.2-(iii-iv-v-vi). Consider therefore
extensions

0 → Ur−1 → Fr → Mϵr → 0, (45)

with [Ur−1] ∈ M(r−1) general and with Mϵr defined as in (32), (33), according
to the parity of r. Notice that

Ext1(Mϵr ,Ur−1) ∼= H1(Ur−1 ⊗M∨
ϵr ).

Lemma 3.3. In the above set-up, one has

h1(Ur−1 ⊗M∨
ϵr ) ⩾ min{6t− 4, 2t} ⩾ 2.
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In particular, Ext1(Mϵr ,Ur−1) contains non-trivial extensions as in (45).

Proof. By assumption Ur−1 satisfies Lemma 3.1-(i), so one has

hj(Ur−1 ⊗M∨
ϵr ) = hj(Gr−1 ⊗M∨

ϵr ) = 0, j = 2, 3. (46)

Similarly, as by assumptions it also satisfies Lemma 3.2-(iv) (with r replaced
by r − 1), one has

χ(Ur−1 ⊗M∨
ϵr ) = χ(Gr−1 ⊗M∨

ϵr ). (47)

Thus, equality in (47), together with (46), reads

h0(Ur−1 ⊗M∨
ϵr )− h1(Ur−1 ⊗M∨

ϵr ) = h0(Gr−1 ⊗M∨
ϵr )− h1(Gr−1 ⊗M∨

ϵr ),

namely

h1(Ur−1 ⊗M∨
ϵr )

= h1(Gr−1 ⊗M∨
ϵr )−

(
h0(Gr−1 ⊗M∨

ϵr )− h0(Ur−1 ⊗M∨
ϵr )

)
(48)

where h1(Gr−1 ⊗ M∨
ϵr ) ⩾ min{6t − 3, 2t + 1} ⩾ 3, as from Lemma 3.1-(iii)

where r is replaced by r − 1. We claim that the following equality

h0(Gr−1 ⊗M∨
ϵr ) =

{
0 if r even
1 if r odd

(49)

holds true.
Assume for a moment that (49) has been proved; since Ur−1 is slope-

stable, of the same slope as Mϵr , and Ur−1 is not isomorphic to Mϵr , then
h0(Ur−1⊗M∨

ϵr ) = 0 as any non-zero homomorphism Mϵr → Ur−1 should be an
isomorphism. Thus, using (48), for any r ⩾ 2 one gets therefore

h1(Ur−1 ⊗ L∨
ϵr ) ⩾ h1(Gr−1 ⊗ L∨

ϵr )− 1

which, together with Lemma 3.1-(iii), proves the statement.
Thus, we are left with the proof of (49). To prove it, we will use induction

on r.
If r = 2, then G1 = M1, Mϵ2 = M2, thus h

0(G1 ⊗M∨
2 ) = h0(M1 −M2) = 0,

as it follows from (16) and from (19). If otherwise r = 3, then Gr−1 = G2 as
in (31) whereas Mϵ3 = M1, as in (32). Thus, tensoring (31) by M∨

1 , one gets

0 → OX → G2 ⊗M∨
1 → M2 −M1 → 0;

since h0(M2−M1)=0, from (17) and from (18), then h0(G2⊗M∨
1 )=h0(OX)=1.

Assume therefore that, up to some integer r − 2 ⩾ 2, (49) holds true and
take Gr−1 a non-trivial extension as in (33), with r replaced by r − 1, namely

0 → Gr−2 → Gr−1 → Mϵr−1
→ 0. (50)



(30 of 41) M. L. FANIA AND F. FLAMINI

If r is even, then r − 2 is even and r − 1 is odd, in particular Mϵr−1
= M1

and Mϵr = M2. Thus, tensoring (50) with M∨
ϵr = M∨

2 gives

0 → Gr−2 ⊗M∨
2 → Gr−1 ⊗M∨

2 → M1 −M2 → 0.

