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1. Introduction

In Mathematics, being able to compute explicit examples is very important.
In particular, when studying distributions on projective spaces, such examples
are governed by homogeneous polynomial differential forms which induce exact
sequences of the form

0 −→ F −→ TPn ω−→ N −→ 0

where F is a rank n − p reflexive sheaf and N is a rank p torsion-free sheaf.
Properties of the vanishing locus of the p-form ω reflect on properties of the
sheaves F and N ; thus providing the p-form leads to the understanding of the
sheaves. In this direction, we prove the following result. Fix k a field.

Theorem A. Let Z ⊂ Pn a closed subscheme with (saturated) homogeneous
ideal IZ ⊂ R = k[x0, . . . , xn] and let Ap(Z) be the R-module of polynomial
differential p-forms vanishing on Z. Then we have an exact sequence of graded
R-modules:

0 −→ IZ ⊗ ιrad

p+1∧
V ∗ −→ Ap(Z) −→ TorRp (IZ , k)(p+ 1) −→ 0,

where V ∗ = ⟨dx0, . . . , dxn⟩ and rad is the radial vector field (see (2)). More-
over, if (IZ)d = 0 then Ap(Z)d ∼= TorRp (IZ , k)d+p+1.

The R-module TorRp (IZ , k) can be identified with the space of p-th syzygies
of a minimal set of generators for IZ . Given a (minimal) free resolution

0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ · · · −→ F0
ϕ0−→ IZ −→ 0,



(2 of 12) ALAN MUNIZ

we construct a map ξp : TorRp (IZ , k) → Ap(Z) given by differentiating and
combining the entries of ϕ1, . . . , ϕp, i.e., ξp depends on syzygies up to order p,
see Proposition 3.2.

The use of syzygies to describe distributions goes back at least to the work
of Campillo and Olivares [3], see also [4] and references therein. In [6, §4] the
case of 1-forms is essentially described, serving as a prelude to the present work.
Note that for p = 1 Theorem A gives a slightly more complete version of [6,
Proposition 4.5].

After recalling some relevant concepts in §2, we prove in §3 Proposition 3.1,
from which Theorem A follows. Finally, we provide some examples in §4. In
Example 4.5 we give an example of an instanton bundle of charge 4 on P3

which is, up to twist, the conormal sheaf of a foliation by curves singular
along 5 disjoint lines; this construction was first observed in [1], though with-
out explicitly referring to foliations. In Example 4.6, we apply the same
construction to produce an instanton of charge 5, from a foliation by curves
singular along a disjoint union of two double lines of genus −3, cf. [5, §6].
Our computations come from implementing these routines in Macaulay2 [9].
These are compiled in the ancillary file syz-k-forms.m2, available at https:
//github.com/alannmuniz/syz-k-forms.git

2. Preliminaries and notation

We begin by recalling some basic facts and establishing the notation used
throughout the paper. Let k be a field, that we may assume is algebraically
closed of characteristic zero. Fix V a k-vector space, n := dimV − 1, and let
Pn = P(V ) the projective space of lines in V through the origin. Let TPn
and Ω1

Pn denote the tangent and cotangent bundles of Pn. We have the Euler
sequence,

0 −→ OPn
rad−→ OPn(1)⊗ V −→ TPn −→ 0. (1)

Then we may identify V = H0(TPn(−1)) as the space of constant vector fields
(on the affine space An+1

k ). Fixing homogeneous coordinates (x0 : · · · : xn), we
have that V is spanned by the derivations ∂

∂x0
, . . . , ∂

∂xn
so that the map rad

in (1) is written as the inclusion of the radial vector field:

rad = x0
∂

∂x0
+ · · ·+ xn

∂

∂xn
, (2)

which is sometimes called the Euler derivation in the literature. Dualizing (1)
we get

0 −→ Ω1
Pn −→ OPn(−1)⊗ V ∗ ιrad−→ OPn −→ 0, (3)

and considering {dx0, . . . , dxn} the basis of V ∗ dual to { ∂
∂x0

, . . . , ∂
∂xn

} we see
that ιrad is the contraction – or interior product – of (local) differential 1-forms
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with the radial vector field: ιrad(ω) = ω(rad). Furthermore, we take exterior
powers of (3) to arrive at

0 −→ ΩpPn −→ OPn(−p)⊗
∧p
V ∗ ιrad−→ Ωp−1

Pn −→ 0, (4)

where ιradω(v1, . . . , vp−1) = ω(rad, v1, . . . , vp−1) is the contraction of p-forms
with rad.

