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Hecke modifications of vector bundles
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Abstract. Hecke modifications of vector bundles have played a sig-
nificant role in several areas of mathematics. They appear in subjects
ranging from number theory to complex geometry. This article intends
to be a friendly introduction to the subject. We give an overview of
how Hecke modifications appear in the literature, explain their origin
and their importance in number theory and classical algebraic geome-
try. Moreover, we report the progress made in describing Hecke modifi-
cations explicitly and why these explicit descriptions are important. We
describe all the Hecke modifications of the trivial rank 2 vector bundle
over a fixed point of degree 5 on the projective line, as well as all the
vector bundles over a certain elliptic curve, which admit a rank 2 and
degree 0 trace bundle as a Hecke modification. This result is not present
in existing literature.
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1. Introduction

Let X be a smooth projective curve defined over an arbitrary field F. Let
D be an effective divisor on X. Given E , E ′ two vector bundles (locally free
sheaves) of the same rank over X, roughly speaking, we say that E ′ is a Hecke
modification of E at D if E ′ is contained in E (as a locally free sheaf) with E/E ′
isomorphic to the structural sheaf at D. In this essay, we suppose that D is
supported in a single closed point of X.

Hecke modifications of vector bundles have been studied, at least implicitly,
since Weil [61] and as we shall see, appear naturally in different branches of
pure mathematics. The name Hecke comes from their connection with num-
ber theory, as it is related to the action of Hecke operators on the space of
automorphic forms, see [29]. Hence, it plays an important role in the geomet-
ric Langlands correspondence, proved by Drinfeld and Lafforgue for GLn over
global function fields, cf. [21, 37]. In the remarkable work [60], Hecke modifi-
cations appear in Tyurin’s parametrization of the set of fixed rank and degree
vector bundles over a Riemann surface.
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In number theory, the explicit descriptions of Hecke modifications allow us
to explicitly calculate the action of Hecke operators on automorphic forms. This
has been used to investigate the space of (unramified) automorphic forms and
its subspaces spanned by eigenforms, cusp forms and toroidal forms. Among
other things, one can use Hecke modifications to describe the support of cusp
forms, compute its dimension and obtain a new proof for the Riemann Hypoth-
esis for curves defined over a finite field. For more content in this direction,
see [40, 42]. When F is a local field, an analogous theory has been developed
in [22, 25]. Recently, May 2024, a team of nine mathematicians led by Den-
nis Gaitsgory and Sam Raskin, claimed a proof of the geometric Langlands
correspondence in the characteristic zero case.

In algebraic geometry, Hecke modifications have been used as a tool for
decades beginning with [46], where they are used to study the moduli space
of rank 2 vector bundles with fixed determinant and in [45], where a connec-
tion between Hecke modifications and the parabolic structure of a given vector
bundle is established. This connection continues to be explored, as is evident
from recent works such as [1, 8, 31].

Intention and scope of this article

The purpose of this survey is to provide a friendly introduction to Hecke mod-
ifications of vector bundles and how they appear in various contexts in the
literature. We consider vector bundles defined over a smooth projective curve
defined over a field F, which is most of the time, either the complex field or a
finite field. The article is inspired by the (in progress) joint works between the
authors.

In the second section, we introduce the main subject of this work and de-
scribe its first properties. The third section is devoted to explaining the origin
of the name Hecke modifications and its connection with number theory. In the
fourth section, we exhibit the importance of the calculation of explicit Hecke
modifications in both cases where either F is a finite field or the complex field.
When F is a finite field, we introduce the theory of Hall algebras and show how
to use it to calculate the Hecke modifications of a given vector bundle. The last
section is devoted to another interpretation of Hecke modifications of rank 2
vector bundles over the complex numbers: the elementary transformations.
Throughout the article, we focus our attention on GLn bundles over a smooth
projective curve defined over the field F. However, most of the definitions and
results also work if we replace GLn by G a (semisimple) reductive connected
algebraic group.
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2. The name of the game

Let X be a smooth projective curve defined over an arbitrary field F. By |X|
we denote the set of closed points of X. Given x ∈ |X| and r ∈ N≥1, let K⊕rx

be the skyscraper sheaf supported at x with stalk F(x)⊕r, where F(x) is the
residue field of x. We denote by CohX the category of coherent sheaves on X
and by BunnX the set of isomorphism classes of rank n vector bundles (of any
degree) on X.

We shall consider vector bundles on X as locally free sheaves on X. Hence,
we consider BunnX to be embedded in the category Coh(X) of coherent sheaves
over X, cf. [30, Ex. II.5.18]. We denote Bun1 X by PicX, which is an abelian
group with tensor product as the group operation.

For a fixed F ∈ Coh(X), two exact sequences of coherent sheaves on X

0 −→ F1 −→ F −→ F2 −→ 0 and 0 −→ F ′1 −→ F −→ F ′2 −→ 0

are isomorphic, if there are isomorphisms F1 → F ′1 and F2 → F ′2 such that

0 // F1
//

∼=��

F // F2
//

∼=��

0

0 // F ′1 // F // F ′2 // 0

commutes.

Definition 2.1. If E , E ′ ∈ BunnX, x ∈ |X| and r ∈ N≥1, we denote by

[E ′ x−→
r
E ] the isomorphism class of a short exact sequence

0 −→ E ′ −→ E −→ K⊕rx −→ 0.

Moreover, we say that E ′ is a Hecke modification of E (or E is Hecke modified

in E ′) at x with weight r. When r = 1, we denote [E ′ x−→
r
E ] simply by [E ′ x−→ E ].

Remark 2.2. Let E , E ′ ∈ BunnX, x ∈ |X| and r ∈ N≥1. The requirement that
E ′ is a Hecke modification of E at x with weight r, is equivalent to having a
morphism ξ : E ′ → E which satisfies the following conditions:

1. the induced maps on stalk level ξy : E ′y → Ey are isomorphisms for every
y ∈ X, y ̸= x; and

2. close to x, choosing bases Ex ∼= O⊕nX,x and E ′x ∼= O⊕nX,x, we must have the
following commutative diagram

E ′x
ξx //

∼=��

Ex
∼=��

O⊕nX,x

ξx // O⊕nX,x
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where

ξx =

(
In−r

πxIr

)
Ik is the k× k identity matrix (the empty entries in a matrix means zero
entries) and πx ∈ OX,x is an uniformizer at x.

Observe that (1) and (2) ensure that ξ is injective, since it is injective at level
of stalks, cf. [30, Proposition 1.1].

Definition 2.3. Let Hr
x(X) be the set of isomorphism classes of Hecke modi-

fications in X at x of weight r, i.e.,

Hr
x(X) :=

{
[E ′ x−→

r
E ]

∣∣ E , E ′ ∈ Bunn X
}
.

Remark 2.4. The above set may be seen as the set of F-rational points of the
Hecke stack. We do not give here the definition of Hecke stack, since we would
like to keep this survey as accessible as possible. The interested reader may
consult [12, Section 3.2 of Chapter 12].

Note that there are two natural maps from Hr
x(X) to Bunn X:

h← : Hr
x(X) −→ Bunn X

[E ′ x−→
r
E ] 7−→ E ′

and

h→ : Hr
x(X) −→ Bunn X

[E ′ x−→
r
E ] 7−→ E .

Let [E ′ x−→
r
E ] ∈ Hr

x(X), passing to the stalk at x we obtain

0→ E ′x → Ex → F(x)⊕r → 0.