Since h0(M1 −M2) = 0 then

h0(Gr−1 ⊗M∨
ϵr ) = h0(Gr−1 ⊗M∨

2 ) = h0(Gr−2 ⊗M∨
2 ).

On the other hand, by (33), with r replaced by r − 2, namely

0 → Gr−3 → Gr−2 → Mϵr−2
→ 0, (51)

we have Mϵr−2 = M2, since r−2 is even as r is. Thus, tensoring (51) with M∨
ϵr

and taking into account that r is even, one gets

0 → Gr−3 ⊗M∨
2 → Gr−2 ⊗M∨

2 → OX → 0.

Notice that Gr−3⊗M∨
2 = Gr−3⊗M∨

ϵr−2
thus, since r−3 is odd, h0(Gr−3⊗M∨

2 ) =
0 by induction and by (49). On the other hand, the coboundary map

H0(OX) ∼= C ∂−→ H1(Gr−3 ⊗M∨
2 ) = H1(Gr−3 ⊗M∨

ϵr−2
) ∼= Ext1(Mϵr−2

,Gr−3)

is non-zero since, by iterative construction, Gr−2 is taken to be a non-trivial
extension; therefore ∂ is injective which implies h0(Gr−2 ⊗ M∨

2 ) = 0 and so
h0(Gr−1 ⊗M∨

ϵr ) = 0, as desired.
Assume now r to be odd thus, Mϵr = M1 whereas Mϵr−1 = M2. Tensor-

ing (50) with M∨
1 gives

0 → Gr−2 ⊗M∨
1 → Gr−1 ⊗M∨

1 → M2 −M1 → 0.

As h0(M2 −M1) = 0, then

h0(Gr−1 ⊗M∨
ϵr ) = h0(Gr−1 ⊗M∨

1 ) = h0(Gr−2 ⊗M∨
1 ).

Since r is odd, then also r − 2 is odd and one gets

0 → Gr−3 ⊗M∨
1 → Gr−2 ⊗M∨

1 → OX → 0.

Notice that h0(Gr−3 ⊗ M∨
1 ) = h0(Gr−3 ⊗ M∨

ϵr−2
) = 1, as it follows from (49)

with r replaced by r − 2 which is odd since r is. On the other hand, the
fact that Gr−2 arises from a non–trivial extension implies as before that the
coboundary map

H0(OX) ∼= C ∂−→ H1(Gr−3 ⊗M∨
1 ) = H1(Gr−3 ⊗M∨

ϵr−2
) ∼= Ext1(Mϵr−2

,Gr−3)

is once again injective. This gives h0(Gr−2⊗M∨
1 ) = h0(Gr−3⊗M∨

1 ) = 1, which
implies h0(Gr−1 ⊗M∨

ϵr ) = 1. This concludes the proof of the Lemma.
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Lemma 3.3 ensures that there exist non-trivial extensions arising from (45).
Then one has the following consequence.

Corollary 3.3. For a given r ⩾ 2, assume that M(r − 1) ̸= ∅ and that
[Ur−1] ∈ M(r − 1) general corresponds to a rank-r vector bundle, which is
Ulrich w.r.t. ξ and slope-stable, of slope µ(Ur−1) = 13t − 3 (where, for r = 2,
U1 = G1 = M1 and M(1) = {M1} is a singleton). Consider Mϵr as in (32)
and (33).

Then [Fr] ∈ Ext1(Mϵr ,Ur−1) general is a rank-r vector bundle, which is
simple, so indecomposable, Ulrich w.r.t. ξ, with Chern classes as in (34), of
slope w.r.t. ξ given by µ(Fr) = 13t−3 and with hj(Fr⊗F∨

r ) = 0, for 2 ⩽ j ⩽ 3.

Proof. Since Ur−1 and Mϵr are both Ulrich w.r.t. ξ, then it immediately follows
that Fr is of rank r, Ulrich w.r.t. ξ and of slope as stated, by (1).