Note that from (4) we have that global sections of ΩpPn(d + p + 1) are in
bijection with homogeneous differential p-forms

ω =
∑

0≤i1<···<ip≤n

Ai1...ipdxi1 ∧ · · · ∧ dxip

satisfying ιradω = 0 and degAi1...ip = d+ 1.
To fix notation, let R denote the polynomial ring R = k[x0, . . . , xn] and

let ΩpR = R ⊗
∧p
V ∗ be the free R-module of polynomial differential p-forms;

Ω0
R = R and ΩlR = 0 for l < 0. Then the radial vector field rad defines a

R-linear map ιrad : Ω
p
R → Ωp−1

R so that its kernel is
⊕

rH
0(ΩpPn(r)).

2.1. Distributions

Given 1 ≤ p ≤ n − 1, a codimension p distribution D on Pn is defined by a
short exact sequence

0 −→ TD
ϕ−→ TPn ψ−→ ND −→ 0 (5)

such that ND is a rank p torsion-free sheaf; hence TD is a rank n− p reflexive
sheaf. The distribution D is integrable, i.e., a foliation, if ϕ(TD) is closed under
the Lie bracket of vector fields.

Taking exterior powers of (5) yields a differential p-form ω ∈ H0(ΩpPn(d +
p+ 1)), where d := c1(TD(−1)) is called the degree of D . The map ψ is given
by contraction: ψ(v) = ιvω. The coefficients of ω generate the singular scheme
Sing(D) ⊂ Pn, supported on the set of points where ND is not free. As ND is
torsion-free, codimSing(D) ≥ 2.

Therefore, to study degree-d codimension-p distributions on Pn we may
focus on homogeneous p-forms representing global sections of ΩpPn(d + p + 1).
But first, notice that not every such p-form induces a distribution.

Example 2.1. Consider the 2-form ω ∈ H0(Ω2
Pn(3)) given by

ω = x0(dx1 ∧ dx2 + dx3 ∧ dx4)− dx0 ∧ (x1dx2 − x2dx1 + x3dx4 − x4dx3).

One can readily check that ω defines a “trivial distribution”, TD = 0. Indeed,
the contraction map ι•ω : TPn → Ωp−1

Pn (3) is injective. For instance, on the
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affine chart U0 = {x0 = 1} we have natural local coordinates (x1, x2, x3, x4)

and, for any local vector field v =
∑4
j=1 aj

∂
∂xj

, we have

ιvω|U0
= ιv(dx1 ∧ dx2 + dx3 ∧ dx4) = a1dx2 − a2dx1 + a4dx3 − a3dx4

which vanishes if and only if so does v.

Fortunately, there is a computable characterization for locally decomposable
and integrable forms.

Remark 2.2. To simplify our notation, we set
∧0
V ∗ =

∧0
V = k and ιvω := ω

for v ∈
∧0
V .

Lemma 2.3. A homogeneous p-form ω on Pn is locally decomposable off the
singular set (LDS) if

(ιvω) ∧ ω = 0, for every v ∈
∧p−1

V ;

here ιv1∧···∧vp−1ω := ιvp−1 · · · ιv1ω. Moreover, a LDS form ω is integrable if

(ιvω) ∧ dω = 0, for every v ∈
∧p−1

V.

The proof is an iterated application of de Rham-Saito Division Lemma [10]
after localizing to the principal open subset D+(f) ⊂ Pn, for f a coefficient
of ω, and we leave it to the reader.

Given an LDS p-form ω defining a distribution D , we want to compute its
tangent and normal sheaves. To do so, we analyze a suitable complex of sheaves
associated with ω. This was observed in [2, p.13] for codimension p = 1 and
the general case is similar. Taking exterior powers of the Euler sequence (3)

we get a natural inclusion Ωp−1
Pn (d + p + 1) ↪→ OPn(d + 2) ⊗

∧p−1
V ∗. On the

other hand, as in (1), TPn is the cokernel of rad: OPn → OPn(1)⊗ V , induced
by the radial vector field. Hence, we consider the composition

Cω : OPn(1)⊗ V ↠ TPn ω−→ Ωp−1
Pn (d+ p+ 1) ↪→ OPn(d+ 2)⊗

∧p−1
V ∗.