The above short exact sequence is no longer injective on the fiber at x (i.e.,
after tensoring by F(x)). Thus, we may write the restriction to the fiber at x
as

0→ ker(E ′x ⊗ F(x)→ Ex ⊗ F(x))→ E ′x ⊗ F(x)→ Ex ⊗ F(x)→ F(x)⊕r → 0.

The previous construction sends [E ′ x−→
r
E ] to a subspace of dimension r in

E ′x ⊗ F(x) and to a subspace of dimension n− r in Ex ⊗ F(x).
Conversely, given a subspace V ⊂ E ′x ⊗ F(x) of dimension r, we define E to

be the subsheaf of E ′(x) := E ′ ⊗OX(x) whose set of sections over an open set
U ⊆ X is given by

E(U) :=
{
s ∈ E ′(x)(U) | s = π−1x t, t ∈ E ′(U), and if x ∈ U, then t(x) ∈ V

}
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where πx is an uniformizer on X at x. Thus, we obtain

0 −→ E ′ −→ E −→ K⊕rx −→ 0,

a short exact sequence of coherent sheaves.

On the other hand, given a subspace W ⊂ Ex⊗F(x) of dimension n− r, we
define E ′ to be the subsheaf of E whose set of sections over an open set U ⊆ X
is given by

E ′(U) :=
{
s ∈ E(U) | if x ∈ U, then s(x) ∈W

}
.

Hence we also obtain

0 −→ E ′ −→ E −→ K⊕rx −→ 0

a short exact sequence of coherent sheaves. The above discussion yields the
following.

Theorem 2.5. Let E , E ′ ∈ Bunn X, x ∈ |X| and r ∈ Z, 0 < r ≤ n. The
fibers of h→ over E can be canonically identified with the set of dimension n−r
subspaces inside the F(x)-vector space Ex ⊗ F(x). In other words, (h→)−1(E)
is the set of F(x)-rational points of the Grassmannian Grn−r(Ex). The same
is true for h←, in which case we obtain that (h←)−1(E ′) is the space of F(x)-
rational points of the Grassmannian Grr(E ′x).

Choosing bases for Ex ∼= O⊕nX,x, and E ′x ∼= O
⊕n
X,x we obtain a noncanonical

version of the previous theorem.

Theorem 2.6. Let E , E ′ ∈ Bunn X, x ∈ |X| and r ∈ Z, 0 < r ≤ n. The
fibers (h→)−1(E) can be non-canonically identified with the set of F(x)-rational
points of the Grassmannian Grn−r(F(x)⊕n). Moreover, (h←)−1(E ′) can be non-
canonically identified with the space of F(x)-rational points of the Grassman-
nian Grr(F(x)⊕n).

Definition 2.7. For a fixed E ∈ Bunn X, we define the space of Hecke modi-
fications Hr

x(X, E) in E at x of weight r to be the set (h→)−1(E) i.e.,

Hr
x(X, E) :=

{
[E ′ x−→

r
E ]

∣∣ E ′ ∈ Bunn X
}
.

Remark 2.8. The above theorem tell us that Hr
x(X, E) has the structure of an

algebraic variety (a complex manifold in the case F = C) that is non-canonically
isomorphic to the Grassmannian Grn−r(F(x)⊕n).
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3. The origin

In this section we assume F = Fq to be the finite field with q elements, where q
is a prime power. As before, X is a geometrically irreducible smooth projective
curve defined over F = Fq. Let E , E ′ ∈ Bunn X and K⊕rx be the skyscraper
sheaf supported at x. We now discuss why such equivalence classes

0→ E ′ → E → K⊕rx → 0

of short exact sequences are called Hecke modifications!
Let F := Fq(X) be the function field of X and g(X) denote the genus

of X. As in the previous section, |X| is the set of closed points of X or,
equivalently, the set of places in F . For x ∈ |X|, we denote by Fx the completion
of F at x, by Ox the ring of integers of Fx, by πx ∈ Ox (we can assume
πx ∈ F ) an uniformizer of x and by qx the cardinal of the residue field F(x) :=
Ox/(πx) ∼= Fqx . Moreover, we denote by |x| the degree of x, which is defined
by the extension field degree [F(x) : Fq]. In other words, qx = q|x|. Let | · |x be
the absolute value of Fx (resp. F ) such that |πx|x = q−1x , we call | · |x the local
norm for each x ∈ |X|.

Let A be the adele ring of F and A× the idele group. We denote by OA :=∏
Ox where the product is taken over all places x of F . We may consider Fx

as embedded into the adele ring A, by sending an element a ∈ Fx to the adele
(ay)y∈|X| with ax = a and ay = 0 for y ̸= x. Let G(A) := GLn(A), Z be the
center of G(A), G(F ) := GLn(F ), and K := GLn(OA) the standard maximal
compact open subgroup of G(A). For x ∈ |X|, consider Gx = GLn(Fx) and
Zx the center of Gx. Note that G(A) comes together with the adelic topology
that makes G(A) into a locally compact group. Hence, G(A) is endowed with
a Haar measure. We fix the Haar measure on G(A) for which vol(K) = 1. The
topology of G(A) has a neighborhood basis V of the identity matrix that is
given by all subgroups

K ′ =
∏

x∈|X|

K ′x <
∏

x∈|X|

Kx = K

where Kx := GLn(Ox), such that for all x ∈ |X| the subgroup K ′x of Kx is
open and consequently of finite index and such that K

′

x differs from Kx only
for a finite number of places.

Let C0(G(A)) be the space of continuous and C-valuated functions on G(A).
Roughly speaking, an automorphic form is a function f ∈ C0(G(A)) that can
be identified as a function on the double coset G(F ) \ G(A)/ZK ′ which is of
moderate growth, for someK ′ ∈ V. We refer the reader to [17] or [39, Chapter 1]
for an exhaustive definition of an automorphic form and its properties.

We shall focus our attention when K ′ = K in the above, i.e., on the auto-
morphic forms defined over G(F ) \G(A)/ZK. These are the so-called unrami-
fied automorphic forms. We denote the whole space of unramified automorphic
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forms by AK . The other main actor of our story is the Hecke operator, which
we introduce in the following. A function in C0(G(A)) is called smooth if it is
locally constant.

Definition 3.1. The complex vector space H of all smooth compactly supported
functions Φ : G(A)→ C together with the convolution product

Φ1 ∗ Φ2 : g 7−→
∫
G(A)

Φ1(gh
−1)Φ2(h)dh

for Φ1,Φ2 ∈ H is called the Hecke algebra for G(A). Its elements are called
Hecke operators.

The zero element of H is the zero function, but there is no multiplica-
tive unit. For K ′ ∈ V, we define HK′ to be the subalgebra of all (left and
right) bi-K ′-invariant elements. These subalgebras have multiplicative units.
Namely, the normalized characteristic function ϵK′ := (volK ′)−1charK′ acts as
the identity on HK′ by convolution.

When K ′ = K in the above, we call HK the unramified (or spherical) part
of H, and its elements are called unramified (or spherical) Hecke operators.
For K ′ ∈ V, K ′ ̸= K, HK′ is called the ramified part of H, and its elements
are called ramified Hecke operators. It is well known that every Φ ∈ H is
bi-K ′-invariant for some K ′ ∈ V, cf. [39, Proposition 1.4.4]. In particular,
H =

⋃
K′∈V HK′ .

The unramified (or spherical) Hecke algebra HK has the following charac-
terization. For x ∈ |X|, let Φx,r be the characteristic function in

K

(
πxIr

In−r

)
K

and Φx,n be the characteristic function in KπxInK = πxInK, where Ik denotes
the k× k identity matrix. Both Φx,r and Φx,0 are elements of HK . A theorem
of Satake, cf. [17, Theorem 4.6.1 and Proposition 4.6.1] or [51], states that these
Hecke operators generate the unramified Hecke algebra.