Now, since Ur−1 is slope-stable, with Ur−1 not isomorphic to Mϵr (if r > 2,
rk(Ur−1) > 1 = rk(Mϵr ), if otherwise r = 2, U1 = M1 and Mϵ2 = M2 are not
isomorphic), and since moreover Ur−1 and Mϵr have the same slope µ = 13t−3
then, by [12, Lemma 4.2], general [Fr] ∈ Ext1(Mϵr ,Ur−1) corresponds to a
simple, so indecomposable, rank-r vector bundle, with Chern classes as in (34).

To prove the assertions on cohomology groups, consider the dual sequence
of (45) and tensor it by Fr, which gives

0 → M∨
ϵr ⊗Fr → F∨

r ⊗Fr → U∨
r−1 ⊗Fr → 0.

Thus,

hj(F∨
r ⊗Fr) ⩽ hj(M∨

ϵr ⊗Fr) + hj(U∨
r−1 ⊗Fr), 2 ⩽ j ⩽ 3. (52)

On the other hand taking (45) tensored, respectively, by M∨
ϵr and U∨

r−1 gives

0 → M∨
ϵr ⊗ Ur−1 → M∨

ϵr ⊗Fr → OX → 0

and

0 → U∨
r−1 ⊗ Ur−1 → U∨

r−1 ⊗Fr → U∨
r−1 ⊗Mϵr → 0,

from which one has

hj(M∨
ϵr ⊗Fr) ⩽ hj(M∨

ϵr ⊗ Ur−1) + hj(OX), 2 ⩽ j ⩽ 3,

and

hj(U∨
r−1 ⊗Fr) ⩽ hj(U∨

r−1 ⊗ Ur−1) + hj(U∨
r−1 ⊗Mϵr ), 2 ⩽ j ⩽ 3.

Thus from hj(OX) = 0, for j = 2, 3, from Lemmas 3.1-(i-ii) and 3.2-(iii) and
inductive assumptions on Ur−1, one deduces that hj(M∨

ϵr ⊗ Fr) = hj(U∨
r−1 ⊗

Fr) = 0, for j = 2, 3, which plugged in (52) gives hj(F∨
r ⊗ Fr) = 0, for

2 ⩽ j ⩽ 3, as stated.
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Take therefore [Fr] ∈ Ext1(Mϵr ,Ur−1) general. From Corollary 3.3 we know
that Fr is simple with h2(F∨

r ⊗ Fr) = 0. Therefore, by [12, Proposition 10.2],
Fr admits a smooth modular family which, with a small abuse of notation,
we denote by M(r) as the modular component of Theorem B in Introduction.
Indeed, by definition of smooth modular family as in [12, pp. 1250083-9/10], an
open dense subset of it will be an étale cover of the modular component M(r)
we are going to contruct; for this reason and to avoid heavy notation, they will
be sometimes identified.

For r ⩾ 2, such a smooth modular family M(r) contains a subscheme,
denoted by M(r)ext, which parametrizes bundles Fr arising from non–trivial
extensions as in (45).

Lemma 3.4. Let r ⩾ 2 be an integer and let Ur be a general member of the
modular family M(r). Then Ur is a vector bundle of rank r, which is Ulrich
with respect to ξ, with slope w.r.t. ξ given by µ := µ(Ur) = 13t − 3, and with
Chern classes as (34).

Moreover Ur is simple, in particular indecomposable, with

(i) χ(Ur ⊗ U∨
r ) =

{
(r2−1)

4 (4− 8t) + 1, if r is odd,
r2

4 (4− 8t), if r is even.

(ii) hj(Ur ⊗ U∨
r ) = 0, for j = 2, 3.