Note that ND is isomorphic to the image of Cω and we also get:

OPn
rad−→ OPn(1)⊗ V

Cω−→ OPn(d+ 2)⊗
∧p−1

V ∗. (6)

This complex is interesting because the associated complex of free R-modules is
computationally convenient to describe TD . The following is straightforward.

Lemma 2.4. Let D be a codimension-p distribution on Pn of degree d given by a
homogeneous p-form ω. Then TD is the middle cohomology of the complex (6)
and ND is the image of Cω.
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3. Forms with prescribed vanishing locus

Now we turn to the main objective of this work, which is to describe the
module of homogeneous p-forms, not necessarily LDS, vanishing along some
given subscheme. To describe distributions, one may further apply Lemma 2.3.

Let Z ⊂ Pn be a closed subscheme with ideal sheaf IZ and consider

Ap(Z) :=
⊕
d≥0

H0(ΩpPn(d+ p+ 1)⊗ IZ).

the R-module of twisted differential p-forms that vanish on Z. Let IZ denote
the saturated homogeneous ideal of Z, i.e., IZ :=

⊕
j H

0(IZ(j)) ⊂ R.

Proposition 3.1. Let Z ⊂ Pn be a closed subscheme then

0 −→ IZ ⊗ ιradΩ
p+1
R −→ Ap(Z) −→ TorRp (IZ , k)(p+ 1) −→ 0. (7)

Proof. Consider the (p+ 1)-st exterior power of Euler sequence tensored with
the sheaf IZ(d+ p+ 1):

0 −→ Ωp+1
Pn (d+p+1)⊗IZ −→ IZ(d)⊗

∧p+1
V ∗ ιrad−→ ΩpPn(d+p+1)⊗IZ −→ 0,

which is exact since ΩpPn is locally free. From the long sequence of cohomology,
we get

H0(IZ(d))⊗
∧p+1

V ∗ ιrad−→ H0(ΩpPn(d+p+1)⊗IZ)
ϕ−→ H1(Ωp+1

Pn (d+p+1)⊗IZ)

is exact. From [7, Theorem 5.8] the image of ϕ is precisely TorRp (IZ , k)d+p+1.
Taking the direct sum over d ≥ 0, we get the desired sequence of R-modules.
Note that the image of ιrad after the sum is isomorphic to IZ ⊗ ιradΩ

p+1
R .

In most cases of interest, one wants to describe degree d distributions sin-
gular along a Z such that H0(IZ(d)) = 0 so that

H0(ΩpPn(d+ p+ 1)⊗ IZ) ≃ TorRp (IZ , k)d+p+1.

It is an interesting open question to decide whether H0(IZ(d)) = 0 holds for
Z = Sing(D). This is true, for instance, if k = 1 and dimZ = 0, see [6,
Lemma 4.2].

3.1. p–forms and syzygies

Note that the sequence of graded k-vector spaces underlying (7) must split,
and we derive such a splitting from the syzygies of IZ . Consider the minimal
graded free resolution

0 −→ Fn
ϕn−→ Fn−1

ϕn−1−→ · · · −→ F0
ϕ0−→ IZ −→ 0, (8)
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where Fi =
⊕

j R(−j)βi,j . Recall that, since the resolution is minimal,

TorRp (IZ , k) ≃ Fp ⊗ k =
⊕
j

kβp,j , (9)

with kβp,j in degree j. Moreover, fixed the minimal generators given by ϕ0, the
module of p-th syzygies of IZ is the image of ϕp. Note that if we tensor (8)
with the free module ΩlR we get an exact sequence

0 −→ Fn ⊗ ΩlR
ϕn−→ Fn−1 ⊗ ΩlR

ϕn−1−→ · · · −→ F0 ⊗ ΩlR
ϕ0−→ IZ ⊗ ΩlR −→ 0 (10)

where ϕj = ϕj ⊗ 1 by abuse of notation. We then define a k-linear map

δ : ΩpR → Ωp+1
R by setting

δω =
dω

degω
,

on a homogeneous ω. Here degω is the total degree of ω considering deg dxi =
deg xi = 1. The important property δ has is that

ιradδω = ω, for ω ∈ ker ιrad.

Given a matrix of p-forms G = (gij) we denote δG = (δgij) and similarly for
ιrad; we use the dot · to denote matrix multiplication, whether the entries are
commutative or not.