Theorem 3.2. Identifying the characteristic function on K with 1 ∈ C yields

HK
∼= C[Φx,1, . . . ,Φx,n,Φ

−1
x,n]x∈|X|.

In particular, HK is commutative.

The Hecke algebra H acts on C0(G(A)) as

Φ(f) : g 7−→
∫
G(A)

Φ(h)f(gh)dh.
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The action of the Hecke algebra on C0(G(A)) descends to an action on the
space of automorphic forms. In particular, the unramified Hecke algebra HK

acts on the space of unramified automorphic formsAK . By the Satake theorem,
the last action is completely determined by Φx,r(f), where f ∈ AK and r =
1, . . . , n. In what follows, we will see AK as the space of functions on Bunn X
and thus, the Hecke modifications at x ∈ |X| with weight r, precisely describe
the action of Φx,r(f).

Remark 3.3. One might also consider automorphic forms and Hecke opera-
tors in classical context and over any global field, cf. [17, Sections 3.1, 3.2].
The Hecke operators and their action on automorphic forms play a key role
in the context of both classical and modern number theory. For instance, the
Modularity Theorem states that there is an automorphic form attached to
each rational elliptic curve and moreover, that this automorphic form is ac-
tually a Hecke eigenform. Also known as Taniyama–Shimura-Weil conjecture,
the Modularity Theorem was proved by Wiles in [62] (with a key step given
by joint work with Taylor [57]) for semi-stable elliptic curves, completing the
proof of the Fermat Last Theorem after more than 350 years. The Modular-
ity Theorem was proved completely by Breuil, Conrad, Diamond and Taylor
in [14], see also [20]. More generally, the Hecke operators and their action on
the space of automorphic forms play a central role in the geometric Langlands
correspondence.

We now return to the geometry of X and explain how the Hecke modi-
fications are connected with the action of (unramified) Hecke operators over
(unramified) automorphic forms. The connection between the two worlds is
given by the following theorem of Weil.

The bijection

F ∗ \ A∗/O∗A = ClF
1:1←→ PicX = Bun1X

[a] 7−→ La

where La = LD if D is the divisor determined by a, generalizes to all vector
bundles as follows. A rank n bundle E can be described by choosing bases for
all stalks

Eη ∼= On
X,η = Fn, Ex ∼= On

X,x = (Ox ∩ F )n

and inclusion maps Ex ↪→ Eη, where η is the generic point of X and x runs over
all closed point of X. After tensoring with Fx, for each x ∈ |X|, we obtain

Fn
x
∼= On

x⊗Ox Fx
∼= Ex⊗OX,x

Ox⊗Ox Fx
∼= Ex⊗OX,x

F ⊗F Fx
∼= Fn⊗F Fx

∼= Fn
x

which yields an element g of G(A). A change of bases for Eη and Ex corresponds
to multiplying g by an element of G(F ) from the left and by an element of K
from the right, respectively.
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Since the inclusion F ⊂ Fx is dense for every place x, and G(OA) is open in
G(A), every class in G(F ) \G(A)/G(OA) is represented by a g = (gx) ∈ G(A)
such that gx ∈ G(F ) for all x ∈ |X|. This means that the above construction
can be reversed. We refer [39, Paragraph 5.1.5] for the precise description of
the above construction. Weil’s theorem asserts the following.

Theorem 3.4. [24, Lemma 3.1] For every n ≥ 1, the above construction yields
a bijection

G(F ) \G(A)/K 1:1←→ BunnX
g 7−→ Eg.

Moreover, if PBunn X is the set of isomorphism classes of Pn−1-bundles over
X (cf. [30, Ex. II.7.10]), then the above map induces

G(F ) \G(A)/ZK
1:1←→ PBunnX

g 7−→ Eg.

a bijection as well, where g (resp. Eg) stands for its class in G(F ) \G(A)/ZK
(resp. PBunnX).

By the above theorem, we may regard the space AK of unramified auto-
morphic forms as the space of complex valued functions on PBunn X. Hence,
from now on we consider f ∈ AK as a function

f : PBunn X −→ C.

As we shall see below, as E runs over Bunn X, its Hecke modifications (at
x ∈ |X|, of weight r) describe the action of Φx,r on AK . We begin by explaining
that it is compatible with the domain of f ∈ AK being the set PBunn X. We
might consider PBunn X as the orbit set Bunn X/PicX under the following
action

Bunn X × PicX −→ Bunn X.
(E ,L) 7−→ E ⊗ L

For E ∈ Bunn X, we denote by E its class in PBunn X.
Let L ∈ PicX, since the tensor by a line bundle L ∈ PicX is an exact

functor, we have the bijection{
isomorphism classes

0−→E′−→E−→K⊕r
x −→0

with fixed E

}
−→

{
isomorphism classes

0−→E′′−→E⊗L−→K⊕r
x −→0

with fixed E

}
(0→ E ′ → E → K⊕rx → 0) 7−→ (0→ E ′ ⊗ L → E ⊗ L → K⊕rx → 0)

With the notation of the Definition 2.7, the above bijection translates to

Hr
x(X, E) −→ Hr

x(X, E ⊗ L)

[E ′ x−→
r
E ] 7−→ [E ′ ⊗ L x−→

r
E ⊗ L].
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Therefore, for the purposes of understanding the action Φx,r on AK , describe
the Hecke modifications of E ∈ Bunn X is compatible with considering f ∈ AK

as a function on either Bunn X or PBunn X.
In this context, the action of HK over AK is given as follows. Recall from

the previous section that we have the maps

Bunn X
h←←−− Hr

x(X)
h→−−→ Bunn X

Thus consider the operator on AK given by

f 7−→ (h←)!(h
→)∗(f)

where the superscript ∗ means pull-back of a function with respect to the
specified morphism, and the subscript ! means summations along the fibers. In
other words, for E ∈ Bunn X

(h←)!(h
→)∗(f)(E) =

∑
E′∈Bunn X

[E′
x−→
r
E]∈Hr

x(X,E)

f(E ′).

Finally, the following proposition explains why we call an equivalence class
of short exact sequences (with E fixed)

0 −→ E ′ −→ E −→ K⊕rx −→ 0

a Hecke modification of E .

Proposition 3.5. The above operator (h←)!(h
→)∗ equals Φx,r.

Proof. This follows from Weil’s Theorem 3.4.

Corollary 3.6. As E runs over Bunn X, its Hecke modifications (at x ∈ |X|
with weight r) describe the action of Φx,r on AK .

We end this section by observing that we could consider in the above setting,
any torsion sheaf instead of the skyscraper sheaf K⊕rx . Let Coh0 X be the cat-
egory of coherent sheaves on X with 0-dimensional support. For F ∈ Coh0 X,
we define the Hecke operator

TF : AK → AK

given by

(TFf)(E) :=
∑
E′⊂E
E/E′∼=F

f(E ′)

where E ′ runs over the coherent subsheaves of E in Bunn X. Observe that if
F = K⊕rx above, then TF equals either (h←)!(h

→)∗ or Φx,r.
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4. Explicit calculation of Hecke modifications

This section aims to emphasise the importance of explicit calculations of Hecke
modifications. This means the following: given a vector bundle E ∈ Bunn X,
a closed point x ∈ |X| and r ∈ N≥1, find all possible E ′ ∈ Bunn X such that
E ′ ⊂ E and E/E ′ = K⊕rx . We note that if X is defined over a finite field, we
might also ask about the number of such classes of isomorphisms. We split the
situation where X is defined over the complex numbers C and over a finite field
Fq.