Proof. Since Fr is of rank r and Ulrich w.r.t. ξ, the same holds true for the
general member [Ur] ∈ M(r), since Ulrichness is an open property in irreducible
families as M(r). In particular, from (1), one has µ(Ur) = µ(Fr) = µ(Ur−1).
For the same reasons, Chern classes of Ur coincide with those of Fr which, in
turn, are as in (34).

Since Fr is simple, as proved in Corollary 3.3, by semi-continuity on M(r)
one has also h0(Ur ⊗ U∨

r ) = 1, i.e. Ur is simple, in particular it is indecompos-
able.

Property (ii) follows by semi-continuity in the smooth modular familyM(r)
when Ur specializes to Fr and from Corollary 3.3.

Property (i) follows from Lemma 3.2-(vi), since the given χ depends only
on the Chern classes of X, which are fixed, and on the Chern classes of the two
factors, which in turn are those as Fr and so of Gr as well.

We will prove that the general member Ur in the smooth modular family
M(r) is a slope–stable bundle w.r.t. ξ. To prove it, we will make use of the
following auxiliary result, whose proof is identical to that of [30, Lemma4.6],
to which the interested reader is referred.

Lemma 3.5. Let r ⩾ 2 be an integer and assume that the element Fr of the
subscheme M(r)ext sits in a non–splitting sequence like (45), with [Ur−1] ∈
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M(r−1) general. Then, if D is a destabilizing subsheaf of Fr, then D∨ ∼= U∨
r−1

and (Fr/D)∨ ∼= M∨
ϵr ; if furthermore Fr/D is torsion–free, then D ∼= Ur−1 and

Fr/D ∼= Mϵr .

Proof. See the proof of [30, Lemma4.6].

Lemma 3.6. Let r ⩾ 2 be an integer. Take [Ur−1] ∈ M(r − 1) a general point,
where M(r−1) is the modular component as in Theorem B. Then, the modular
family M(r) as in Lemma 3.4 is generically smooth, of dimension

dim(M(r)) =

{
(r2−1)

4 (8t− 4), if r is odd,
r2

4 (8t− 4) + 1, if r is even.

Furthermore M(r) properly contains the locally closed subscheme M(r)ext,
namely dim(M(r)ext) < dim(M(r)).

Proof. Let Ur be a general member of the smooth modular family M(r). From
Lemma 3.4, one has h0(Ur ⊗ U∨

r ) = 1, i.e. it is simple, and hj(Ur ⊗ U∨
r ) = 0

for j = 2, 3.
From the fact that h2(Ur⊗U∨

r ) = 0, it follows that the modular familyM(r)
is generically smooth of dimension dim(M(r)) = h1(Ur ⊗ U∨

r ) (cf. e.g. [12,
Proposition 2.10]). On the other hand, since h3(Ur⊗U∨

r ) = 0 and h0(Ur⊗U∨
r ) =

1, we have h1(Ur ⊗U∨
r ) = −χ(Ur ⊗U∨

r )+1. Therefore, the formula concerning
dim(M(r)) directly follows from Lemma 3.4-(i), since the given χ depends only
on the Chern classes of X, which are fixed, and on the Chern classes of the two
factors, which in turn are those as Fr and so of Gr as well.

Similarly [Ur−1] ∈ M(r − 1) general is by assumptions slope-stable, so in
particular simple, thus it satisfies h0(Ur−1 ⊗ U∨

r−1) = 1. Thus, using Lemma
3.4-(ii), the same reasoning as above shows that

dim(M(r − 1)) = h1(Ur−1 ⊗ U∨
r−1) = −χ(Ur−1 ⊗ U∨

r−1) + 1, (53)

where χ(Ur−1⊗U∨
r−1) as in Lemma 3.4-(i) (with r replaced by r−1). Morover,

by (48), we have

dim(Ext1(Mϵr ,Ur−1)) = h1(Ur−1 ⊗M∨
ϵr ) ⩽ h1(Gr−1 ⊗M∨

ϵr ), (54)

where the latter is as in Lemma 3.2-(ii) (with r replaced by r − 1). Therefore,
by the very definition of M(r)ext and by (53)-(54), we have

dim(M(r)ext) ⩽ dim(M(r − 1)) + dim(P(Ext1(Mϵr ,Ur−1))