To construct a 1-form that vanishes on Z, we take t ∈ TorR1 (IZ , k)
∼=⊕

j k
β1,j , which we regard as a column vector of elements of k with the appro-

priate grading. The matrix ϕ0 is a row vector of (minimal) generators of IZ
and the columns of ϕ1 are the first syzygies; in particular, ϕ1t is a first syzygy.
Then we apply δ and multiply the matrices: ξ1(t) := ϕ0 · δϕ1 · t. It vanishes
on Z since the coefficients belong to IZ , and it may descend to the projective
space since

ιradξ1(t) = ιrad(ϕ0 · δϕ1 · t) = ϕ0 · ϕ1 · t = 0

by the above relation; by convention ιradF = 0 for any polynomial F . Note,
however, that ξ1(t) is only homogeneous if t ∈ TorR1 (IZ , k) is homogeneous,
i.e., it has nonzero entries in only one degree. For 2-forms, the procedure is
similar, take t ∈ TorR2 (IZ , k) and define ξ2(t) := ϕ0 · δ(ϕ1 · δϕ2) · t. Notice that
we differentiate the matrix ϕ2, multiply the result by ϕ1, then differentiate the
product. Following the same strategy, we construct p-forms vanishing on Z
with the following proposition. Recall that one can also produce p-forms from
IZ ⊗ ιradΩ

p+1
R , i.e., as a combination η =

∑
Fiηi with Fi ∈ IZ and ιradηi = 0.

The forms we obtain via the above procedure are not of this type.

Proposition 3.2. The k-linear morphism ξp : TorRp (IZ , k) → Ap(Z) defined by

ξp(t) = (ϕ0 ◦ δ ◦ ϕ1 ◦ · · · ◦ δ ◦ ϕp) · t,
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(alternating δ and multiplication by ϕi) is injective, and its image does not
intersect the image of IZ ⊗ ιradΩ

p+1
R .

Proof. First, note that, due to R-linearity, ιrad(ϕj · δϕj+1) = ϕj · ϕj+1 = 0. It
is then straightforward to show that ιradξp(t) = 0.

We will assume by contradiction that ξp(t) belongs to the image of IZ ⊗
ιradΩ

p
R and conclude that t = 0, hence proving both claims at once. From the

assumption there exists η0 a column vector of (p+ 1)-forms such that

ξp(t) = ϕ0 · ιradη0.

Hence
ϕ0 · (δ(ϕ1 ◦ · · · ◦ δ ◦ ϕp) · t− ιradη0) = 0

and, due to the exactness of (8) twisted by ΩpR, there exists η1 a column vector
of p-forms such that

δ(ϕ1 ◦ · · · ◦ δ ◦ ϕp) · t− ιradη0 = ϕ1 · η1.

Applying ιrad we get, due to R-linearity,

ϕ1 ·δ(ϕ2 ◦· · ·◦δ◦ϕp) ·t = ϕ1 ·ιradη1 =⇒ ϕ1 ·(δ(ϕ2 ◦ · · · ◦ δ ◦ ϕp) · t− ιradη1) = 0.

Thus there exists η2, a column vector of (p − 1)-forms, such that δ(· · · δϕp)) ·
t− ιradη1 = ϕ2 · η2. Iterating this process we arrive at

δϕp · t− ιradηp−1 = ϕp · ηp

where ηp is a column vector of 1-forms. Hence, there exists a matrix of poly-
nomials A such that

t− ιradηp = ϕp+1 ·A.

Since the resolution (8) is minimal, each entry of ϕp+1 is a homogeneous
polynomial; the same is true for ιradηp. On the other hand, the entries of

t ∈ TorRp (IZ , k) are constants. Thus, comparing degrees, we see that t = 0.

Note that from (7) we expect that fξp(t) ∈ IZ ⊗ ιradΩ
p
R, for any homoge-

neous polynomial f ∈ R. Indeed, we can write

fξp(t) = ϕ0 · ιrad (δf ∧ δ(ϕ1 · δ(· · · δϕp)) · t) .

Also we have that ξp(t) is not homogeneous unless t ∈ TorRp (IZ , k)m for some
m; in this case the total degree of ξp(t) is m. Moreover, if h0(IZ(d)) = 0 we
can pass to the first linear strand of (8):

0 −→ F 0
n

ϕ0
n−→ F 0

n−1

ϕ0
n−1−→ · · · −→ F 0

0

ϕ0
0−→ IZ
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where F 0
j = R(−j − d− 1)βj,j+d+1 and ϕ0j are the corresponding linear blocks.