Complex geometry

Let X be either the projective line or an elliptic curve defined over the complex
numbers. In [13], the author describes explicitly all possible Hecke modifica-
tions for rank 2 vector bundles defined over X and then uses this explicit de-
scription to give a modular interpretation of the set of all Hecke modifications.
We outline this below.

Remark 4.1. When the vector bundles under consideration are of rank 2, the
only Hecke modifications which make sense are of weight 1. If this is the case,
we suppress the mention and the notation for the weight.

We first need the concept of (isomorphism classes of) a sequence of Hecke
modifications.

Definition 4.2. Let E ∈ Bunn X (holomorphic), a sequence of Hecke modi-
fications in E at points x1, . . . , xn ∈ |X| with weights r1, . . . rn ∈ N≥1, is a

collection Ei ∈ Bunn X and Hecke modifications [Ei
xi−→
ri
Ei−1] for i = 1, . . . , n,

where E0 := E. We denote such sequence of Hecke modifications by

[En
xn−−→
rn
En−1 −→ · · · −→ E1

x1−→
r1
E ].

Definition 4.3. Let E , E1, . . . , En, E ′1, . . . , E ′n ∈ Bunn X. Two sequences of
Hecke modifications in E

[En
xn−−→
rn
En−1 −→ · · · −→ E1

x1−→
r1
E ] and [E ′n

xn−−→
rn
En−1 −→ · · · −→ E ′1

x1−→
r1
E ]

are isomorphic, if there are isomorphisms φi : Ei → E ′i such that

En
αn //

∼=
��

En−1
αn−1 //

∼=
��

En−2
αn−2 //

∼=
��

· · · α1 // E
=
��

E ′n
α′n // E ′n−1

α′n−1 // E ′n−2
α′n−2 // · · ·

α′1 // E

where αi : Ei → Ei−1 and α′i : E ′i → E ′i−1 stand for the injective morphisms in

[Ei
xi−→
ri
Ei−1] and [E ′i

xi−→
ri
E ′i−1], respectively.
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Next we give a correspondence between a sequence of Hecke modification
in E ∈ Bun2 X and a structure of a quasi-parabolic bundle on E .

Recall that a rank 2 quasi-parabolic bundle (E , ℓx1
, . . . , ℓxn

) over X consists
of a vector bundle E ∈ Bun2 X, a choice of distinct points (x1, . . . , xn) ∈ Xn,
and for each i a choice of a line ℓxi in Exi ⊗C, for i = 1, . . . , n. We denote the
set of all rank 2 quasi-parabolic bundles with marked points (x1, . . . , xn) ∈ Xn

by P(X, E , x1, . . . , xn), or P(X, E , n) when the dependence on (x1, . . . , xn) is
not relevant.

Remark 4.4. Given E ∈ Bun2 X, there is a canonical correspondence between
the set of isomorphisms classes of sequences of Hecke modifications in E at
(distinct) points (x1, . . . , xn) ∈ Xn and P(X, E ;x1, . . . , xn) given by

[En
xn−−→ · · · x2−→ E1

x1−→ E ] 7−→ (E , ℓx1
, . . . , ℓxn

),

where ℓxi
:= im((α1 ◦ · · · ◦ αi)xi

: (Ei)xi
⊗ C→ Exi

⊗ C).
Let Ms(X,n) be the moduli space of stable rank 2 quasi-parabolic vector

bundles over X with trivial determinant and n marked points.

Definition 4.5. Given distinct points (y1, . . . , ym, x1, . . . , xn) ∈ Xm+n we de-
fine the space of marked quasi-parabolic bundles P(X,m, n) to be the set of iso-
morphism classes of quasi-parabolic bundles (E , ℓy1

, . . . , ℓym
, ℓx1

, . . . , ℓxn
) such

that (E , ℓy1
, . . . , ℓym

) ∈ Ms(X,m). For simplicity, we are suppressing the de-
pendence of P(X,m, n) on y1, . . . , ym, x1, . . . , xn in the notation.

Theorem 4.6. The set P(X,m, n) naturally has the structure of a complex
manifold isomorphic to a (P1)n-bundle over Ms(X,m).

The base manifold Ms(X,m) constitutes of the moduli space over which
the isomorphism classes of vector bundles (with marked data) ranges and the
(P1)n fibers correspond to a space of Hecke modifications isomorphic to P1 for
each of the points x1, . . . , xn ∈ X.

Definition 4.7. Let (E , ℓx1
, . . . , ℓxn

) be a quasi-parabolic bundle over X. We
define the Hecke transform H(E , ℓx1

, . . . , ℓxn
) of E to be the sub-bundle F ⊆ E

whose set of sections over an open set U ⊆ X, is constructed as follows

F(U) :=
{
s ∈ E(U) | if xi ∈ U, then s(xi) ∈ ℓxi

for i = 1, . . . , n
}
.

In particular, H(E , ℓx1
, . . . , ℓxn

) is isomorphic to En, the first vector bundle in
the sequence of Hecke modifications corresponding to (E , ℓx1

, . . . , ℓxn
).

Definition 4.8. We define PM (X,m, n) to be the subset of P(X,m, n) con-
sisting of points (E, ℓy1 , . . . , ℓym , ℓx1 , . . . , ℓxn) such that H(E, ℓx1 , . . . , ℓxn) is a
semi-stable vector bundle.
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Remark 4.9. As semi-stability is an open condition, the set PM (X,m, n) is
an open sub-manifold of P(X,m, n).

In this context, the explicit description of the Hecke modifications plays the
following role. In [13, Sections 4 and 5], the author lists the Hecke modifications
of all rank 2 vector bundles over X. The description is applied to study the
(in)stability of the Hecke modifications and, among other things, is applied to
show the following lemma.

Lemma 4.10. Let (E , ℓx1 , . . . , ℓxn) ∈ P(X, E , x1, . . . , xn) be such that E is semi-
stable. If H(E , ℓx1 , . . . , ℓxn) is semi-stable, then (E , ℓx1 , . . . , ℓxn) is semi-stable.

Proof. See [13, Lemmas 4.17 and 5.30].

The lemma yields the following theorem, which is [13, Theorems 4.19 and
5.31].

Theorem 4.11. There is a canonical open embedding

PM (X,m, n) ↪→Ms(X,m+ n).

With the above discussion, we would like to highlight the importance of
describing explicit Hecke modifications in the context of classical/complex al-
gebraic geometry. Note that in [13], Boozer is actually interested in using
PM (X,m, n) to construct the symplectic Khovanov homology of n-stranded
links in lens spaces.

Arithmetic geometry

Here we consider again the case where X is defined over a finite field Fq. We
fix x ∈ |X|, n ∈ Z>0 and r ∈ Z such that 0 ≤ r ≤ n. In this context, as we saw
before, knowing explicitly the Hecke modifications is equivalent to knowing the
action of Hecke operators on the space of unramified automorphic forms. In
the following, we report what is known in this case and what kind of results
can be derived from Hecke modifications.

In [64], Zagier observes that if the kernel of certain Hecke operators on
automorphic forms (defined over Q) turns out to be an unitarizable repre-
sentation, a formula of Hecke implies the Riemann hypothesis. Zagier calls
the elements of this kernel toroidal automorphic forms (see [42] for a precise
definition). Moreover, Zagier asks what happens if Q is replaced by a global
function field, e.g., F the function field of X. Furthermore, Zagier remarks
that the space of unramified toroidal automorphic forms can be expected to be
finite dimensional.