= −χ(Ur−1 ⊗ U∨
r−1) + 1 + h1(Ur−1 ⊗M∨

ϵr )− 1

⩽ −χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗M∨

ϵr ).
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On the other hand, from the above discussion,

dim(M(r)) = −χ(Ur ⊗ U∨
r ) + 1.

Therefore to prove that dim(M(r)ext) < dim(M(r)) it is enough to show that
for any integer r ⩾ 2 the following inequality

−χ(Ur−1 ⊗ U∨
r−1) + h1(Gr−1 ⊗M∨

ϵr ) < −χ(Ur ⊗ U∨
r ) + 1

holds true. Notice that the previous inequality reads also

−χ(Ur ⊗ U∨
r ) + 1 + χ(Ur−1 ⊗ U∨

r−1)− h1(Gr−1 ⊗M∨
ϵr ) > 0, (55)

which is satisfied for any r ⩾ 2, as we can easily see.
Indeed use Lemmas 3.4-(i) and 3.2-(ii): if r is even, the left hand side of (55)

reads (r)
2 (8t− 4) + 2 + (r−2)

2 which obviously is positive since r ⩾ 2 and t ≥ 1;

if r is odd, then r ⩾ 3 and the left hand side of (55) reads r−1
2 (6t− 5) + (r−3)

2
which obviously is positive under the assumptions r ⩾ 3, t ⩾ 1.

We can now prove slope–stability w.r.t. ξ of the general member of modular
family M(r).

Proposition 3.4. Let r ⩾ 1 be an integer. The general member Ur in the
modular family M(r) is a bundle which is slope–stable w.r.t. ξ.

Proof. We use induction on r, the result being obviously true for r = 1, where
U1 = M1, M(1) = {M1} is a singleton, and M(1)ext = ∅.

Assume therefore r ⩾ 2 and, by contradiction, that the general member of
M(r) were not slope–stable, whereas the general point [Ur−1] ∈ M(r − 1) of
the modular component corresponds to a bundle which is slope-stable w.r.t. ξ.
Then, similarly as in [20, Proposition 4.7], we may find a one-parameter family

of bundles {U (t)
r } over the unit disc ∆ such that U (t)

r is a general member of

M(r) for t ̸= 0 and U (0)
r lies in M(r)ext, and such that we have a destabilizing

sequence
0 → D(t) → U (t)

r → Q(t) → 0 (56)

for t ̸= 0, which we can take to be saturated, that is, such that Q(t) is tor-
sion free, whence so that D(t) and Q(t) are (Ulrich) vector bundles (see [12,
Theorem 2.9] or [9, (3.2)]).

The limit of P(Q(t)) ⊂ P(U (t)
r ) defines a subvariety of P(U (0)

r ) of the same
dimension as P(Q(t)), whence a coherent sheaf Q(0) of rank rk(Q(t)) with a

surjection U (0)
r → Q(0). Denoting by D(0) its kernel, we have rk(D(0)) =

rk(D(t)) and c1(D(0)) = c1(D(t)). Hence, (56) specializes to a destabilizing

sequence for t = 0. Lemma 3.5 yields that D(0)∨ (respectively, Q(0)∨) is the
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dual of a member of M(r − 1) (resp., the dual of Mϵr ). It follows that D(t)∨

(resp., Q(t)∨) is a deformation of the dual of a member of M(r − 1) (resp.,
a deformation of M∨

ϵr ), whence that D(t) is a deformation of a member of

M(r − 1), as both are locally free, and Q(t) ∼= Mϵr , for the same reason.
In other words, the general member of M(r) is an extension of Mϵr by a

member of M(r − 1). Hence M(r) = M(r)ext, contradicting Lemma 3.6.