Thus, H0(ΩpPn(d+ p+ 1)⊗ IZ) ≃ TorRp (IZ , k)d+p+1 may be computed from

ξ0p(t) = ϕ00 · dϕ01 ∧ · · · ∧ dϕ0p · t,

which involves only the degree d+ 1 generators of IZ .

4. Examples

In this section, we compute some examples. We will focus on degree d distri-
butions singular along Z such that (IZ)d = 0. This is expected to always hold
for Z the full singular scheme, see the introduction to [8].

Example 4.1 (n = 2, p = 1, d = 1). Let us start with a simple example. Let
Z ⊂ P2 be a reduced subscheme of length 3 not contained in a line. Then we
may suppose

IZ = (x0, x1) ∩ (x0, x2) ∩ (x1, x2) = (x0x1, x0x2, x1x2).

The resolution is given by

0 −→ R2


x2 0
−x1 x1
0 −x0


−−−−−−−−−−−→ R3

(
x0x1 x0x2 x1x2

)
−−−−−−−−−−−−−−−−→ IZ −→ 0

Thus H0(Ω1
P2(3)⊗ IZ) ∼= k2 spanned by

ω1 = x0x1dx2 − x0x2dx1 and ω2 = x0x2dx1 − x1x2dx0.

Note that both ω1 and ω2 vanish along a line and a point, but a general linear
combination of them vanishes precisely at Z.

Example 4.2 (n = 3, p = 1, d = 1). Also for d = 1 consider Z ⊂ P3 a twisted
cubic:

0 −→ R2


x0 x1
x1 x2
x2 x3


−−−−−−−−→ R3

(
x1x3 − x22 x1x2 − x0x3 x0x2 − x21

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ IZ −→ 0

Then we also get H0(Ω1
P2(3) ⊗ IZ) ∼= k2. A general element vanishes only

on Z.

Example 4.3 (n = 3, p = 1, d = 1). Next, we describe a pathological example
for codimension one and degree one on P3. Consider Z given by

IZ = (x20, x
2
1, x0x2, x1x2, x

2
2 − x0x1).
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It is a 0-dimensional scheme of length of 5 supported on a single point. It is
a simple example of a point that is not a local complete intersection. Thus,
there is no local 1-form vanishing only on Z. Due to Theorem A, any 1-form
vanishing on Z can be written as ω = Adx0 +Bdx1 + Cdx2 where

A = t0x1x2 + t2x
2
1 + t3x0x2 + t4(x0x1 − x22)

B = −t0x0x2 + t1x1x2 − t2(x0x1 − x22)− t4x
2
0

C = −t1x21 − t2x1x2 − t3x
2
0 + t4x0x2

and t0, . . . , t4 ∈ C. Note that ω does not depend on x3 so it is a linear pullback
of a 1-form η on P2 and the singular locus is thus a cone over the singular locus
of η. Therefore, any ω vanishing on Z must vanish along 3 lines concurring
at Zred.

Example 4.4 (n = 3, p = 2, d = 2). Any (n−1)-form ω ∈ H0(Ωn−1
Pn (d+n)) can

be written as ω = ιradιv dx0∧· · ·∧dxn for some vector field v ∈ H0(TPn(d−1));
in particular, it is LDS. The distribution, actually the foliation, described by ω
is often better described by v, and to get this vector field from ω we just note
that ιv dx0 ∧ · · · ∧ dxn = 1

d+ndω. If v =
∑n
j=0 aj

∂
∂xj

then, the singular scheme

is defined by the maximal minors of the matrix

(
x0 · · · xn
a0 · · · an

)
,

which coincides with the ideal generated by the coefficients of ω, up to satura-
tion.

Now we specialize to P3. In [5] foliations by curves on P3 are studied with
a special focus on those having locally free conormal sheaf N∨

D . Nonetheless,
estimates on Chern classes predict a foliation of degree 2 with conormal sheaf
satisfying c1(N

∨
D) = −5, c2(N

∨
D) = 9 and c3(N

∨
D) = 3; here c3 > 0 implies

non-locally-free. Then [5, Theorem 4.1] translates it to predicting a foliation
singular along Z = C ∪P where C is a curve of degree 2 and genus −2, and P
is zero-dimensional of length 3. Then consider, for instance,

C = V (x20, x0x1, x
2
1, x0(x

2
2 − x23)− x1x3x2),

P = V (x2 − x0, x2 + x1, x3) ∪ V (x1 − x0, x2, x3 + x0)

∪ V (x1 − 2x0, x2 + x0, x3 − x0).