Motivated by Zagier’s question, Lorscheid introduced in [41] the so-called
Graphs of Hecke operators over PBun2 X. These graphs are subsequently con-
sidered in [2] over PBunn X, for every n ≥ 1. When the Hecke operator un-
der considerations is Φx,r, these are graphs whose set of vertices is PBunn X



(14 of 29) R. ALVARENGA ET AL.

and whose edges are given as follows: for E , E ′ ∈ PBunn X, there is an edge
from E to E ′, if E ′ is a Hecke modification of E at x with weight r, i.e., if
[E ′ x−→

r
E ] ∈ Hr

x(X, E).
Moreover, since X is defined over a finite field, there are finitely many

extensions of K⊕rx by E . Thus, we might consider the number of classes of

isomorphism of such Hecke modification. Namely, the number of [E ′′ x−→
r
E ] ∈

Hr
x(X, E) such that E ′′ ∼= E ′. We denote this number by mx,r(E , E ′). Then

Theorem 2.6 yields:

Lemma 4.12. Let E , E ′ ∈ Bunn X, then∑
E′∈Bunn X

mx,r(E , E ′) =
∑

E′∈Bunn X

mx,r(E , E ′) = #Gr(n− r, n)(F(x))

and ∑
E∈Bunn X

mx,r(E , E ′) =
∑

E′∈Bunn X

mx,r(E , E ′) = #Gr(r, n)(F(x)),

for any x ∈ |X| and 0 ≤ r ≤ n.

Graphs of Hecke operators are weighted and oriented graphs whose set
of vertices is PBunn X and whose edges and weights are given by the Hecke
modifications of the vertices.

Remark 4.13. We note that one could also define the former graphs consider-
ing BunX as the vertex set. In this case, the graphs obtained from PBunn X
are projections of the graphs obtained from Bunn X. Except for loops, which
appear if two adjacent vertices are identified, locally the graphs obtained from
BunX and PBunX are the same.

For n = 2 i.e., over Bun2 X, Lorscheid describes explicitly the Hecke mod-
ifications of every vector bundle when X is the projective line (cf. [41, Ap-
pendix A]) or an elliptic curve (cf. [40, Theorem 3.1]). These explicit calcula-
tions allow him to show, among other things, the following results which answer
some questions posed by Zagier.

Theorem 4.14 ([41, Theorem 10.9]). The space of unramified toroidal auto-
morphic forms for a global function field is finite dimensional.

Theorem 4.15 ([42, Theorem 7.7]). There are no nontrivial unramified toroidal
automorphic forms for rational function fields.

See [5, Theorem 5.5] for the rank 3 version of the above theorem.

Theorem 4.16 ([40, Theorem 7.12]). Let F be the function field of an elliptic
curve over a finite field with q elements and class number h, let s+ 1

2 be a zero
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of the zeta function of F . If the characteristic is not 2 or h ̸= q + 1, the space
of unramified toroidal automorphic forms is one dimensional and spanned by
the Eisenstein series of weight s.

Next, we connect the problem of explicit calculations of Hecke modifications
with the calculation of certain products in the Hall algebra of X.

Recall that X is a smooth projective curve of genus g(X) defined over the
finite field Fq, and that Coh(X) denotes the category of coherent sheaves on X.
The category Coh(X) is never of finite type, i.e., there always are infinitely
many indecomposable objects. However, due to the following theorem of Serre,
it is a finitary category (i.e., a small abelian category such that, for any two
objects M,N , #Hom(M,N) <∞ and #Ext1(M,N) <∞).

Theorem 4.17. Let F be a field and X denote a projective variety over F. The
category Coh(X) is a Hom-finite, abelian and noetherian. Moreover, if X is
smooth, then

dimk Ext
i(F ,G) <∞ for every i ≥ 0 and gldimCoh(X) = dimX.

for any F ,G objects in Coh(X).

Proof. See either [27, Corollary 3.2.3] or the original paper [54].

The previous theorem allows one to define the Hall algebra of X.

Definition 4.18. Fix a square root v of q−1. Let HX be the C-vector space

HX :=
⊕

F∈Coh(X)

C · F ,

where we abuse notation and write F ∈ Coh(X) meaning the object in Coh(X)
is given by the isomorphism class of F . Given a triple (F ,G,H) of coherent
sheaves on X, define

hHF,G :=
#
{
0 −→ G −→ H −→ F −→ 0

}
#Aut(F)#Aut(G)

,

which is finite since Coh(X) is a finitary category, Theorem 4.17. For F ,G ∈
Coh(X), let

⟨F ,G⟩ = (1− g) rk(F) rk(G) + rk(F) deg(G)− rk(G) deg(F)

be the (additive version) Euler form. With the following product,

F ∗ G := v−⟨F,G⟩
∑
H

hHF,GH,

HX has the structure of an associative algebra called the Hall algebra of X (or
of Coh(X)).
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The theory of Hall algebras was first discussed in 1901 (in an elementary
version) by Ernest Steinitz in [56], where he defines what is nowadays called
the Hall polynomials. These algebras remained forgotten until brought to light
by Karsten Johnsen in 1982, in the survey [33]. Half a century after Steinitz,
Philip Hall “rediscovered” the theory of Hall polynomials and Hall algebras in
the survey [28]. However, Hall did not publish anything more than a summary
of his theory. The first complete work on Hall algebras, with definitions and
proofs, is due to Ian G. Macdonald, in his book [44]. In the early 1990’s,
the interest in Hall algebras increased after Ringel formalized the notion of a
Hall algebra associated to a finitary category and associated it with quantum
groups, see [48, 49, 50]. Motived by some questions from number theory (e.g.,
Langlands program), Kapranov inverstigated in [35] the Hall algebra of a curve
HX := HCoh(X), as defined above. After Kapranov, many others authors
have worked on the theory of Hall algebra of a curve. In the end of 1990s,
Baumann and Kassel published a paper [10] concerning the Hall algebra of the
projective line. Recently, Schiffmann has published several works concerning
the Hall algebras of curves, cf. [18] (joint with Burban), [53] and [36] (joint
with Kapranov and Vasserot).

Remark 4.19. The Hall algebra might be defined over any finitary category,
see [52]. Moreover, one can define the Hall algebra of a curve defined over an
arbitrary field. This is first introduced by Lusztig in [43], where the author
replaces hHF,G by the Euler characteristic of the constructible space of all such
objects (i.e., the space of all subobjects of H of type G and cotype F). This
variant of the Hall algebra is known as χ-Hall algebra.

In [63], Xiao, Xu and Zhang have given the definition of the χ-Hall algebra
of a triangulated category of arbitrary finite global dimension, e.g., for Coh(P2)
or coherent sheaves in singular curves. The χ-Hall algebra appears also in [34]
and [15].

Let us return to the problem of describing the Hecke modifications. The
link between that and the Hall algebras is given by the following proposition.

Proposition 4.20. For a fixed E ∈ Bunn X, the Hecke modifications [E ′ r−→
x
E ]

are completely determined by

K⊕rx ∗ E ′ = v−⟨F,G⟩
∑
F

hFK⊕r
x E′

F

where E ′ runs through BunnX. Moreover, hEK⊕r
x E′

is the number of classes of

isomorphism of Hecke modifications [E ′′ x−→
r
E ] with E ′′ ∼= E ′, i.e., hEK⊕r

x E′
=

mx,r(E , E ′).

Proof. See [3, Lemmas 2.1 and 2.4].
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In the following, we consider X to be either the projective line or an elliptic
curve. We exhibit two examples of how to describe Hecke modifications using
Hall algebras and report what is known.