The collection of the previous results gives the following

Theorem 3.5. Let (X, ξ) ∼= (P(E),OP(E)(1)) be a 3-fold scroll over F0, with
E = E0 satisfying Assumptions 1.7 Let φ : X → F0 be the scroll map and F be
the φ-fiber. Let r ⩾ 2 be any integer. Then, for any integer t ⩾ 1, the moduli
space of rank-r vector bundles Ur on X which are Ulrich w.r.t. ξ and with
Chern classes as in (34), is not empty and it contains a generically smooth
component M(r) of dimension

dim(M(r)) =

{
(r2−1)

4 (8t− 4), if r is odd,
r2

4 (8t− 4) + 1, if r is even.

Moreover the general point [Ur] ∈ M(r) corresponds to a slope-stable vector
bundle, of slope w.r.t. ξ given by µ(Ur) = 13t− 3.

In particular, there are no slope-stable-Ulrich-rank gaps on X0 w.r.t. the
chosen Chern classes.

Proof. It directly follows from Theorem 2.2, (34), (1) and from Lemmas 3.4, 3.6
and Proposition 3.4 where, as already mentioned, by a small abuse of notation
we have used the same symbol M(r) for the smooth modular family which,
via GIT-quotient, gives rise by an étale cover to an open, dense subset of
the generically smooth, irreducible component of the corresponding moduli
space.

4. Higher-rank mixed Ulrich bundles on 3-fold scrolls
over F0

In this section we briefly mention how to construct other positive-dimensional
sporadic modular components of moduli spaces which arise by a similar ap-
proach as in § 3, but with the use of mixed pairs (Li,Mj), 1 ⩽ i, j ⩽ 2, as in
Theorem A. Such components will be therefore different from those determined
in Theorem B.

Looking back to rank-2 cases, our starting point will be to consider the
positive-dimensional component M := M(2), where M(2) as either in Theo-
rem 2.2, or in Theorem 2.3-(2) and (3).
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If [U2] ∈ M(2) is a general point, then one can consider as in (45) extensions
Ext1(A,U2), where A runs among all possible choices A = L1, L2,M1,M2 as
in Theorem A-(a). This gives rise to rank-3 vector bundles, which are Ulrich
w.r.t. ξ on X and whose Chern classes are given by

c1 := c1(U2) + c1(A), c2 := c2(U2) + c1(U2) · c1(A), c3 := c2(U2) · c1(A).

Whenever one gets non-trivial extensions, one can compute cohomological prop-
erties of the general bundle in such an extension space similarly as done in
Lemmas 3.1, 3.2 and 3.3. In such a case, reasoning as in Corollary 3.3, such a
general bundle turns out to be simple and whose cohomological properties com-
puted implying that it sits in a smooth modular family as in Proposition 1.5.

Then one deduces properties of the general bundle U3 in the given modular
family as done in Lemma 3.4. Using same strategies as in Lemma 3.6 and in
Proposition 3.4, such U3 gives rise to a general point of a generically smooth
modular component M(3) of computed dimension. Then, one can recursively
apply the same procedure to this new U3 by pairing it in extensions via an Ulrich
line bundle A, where A runs among all possible choices A = L1, L2,M1,M2 as
in Theorem A-(a).

It is clear from the above description that the number of possible cases
to study at each step grows as the rank increases. For this reason, since the
procedures to use in any of the cases are exactly as in the previous section, we
will limit ourselves to considering one significant case giving rise to sporadic
modular components which are different from those determined in Theorem B;
these will be called extra sporadic modular components.

Let us therefore consider our starting step as given by [U2] ∈ M(2) general
as in Theorem 2.2. In particular one has

c1(U2) = c1(M1) + c1(M2) and c2(U2) = c1(M1) · c1(M2),

namely U2 arises as a suitable deformation of vector bundle extensions by means
of the sporadic pair (M1,M2). We then need to take an Ulrich line bundle A,
running among all possible choices A = L1, L2,M1,M2 as in Theorem A-(a).