Computing the syzygies we can construct, inside a space of dimension 4, the
vector field v =

∑3
j=0 aj

∂
∂xj

where
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a0 = −4x20 − 50x0x1 + 20x21,

a1 = −40x20 + 16x0x1 − 10x21,

a2 = 40x20 − 45x0x1 + 35x21 − 4x0x2 + 50x1x2 + 30x0x3,

a3 = 50x20 + 40x0x1 − 40x21 + 30x0x2 − 4x0x3 + 20x1x3.

To check that v is singular precisely along Z, one may follow the Macaulay2
routine below.

i1 : R = QQ[x_0..x_3];

i2 : C = ideal(x_0^2, x_0*x_1, x_1^2, x_0*(x_2^2-x_3^2) - x_1*x_3*x_2);

o2 : Ideal of R

i3 : P = intersect(ideal(x_2-x_0, x_2+x_1,x_3),ideal(x_1-x_0, x_2,x_3+x_0),

ideal(x_1-2*x_0, x_2+x_0,x_3-x_0));

o3 : Ideal of R

i4 : Z = intersect(C,P);

o4 : Ideal of R

i5 : a0 = -4*x_0^2-50*x_0*x_1+20*x_1^2;

i6 : a1 = -40*x_0^2+16*x_0*x_1-10*x_1^2;

i7 : a2 = 40*x_0^2-45*x_0*x_1+35*x_1^2-4*x_0*x_2+50*x_1*x_2+30*x_0*x_3;

i8 : a3 = 50*x_0^2+40*x_0*x_1-40*x_1^2+30*x_0*x_2-4*x_0*x_3+20*x_1*x_3;

i9 : singD = saturate minors(2, matrix{{x_0,x_1,x_2,x_3},{a0,a1,a2,a3}});

o9 : Ideal of R

i10 : Z == singD

o10 = true

Example 4.5. In [1], the authors provide a construction for instanton bundles
F on P3 of charge 4 as a twist of the kernel of a map Ω1

P3(1) → IZ(3), where Z
is the disjoint union of 5 lines with no 5-secant. In our notation, F (−3) = N∨

D

is the conormal sheaf of a degree-3 foliation by curves D . Next, we show
how to provide explicit examples of such sheaves with the help of the an-
cillary file syz-k-forms.m2 (available at https://github.com/alannmuniz/

syz-k-forms.git).

i1 : load "syz-k-forms.m2"

i2 : R = QQ[x_0..x_3];

i3 : C = dsLns(5,R); -- 5 random lines

o3 : Ideal of R

i4 : om = rOmg(2,3,C); -- random 2-form of degree 3 vanishing on C

1 1

o4 : Matrix (R[dx ..dx ]) <-- (R[dx ..dx ])

0 3 0 3

i5 : C == sing om -- check C is the whole singular scheme

o5 = true

i6 : N = conSheaf om; -- compute the conormal sheaf

i7 : F = N(3);

i8 : chern F -- compute its Chern classes
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o8 = (0, 4, 0)

o8 : Sequence

i9 : HH^1(F(-2))

o9 = 0

o9 : QQ-module

Example 4.6. Similar to the previous example, if we set C as the disjoint union
of two double lines of genus −3, we get an instanton bundle F of charge 5.

i1 : load "syz-k-forms.m2"

i2 : R = QQ[x_0..x_3];

i3 : C1 = ideal(x_0^2, x_0*x_1, x_1^2, x_0*x_2^3 - x_1*x_3^3);

o3 : Ideal of R

i4 : C2 = ideal(x_2^2, x_2*x_3, x_3^2, x_2*x_0^3 - x_3*x_1^3);

o4 : Ideal of R

i5 : saturate(C1+C2) == R --check that they are disjoint

o5 = true

i6 : C = intersect(C1,C2);

o6 : Ideal of R

i7 : om = rOmg(2,3,C);

1 1

o7 : Matrix (R[dx ..dx ]) <-- (R[dx ..dx ])

0 3 0 3

i8 : N = conSheaf om; -- compute the conormal sheaf

i9 : F = N(3);

i10 : chern F -- compute its Chern classes

o10 = (0, 5, 0)

o10 : Sequence

i11 : HH^1(F(-2))

o11 = 0

o11 : QQ-module
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