Example 4.21. Let x ∈ |P1| of degree 5 and E := O ⊕ O. We describe the
Hecke modifications of E at x of weight 1.

Since degO(−5) < degO, we first observe that O(−5) ⊕ O = O(−5) ∗ O,
where the product is taken in the Hall algebra HP1 . Thus

Kx ∗ O(−5)⊕O = (Kx ∗ O(−5)) ∗ O.

From [11, Theorem 13],

Kx ∗ O(−5) = O + q5 O(−5)⊕Kx.

Thus

Kx ∗ O(−5)⊕O = O ∗ O + q5(O(−5)⊕Kx) ∗ O.

Again from [11, Theorem 13],

O ∗ O = (q + 1)O ⊕O, O(−5)⊕Kx = O(−5) ∗ Kx,

and Kx ∗ O = O(5) + q5 O ⊕Kx.

Therefore,

Kx ∗ O(−5)⊕O = (q + 1)O ⊕O + q5O(−5)⊕O(5) + q10 O(−5)⊕O ⊕Kx.

Hence we have the following Hecke modifications: [O(−5)⊕O x−→ O⊕O] with
multiplicity q + 1 and [O(−5)⊕O x−→ O(−5)⊕O(5)] with multiplicity q5.

As one can observe from Theorem 2.6, the sum of the multiplicities of the
Hecke modification of O⊕O at x with weight 1 equals the number of rational
points at P1(Fq5) i.e., q

5 + 1. Thus, [O(−5) ⊕ O x−→ O ⊕O] is not the unique
Hecke modification of O ⊕O at x with weight 1.

We use again [11, Theorem 13] to conclude that

Kx ∗ O(−3)⊕O(−2) = q5 O(2)⊕O(−2) + q3(q2 − 1) O(−1)⊕O(1)
+ q3(q2 − 1) O ⊕O + q5 O(−3)⊕O(3) + q10 O(−3)⊕O(−2)⊕Kx.

This gives one more Hecke modification of O ⊕O, namely

[O(−3)⊕O(−2) x−→ O ⊕O]

with multiplicity q5− q3. The last Hecke modification of O⊕O is given by the
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product

Kx ∗ O(−4)⊕O(−1) = Kx ∗ (O(−4) ∗ O(−1))
= (O(1) + q5 O(−4)⊕Kx) ∗ O(−1)
= O(1) ∗ O(−1) + q5(O(−4) ∗ (O(4) + q5 O(−1)⊕Ky))

= q3 O(−1)⊕O(1) + (q3−q)O ⊕O + q5O(−4)⊕O(4)
+ q10 O(−4)⊕O(−1)⊕Kx.

Hence, the last Hecke modification of O ⊕O at x with weight 1 is

[O(−4)⊕O(−1) x−→ O ⊕O]

with multiplicity q3 − q.

In a forthcoming work [7], the first and third authors descibe, among other
things, explicitly the Hecke modifications for E ∈ Bunn P1, for every n ∈ N.
Moreover, the case where P1 is defined over the complex field is also considered.

In [3] the first author treats the case where X is an elliptic curve. Using the
structural results in [18] and [23], he produces an algorithm to calculate the
Hecke modifications of any vector bundles defined over X. In the following, we
give an example of how the algorithm runs.

Example 4.22. Let X be the elliptic curve defined over F2, given by y2 + y =
x3 + x+ 1. We observe that X has only one rational point, say x0 ∈ X(F2).

We first observe that by Atyiah’s classification of vector bundles on elliptic
curves (see [9]), any indecomposable vector bundle E on X is defined by its
rank n, degree d, a closed point x ∈ |X| and an integer ℓ ∈ Z such that

ℓ|x| = gcd(n, d). Therefore, we denote E by E(n,d)(x,ℓ) . We also refer to [16]

and [18] for Atiyah’s classification over any base field.

Let x ∈ |X| of degree 2 and E ′ = E(2,0)(x,1) . Next, we calculate all the vector

bundles E ∈ Bun2 X that are Hecke modified in E ′ at x with weight 1, i.e., the
Hecke modifications [E ′ x−→ E ] for E ′ as above. In terms of the Hall algebra of
X, this means to calculate the vector bundles which appears in the product
Kx ∗ E ′. The strategy is to write both E ′ and Kx in terms of some generators
of HX that are well understood and allow us to do explicit multiplication.

For m ∈ N and z ∈ |X| such that |z| | m, we define the elements T(0,m),z ∈
HX by

T(0,m),z :=
[m]|z|
m

∑
|λ|=m/|z|

l(λ)−1∏
i=1

(1− qi/2z )K(λ)
z ,

where [m] := q−s/2−q−s/2

q−1/2−q1/2 ; λ is a partition, |λ| its weight, l(λ) its length; and

K(λ)
z ∈ Coh(X) is the unique torsion sheaf supported at z and given by λ. For
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example, if λ = 1, K(λ)
z = Kz is the skyscraper sheaf at z and if λ = (1, . . . , 1),

then K(λ)
z = K⊕rz , where r = l(λ).

The advantage to working with T(0,m),z is that they can be seen as elements
in the Macdonald’s ring of symmetric functions, where the computation can
be done explicitly, see [18, Subsection 4.2]. Via Atiyah’s classification, we can
extend the definition from T(0,m),z to T(n,d),z, for every n ∈ N and d ∈ Z,
parametrizing the rank and degree of any coherent sheave on X. Thus,

E ′ = 1
[2]T(2,0),x and Kx = 1

[2]T(0,2),x. (1)

In order to write both E ′ and Kx in terms of the above cited basis of HX , we
need to consider:

• Xn := X ⊗Fq
Fqn the base field extension of degree n over X;

• Pic0(X) (resp. Pic0(Xn)) the group of degree zero divisors on X (resp.
Xn);

• ̂Pic0(X), resp. ̂Pic0(Xn), the character group of Pic0(X), resp. Pic0(Xn);
and

• FrX,n : Xn → Xn the Frobenius on Xn relative to X (i.e., induced by the
q-power on OX).

The choice of x0 ∈ X(Fq), allows identifying PicdXn, the divisors of degree d on

Xn, with Pic0Xn. Thus, we can extend a character ρ from Pic0Xn to PicdXn

placing ρ(x0) = 1. Let Fr∗X,n be the map induced by FrX,n on ̂Pic0(Xn). For

ρ̃ ∈ ̂Pic0(Xn)/Fr
∗
X,n and a closed point z ∈ X, we define

ρ̃(z) :=
1

n

n−1∑
i=0

ρ((Fr∗X,n)
i(OXn

(z′))),

where z′ ∈ Xn is a closed point that sits above z. For ρ̃ ∈ ̂Pic0(Xn)/Fr
∗
X,n and

v := (n, d) ∈ Z2 parametrizing the rank and degree of a coherent sheaf on X,
we define

T ρ̃
v :=

∑
x∈|X|

ρ̃(x)Tv,x.

By definition, Tv,x = 0, unless |x| divides gcd(n, d). These T ρ̃
v are generators

for the Hall algebra HX , see [23, Proposition 3.4]. The following facts highlight

the significance of working with these generators : (i) if ρ̃ ∈ ̂Pic0(Xn)/Fr
∗
X,n
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and σ̃ ∈ ̂Pic0(Xm)/Fr∗X,m are different and not given by the norm of the same
character, then

T ρ̃
v ∗ T σ̃

v′ = T σ̃
v′ ∗ T ρ̃

v , (Step 1)

where v′ ∈ Z2 parametrizing the rank and degree of a coherent sheaf; (2) it is

always possible to write the product T ρ̃
v ∗ T

ρ̃
v′ as

T ρ̃
v1
· · ·T ρ̃

vk
(Step 2)

where the slopes of v1, . . . , vk are not decreasing, see [23, Definition 3.11 and
Theorem 5.2]. This is fundamental since over elliptic curves, if F ,G ∈ CohX
of slopes µ and ν (resp.) such that µ < ν, then Ext1(F , G) = 0.