From what proved in § 3, we can avoid to extend U2 by A = M1, since this
case has been already considered therein.

(i) if A = L1, one computes that dim(Ext1(L1,U2)) = h1(U2(−L1)) = 0, as it
follows by semi-continuity and by (9) tensored by −L1. Therefore, extension
via L1 does not provide an indecomposable bundle and we therefore get rid of
this case.

(ii) if A = L2, to compute dim(Ext1(L2,U2)) = h1(U2(−L2)) we first ob-
serve that, since U2 and L2 are both slope-stable and of the same slope, then
h0(U2(−L2)) = 0. We consider (9) tensored by −L2 which gives

0 → M1 − L2 = ξ + φ∗OF0(0,−3t) → F(−L2) → M2 − L2 = −ξ + φ∗OF0(1, t) → 0,
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from which one gets hj(F(−L2)) = 0, for 2 ⩽ j ⩽ 3, therefore the same holds
true for hj(U2(−L2)) = 0, 2 ⩽ j ⩽ 3, by semi-continuity. Thus, by the invari-
ance of Euler characteristic in irreducible flat families, one gets h1(U2(−L2)) =
h1(F(−L2)) where the latter can be computed by the previous exact sequence.
Since h1(M2−L2) = h1(−ξ+φ∗OF0(1, t)) = 0, then h1(F(−L2)) = h1(M1−L2)
which, by Leray, equals h1(F0, E ⊗ OF0

(−3t f)) = 10t− 5, as in (28).
Therefore, dim(Ext1(L2,U2)) = 10t − 5 so we have non-trivial extensions

of rank 3 and, as in Corollary 3.3, [F3] ∈ Ext1(L2,U2) general turns out to be
simple, so indecomposable, Ulrich and with

c1(F3) = c1(U2) + c1(L2) = c1(M1) + c1(M2) + c1(L2) = 3ξ + φ∗OF0
(3, 2t− 3)

(similar computations for the other Chern classes).

(iii) if otherwise A = M2, as above one computes that dim(Ext1(M2,U2)) =
h1(U2(−M2)) = 6t−4, and [F ′

3] ∈ Ext1(M2,U2) general turns out to be simple,
so indecomposable, Ulrich and with

c1(F ′
3) = c1(U2) + c1(M2) = c1(M1) + 2c1(M2) = 2ξ + φ∗OF0(4, 6t− 2)

(similar computations for the other Chern classes).

To go on, in any of the above cases, we should now consider pairings of the
general rank-3 with an Ulrich line bundle A, with A running once again among
all possible choices A = L1, L2,M1,M2 as in Theorem A-(a), in order to get
non-trivial rank-4 extensions and so on.

We will limit ourselves to perform extensions of the sporadic bundle [F3] ∈
Ext1(L2,U2) general by means of an Ulrich line bundle A chosen among e.g.
non-sporadic pairs (L1, L2). On the other hand, as observed in § 3, if in the
next step we considered further extensions Ext1(L2,F3), taking into account
the associated coboundary map it is easy to see that the dimension of such an
extension space drops by one with respect to that of Ext1(L2,U2). Therefore,
keeping L2 fixed on the right side of the extensions, after finitely many steps
we would get only splitting bundles. To avoid this fact we proceed once again
by taking alternating extensions, namely

0 → U2 → F3 → L2 → 0, 0 → F3 → G4 → L1 → 0, . . . ,

and so on, that is, defining

τr :=

{
1, if r ⩾ 4 is even,

2, if r ⩾ 3 is odd,
(57)

we take successive [Gr] ∈ Ext1(Lτr ,Gr−1), for all r ⩾ 3, defined by:

0 → Gr−1 → Gr → Lτr → 0, (58)
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where, for r = 3, Gr−1 = G2 := U2 and Gr = G3 = F3. In particular, from
the fact that c1(U2) = c1(M1) + c1(M2) and from (58), one gets c1(Gr) =
c1(M1) + c1(M2) + ⌊ r−1

2 ⌋ c1(L2) + ⌊ r−2
2 ⌋ c1(L1), namely

c1(Gr) = 2ξ + φ∗OF0
(4, 6t− 2) +

(⌊
r−1
2

⌋)
(ξ + φ∗OF0

(−1, 2t− 1))

+
(⌊

r−2
2

⌋)
(ξ + φ∗OF0

(2,−1)),

which reads

c1(Gr) :=

{
rξ + φ∗OF0

(
(r−3)

2 , (r − 1)(t− 1) + 1
)
, if r is odd,

rξ + φ∗OF0

(
r
2 , (r − 2)(t− 1)

)
, if r is even,

(59)

(similar formulas can be determined for the other Chern classes).
Applying similar computations as in Lemma 3.1, with M1 and M2 replaced

by L1 and L2, we deduce as in Corollary 3.2 that there exist rank-r vector
bundles Gr, which are Ulrich w.r.t. ξ, with c1 as in (59), of slope µ(Gr) = 13t−3
and which arise as non-trivial extensions as in (58). Applying then similar
strategies as in Lemma 3.2, we find recursive formulas:

χ(Gr ⊗G∨
r ) = χ(L∨

τr ⊗Gr−1)+χ(Gr−1⊗G∨
r−1)+χ(OX)+χ(G∨

r−1⊗Lτr ). (60)

By induction, we can argue as in Lemma 3.3 and Corollary 3.3 to get that,
starting from [Ur−1] ∈ M(r − 1) general, for any r ⩾ 2, corresponding to
a rank-(r − 1) vector bundle, which is Ulrich w.r.t. ξ and slope-stable, of
slope µ(Ur−1) = 13t − 3, whose first Chern class is as in (59), then [Fr] ∈
Ext1(Lτr ,Ur−1) general is a rank-r vector bundle, which is simple, so indecom-
posable, Ulrich w.r.t. ξ, with first Chern class as in (59), of the same slope and
with hj(Fr ⊗F∨

r ) = 0, for 2 ⩽ j ⩽ 3.
So, from Proposition 1.5, Fr sits in a smooth modular family M(r), whose

general element Ur is, reasoning as in Lemma 3.4, Ulrich w.r.t. ξ, of rank r,
with slope w.r.t. ξ given by µ := µ(Ur) = 13t − 3, with first Chern class
as in (59), with hj(Ur ⊗ U∨

r ) = 0, for j = 2, 3 (by semi-continuity on M(r))
and with χ(Ur ⊗ U∨

r ) as in (60) (because Gr and Ur have same Chern classes).
Using same reasoning as in Lemmas 3.5 and 3.6, one can show that the modular
family M(r) is generically smooth, of dimension

h1(Ur ⊗ U∨
r ) = 1− χ(Gr ⊗ G∨

r ),

as it follows from the vanishings hj(Ur⊗U∨
r ) = 0, for j = 2, 3, and h0(Ur⊗U∨

r ) =
1, from simplicity of Ur. Thus, one can conclude similarly as in Proposition 3.4.

Therefore, to conclude the proof of Theorem C, one is reduced to com-
pute (60). Applying similar strategies as in Lemma 3.2, from (60) one gets:

χ(Gr ⊗ G∨
r ) =

{
r2(5−10t)−4r+8t+4

4 , if r is even,
2r2(2−t)−(14t+11)r+(24t+15)

2 , if r is odd
.
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Therefore, dim(M(r)) = h1(Ur ⊗ U∨
r ) = 1 − χ(Gr ⊗ G∨

r ) is as stated in
Theorem C.
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