We return to our situation, where n = 2 above. Let X(F2) = {x0} and
X(F4) = {x0, x1, x2, y1, y2}, where x1 := (0 : α : 1), x2 := (0 : α2 : 1), y1 :=
(1 : α : 1), y2 := (1 : α2 : 1) and α ∈ F4 is such that F4 = F2(α). Hence

̂Pic0(X) := {ρ0} and ̂Pic0(X) := {ρ0, ρ1, ρ2, ρ3, ρ4}

where ρ0 is the trivial character, ρi(x1) = ζi for i = 0, . . . , 4 and ζ ∈ C is a
primitive quintic root of unity.

We let x1, x2 ∈ |X2| be the two degree-1 points of X2 sitting above x ∈ |X|.
Observe that X has just one more closed point y ∈ |X| of degree 2, and thus
y1, y2 ∈ |X2| sit above it.

As previously mentioned, the strategy is to write E ′ and Kx in terms of the
generators T ρ̃

v . Observe that∑
ρ∈ ̂Pic0(X2)

ρ̃(y)T ρ̃
(0,2)

= T ρ̃0

(0,2) +
(ζ+ζ4)

2 T ρ̃1

(0,2) +
(ζ+ζ4)

2 T ρ̃4

(0,2) +
(ζ2+ζ3)

2 T ρ̃2

(0,2) +
(ζ2+ζ3)

2 T ρ̃3

(0,2),

while

T ρ̃0

(0,2) = T(0,2),x0
+ T(0,2),x + T(0,2),y

T ρ̃1

(0,2) = T(0,2),x0
+ (ζ+ζ4)

2 T(0,2),x + (ζ2+ζ3)
2 T(0,2),y = T ρ̃4

(0,2)

T ρ̃2

(0,2) = T(0,2),x0
+ (ζ2+ζ3)

2 T(0,2),x + (ζ+ζ4)
2 T(0,2),y = T ρ̃3

(0,2).

Thus ∑
ρ∈ ̂Pic0(X2)

ρ̃(y)T ρ̃
(0,2) =

5
2T(0,2),x = #X(F4)

2 T(0,2),x.

Identity (1) yields

E ′ = 2
5[2]

∑
ρ∈ ̂Pic0(X2)

ρ̃(y)T ρ̃
(2,0) and Kx = 2

5[2]

∑
ρ∈ ̂Pic0(X2)

ρ̃(y)T ρ̃
(0,2).
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From [23, Lemma 2.10], the Lie bracket
[
Kx, E ′

]
gives us all the vector bundles

which appear in the product Kx ∗ E ′. By (Step 1)

[
Kx, E ′

]
= 4

25[2]2

(
ρ0(y)

2
[
T ρ̃0

(0,2), T
ρ̃0

(2,0)

]
+ 4ρ1(y)

2
[
T ρ̃1

(0,2), T
ρ̃1

(2,0)

]
+ 4ρ2(y)

2
[
T ρ̃2

(0,2), T
ρ̃2

(2,0)

])
.

From, [23, Theorem 5.2] i.e., (Step 2),[
T ρ̃0

(0,2), T
ρ̃0

(2,0)

]
=

c22(q
1/2−q−1/2)

2c1
T ρ̃0

(1,1)T
ρ̃0

(1,1) + c2(
c2
c1
− 2)T ρ̃0

(2,2),

and [
T ρ̃i

(0,2), T
ρ̃i

(2,0)

]
= 5[2]

2q T ρ̃i

(2,2),

where ci = q−1/2[i]#X(Fqi)/i and i = 1, 2.
Since we have written

[
Kx, E ′

]
as sum of products of elements inHX ordered

by slopes in a non-decreasing order, we might proceed with base change. We
observe that

T ρ̃0

(1,1)T
ρ̃0

(1,1) = T(1,1),x0
T(1,1),x0

, T ρ̃0

(2,2) = T(2,2),x0
+ T(2,2),x + T(2,2),y,

and

T ρ̃i

(2,2) = T(2,2),x0
+ ρi(x)T(2,2),x + ρi(y)T(2,2),y

for i = 1, 2. Thus,

[
Kx, E ′

]
= (q−1−q−2)

2 T(1,1),x0
T(1,1),x0

+ (q−2−q−1)
[2] T(2,2),x0

+ q−3/2

[2] T(2,2),x + q−2

[2] T(2,2),y.

By definition

T(2,2),x0
= [2]

2

(
E(2,2)(x0,2)

+ (q + 1)E(1,1)(x0,1)
⊕ E(1,1)(x0,1)

)
while

T(2,2),x = [2]E(2,2)(x,1) , and T(2,2),y = [2]E(2,2)(y,1) .

The missing product T(1,1),x0
T(1,1),x0

can be realized in the Macdonald ring of
symmetric functions, as notice in [18, Subsection 4.2]. This computation can
be done using [59], where we obtain

T(1,1),x0
T(1,1),x0

= E(2,2)(x0,2)
+ (q + 1)E(1,1)(x0,1)

⊕ E(1,1)(x0,1)
.
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Hence,[
Kx, E ′

]
= (1− q−1)E(1,1)(x0,1)

⊕ E(1,1)(x0,1)
+ (q−2 + q−1)E(2,2)(x,1) + q−2 E(2,2)(y,1) .

Therefore,

[E ′ x−→ E(1,1)(x0,1)
⊕ E(1,1)(x0,1)

], [E ′ x−→ E(2,2)(x,1) ], and [E ′ x−→ E(2,2)(y,1) ]

are all Hecke modifications [E ′′ x−→ E ] with E ′′ ∼= E ′. The multiplicities are
obtained by multiplying above identity by the Euler form of Kx and E ′, i.e.,
multiplying by q2.

5. Hecke modifications for rank 2 vector bundles:
elementary transformations

As seen in the last section, there is a correspondence between Hecke modifica-
tions and quasi-parabolic bundles. In this section, we descibe how for rank 2
vector bundles, this can be viewed as birational morphisms of ruled surfaces.

Let (E , ℓp1
, · · · , ℓpn

) be a rank 2 quasi-parabolic bundle on a curve X. Let
T be a subset of {1, . . . , n} of cardinality t ≥ 0. We can define a Hecke modi-
fication E ′ of the vector bundle E via the following sequence:

0→ E ′ α−→ E →
⊕
i∈T

(Exi/ℓxi)⊗Oxi → 0.

If i /∈ T , then αxi
: Exi

→ E ′xi
is an isomorphism and (ℓ′xi

)−1 = (αxi
)−1ℓxi

is the linear subspace at the point xi. On the other hand if i ∈ T , then
ℓ′pi

= ker(αi) gives the quasi-parabolic structure at the point xi.
We now see how obtaining a new quasi-parabolic vector bundle

(E ′, ℓ′x1
, · · · , ℓ′xn

) from the quasi-parabolic bundle (E , ℓx1 , · · · , ℓxn) can be seen
as a birational morphism of ruled surfaces. Let us recall the following definition.

Definition 5.1. A ruled surface is a surface S together with a surjective mor-
phism π : S → X to a non-singular curve X such that the fiber Sx is isomorphic
to P1 for every point x ∈ X and such that π admits a section (i.e., a morphism
σ : X → S such that π • σ = idX).

We recall the following key result. We refer the reader to [30] and [26] for
proofs and related results.

Proposition 5.2. If π : S → X is a ruled surface, then there exists a locally
free sheaf E of rank 2 on X such that S ≃ P(E) over X, where P(E) is the
projectivization of E (see [30, Chapter II.7] for definition of P(E)). Conversely,
every such P(E) is a ruled surface over X. If E and E ′ are two locally free
sheaves of rank 2 on X, then P(E) and P(E ′) are isomorphic as ruled surfaces
over X if and only if there is an invertible sheaf L on X such that E ′ ≃ E ⊗L.
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For simplicity of notation, let us assume that (E , ℓx) is a rank 2 quasi-
parabolic vector bundle with quasi-parabolic structure at only one point x.
By Proposition 5.2 considering the vector bundle E as a locally free sheaf, we
can view its projectivization P(E) as a ruled surface over the curve X, say
π : P(E)→ X. We denote by L the projectivization of the 2-dimensional fiber
of E and by P the projectivization of the quasi-parabolic structure ℓx. Observe
that L is a line and contains P as a point.

Let
f : P̃(E)→ P(E)

be the blow-up of P(E) at the point P . We observe that the strict transform

L̃ of L on P̃(E) is isomorphic to P1. Since P is a nonsingular point of L, it
has multiplicity 1. By [30, Chapter V, Proposition 3.6], L̃ ∼ f∗L − E, where
E is the exceptional divisor. Furthermore by [30, Chapter V, Proposition 2.3],
L2 = 0. Therefore L̃2 = −1. Then by Castelnuovo’s contractability theorem,

there is a morphism, say g from P̃(E) to a surface S contracting the −1 curve

L̃ to a point Q. In other words, g : P̃(E) → S is the blow-up of S with center
Q. It is easy to check that g(E) ≃ P1 and g(E)2 = 0. Note that outside of L
and M (respectively), P(E) ≃ S. Therefore π′ : S → X is in fact a morphism.
Moreover, the fibers of π′ are all isomorphic to P1 and the strict transform of
the section D is a section D′ on S. Therefore, π′ : S → X is another ruled
surface.

By the converse of Proposition 5.2, we know that any ruled surface is the
projectivization of a locally free sheaf. Therefore, ”deprojectivizing” S and Q,
we get E ′ to be the locally free sheaf such that S = P(E ′) and ℓ′x to be the
quasi-parabolic structure such that Q = P(ℓ′x).

Definition 5.3. We say the ruled surface π′ : P(E ′) → X is obtained via an
elementary transformation of P(E) with center P . As we can see from the
above discussion, this corresponds to the Hecke modification associated to the
quasi-parabolic vector bundle (E , ℓx) at the parabolic point x ∈ X.

Remark 5.4. We make the following remarks:

1. The above construction can be done for any number of points and the
genus of the curve X does not play a role, only that the curve is nonsin-
gular.

2. When X = P1 is a projective line, using an elementary transformation
one can inductively construct rational ruled surfaces Sn, for n ≥ 0 with
S0 being the smooth quadric P1×P1 in P3. These surfaces are also called
Hirzebruch surfaces. See Chapter 5 of [26] for their construction.

3. It is easy to see from the discussion above that elementary transforma-
tions are involutions. Suppose elT (respectively elR) denotes the elemen-
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tary transformation centered at the parabolic points {xi}i∈T (respectively
at the parabolic points {xi}i∈R) then elT • elR = elT∪R\T∩R. The set of
elementary transformations form a group.

4. Elementary transformations have several applications. Some recent ex-
amples include [32] where the authors used elementary transformations
to study moduli spaces of rank 2 (quasi)-parabolic vector bundles with
logarithmic connections, and [8] where the authors show that any auto-
morphism of the moduli space of rank 2, degree 0 parabolic bundles on
P1 with at least 5 parabolic points and weights (1/2) at all points is an
elementary transformation.

5. Lastly, if the rank of the vector bundle is greater than 2, the projectiviza-
tion of the vector bundle is no longer a surface so we cannot simply see
the process of obtaining a Hecke modification as a birational transforma-
tion of the surface using Castelnuovo’s contraction theorem. In this case,
the geometric interpretation is much more complicated.

6. Directory for future works

We end this article proposing some directions for future works.

G-bundles

The full article might be considered replacing GLn by other split connected
reductive group G i.e., by considering G-bundles instead GLn-bundles. Thus,
one might consider investigating the theory developed in this article in this
new setting. In particular, considering G-bundles for every split connected
reductive group is of special interest in the geometric Langlands program.

Level structure

Since GLn can be replaced by a split connected reductive group G, one might
also explore G-bundles with level structures. For definition and first properties
of vector bundle with level structure, we refer to [55]. In this new scenario,
Hecke modifications parametrize the action of ramified Hecke operators on the
space of ramified automorphic forms, where the ramification is induced by the
level structure. In [4], the authors investigate the scenario where the rami-
fication is given by a closed point of degree one and describe the action of
ramified Hecke operators using number-theoretic tools. A version of it using
algebraic geometry i.e., Hecke modifications of vector bundles with level struc-
ture, would be of interest. The connection between ramified automorphic forms
and G-bundles with level structure is explained in [38, p. 154]. In [58], the
author establishes Weil’s theorem (Theorem 3.4) in this context.
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The Hecke stack

In order to keep our exposition elementary, we have vaguely mentioned the
Hecke stack in Remark 2.4. However, a detailed investigation of its algebraic
and geometric properties would be an interesting problem.

Quasi-Parabolic structures

In Section 4, we highlighted the connection between Hecke modifications and
quasi-parabolic structures. That correspondence strongly uses the fact that we
are working with rank 2 vector bundles. In upcoming work [6], we generalize
this correspondence to higher-rank vector bundles.

Moduli embeddings

With the above correspondence established – namely, the connection between
Hecke modifications and quasi-parabolic structures for higher rank vector bun-
dles – one might ask for a generalization of Theorem 4.11.

Higher genus curves I

As noted in Section 4, explicit descriptions of Hecke modifications for genus 0
and 1 curves are provided in [7] and [3]. However, even for rank 2, the explicit
description of Hecke modifications for higher genus curves remains completely
open. Based on the low genus cases, it seems important to first develop a
suitable classification of vector bundles before performing such modifications.
For genus 2 curves, Newstead provides a classification of stable vector bundles
in [47]. In [19], the authors generalize Newstead’s work to hyperelliptic curves.
However, the case of classification of stable vector bundles over an arbitrary
curve of high genus is wide open.

Higher genus curves II

The success of the above item might open an opportunity to investigate the
space of automorphic forms for higher genus curves. This means generalizing
[42] and [5] for higher genus curves. Since the genus 0 case has trivial Hecke
eigenspaces and the genus 1 is the unique nontrivial example known so far,
developing the theory for higher genus curves would be particularly valuable,
allowing comparisons with the genus 1 case.

Hall algebras

As we explain in Section 4, over a finite field, the Hecke modifications yield
some Hall numbers in the Hall algebra of the associated curve. It would be
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interesting to investigate the implications of these Hall numbers for the Hall
algebra structure, in the spirit of [11, Section 3].

Higher rank elementary transformations

The geometric interpretation of the Hecke modifications presented in Section 5
works for rank 2 vector bundles. Extending this interpretation to higher rank
vector bundles would be another worthwhile effort.
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