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1. Introduction

We call involution a periodic diffeomorphism of order 2 acting on a smooth
manifold. This paper considers orientation-preserving involutions acting on
orientable and closed spherical 3-manifolds. A closed and orientable spherical
3-manifold is the quotient of S3 by a finite subgroup of SO(4) acting freely
on S3. Two spherical 3-manifolds S3/G and S3/G′ are homeomorphic if and
only if G and G′ are conjugate in O(4). Thus, the classification of the spherical
3-manifolds is equivalent to the classification up to conjugacy of the finite
subgroups acting freely on S3, which is originally due to Seifert and Threlfall
([22] and [23]). If the finite group G does not act freely the quotient S3/G
has a natural structure as smooth spherical 3-orbifold. Also in this case, the
quotient orbifolds are diffeomorphic if and only if the corresponding groups are
conjugate. The classification up to conjugacy of the finite subgroups of SO(4)
is summarised in Table 1; the groups are divided into several families. Section 2
explains which subgroups act freely on S3; in particular, free actions can occur
only for Families 1, 1′, 2, 3, 5, 6, 7 and 9.

The study of involutions is a classical research theme in the field of 3-
manifolds. This topic played a significant role in the development of Thurston’s
geometrization program. For spherical 3-manifolds, the cases of lens spaces and
quaternion manifolds have been considered in several papers, see for example
[8, 11, 18, 20]. Following the proof of Thurston’s geometrization theorem, the
analysis of the involutions of geometric 3-manifolds is easier since we know
that each involution is conjugate to an isometry and the whole analysis can be
carried out in the isometry groups of the manifolds. However, a comprehensive
description of the involutions of spherical 3-manifolds is absent from the liter-
ature. This paper aims to fill that gap by providing a detailed classification of
involutions for all spherical 3-manifolds, along with geometric insights into their



(2 of 31) M. MECCHIA AND B. SCHILLING

actions. Specifically, we obtain the algebraic classification of the involutions up
to conjugacy and describe the corresponding quotient orbifolds. In particular,
we can distinguish if an involution acts freely, or equivalently if the quotient
orbifold is a manifold. If the quotient orbifold has S3 as underlying topolog-
ical space the involution is called hyperelliptic. The hyperelliptic involutions
have been largely studied in dimensions two and three. In the 3-dimensional
case, if a manifold admits a hyperelliptic involution, it can be seen as the 2-
fold branched cover of S3 along a link that is the singular set of the quotient
orbifold. In our case, we can individuate which involutions are hyperelliptic.

The analysis of the quotients can be carried out by using Seifert fibrations.
Seifert introduced this structure for 3-manifolds, see [21]. Every spherical 3-
manifold admits such a fibration. Bonahon and Siebenmann [1] generalized
the definition to 3-orbifolds. There exist spherical 3-orbifolds not admitting a
Seifert fibration, but any orbifold obtained by taking the quotient of a spherical
manifold by an involution is Seifert fibered. A Seifert fibration is uniquely
determined by a series of invariants (base orbifolds, local invariants, Euler class
and boundary invariants) and, in our case, they can be computed by using the
formulae given in [13]. For notations and details about Seifert fibrations, we
refer to [15].

The classification of involutions and their principal geometric features are
summarised in Tables 11, 12 and 13. The spherical 3-manifold S3/G is rep-
resented through the group G in the first column. The conjugacy classes of
involutions of S3/G are represented by extensions of index 2 of G that are
listed in the second column. In the third column, it is said if the action of
the involutions is free. In Table 11, if the extensions are in Family 1 or 1′ we
cannot produce a closed formula to describe when the involution acts freely.
However, it is possible to use Tables 9 and 10 to analyse this aspect. In the
fourth column, we say if the involution is hyperelliptic.

The spherical 3-manifolds are divided into some subclasses: lens spaces,
prism manifolds and platonic manifolds, which are further subdivided into
tetrahedral, octahedral and icosahedral manifolds.

If the group G is in Families 1 and 1′, the manifold S3/G is a lens space;
the groups in Families 2 and 3 give prism manifolds; tetrahedral manifolds are
the quotients by groups in Families 5 and 6; finally, if G is in Family 7 (resp.
Family 8) the manifold S3/G is octahedral (resp. icosahedral).

The following statement concisely describes the classification according to
the manifold type.

Theorem 1.1. Let M be a spherical 3-manifold.

1. If M is a lens space, it has two to eight involution classes.

2. If M is a prism manifold, it has three to five involution classes. Moreover,
M admits an involution acting freely if and only if it is diffeomorphic to
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S3/G where G is in Family 2; such involution is unique up to conjugacy.

3. If M is a tetrahedral manifold, it has two to five involution classes. More-
over, M admits an involution acting freely if and only if it is diffeomor-
phic to S3/G where G is in Family 5; such involution is unique up to
conjugacy.

4. If M is an octahedral or an icosahedral manifold, it has one or two invo-
lution classes; no involution acts freely.

Moreover, M admits, up to conjugacy, exactly one hyperelliptic involution.

Lens spaces involutions were considered in [18, 8]; in particular, an explicit
classification of involutions not acting freely is given in [8]. Considering lens
spaces, it is also worth mentioning the paper of Kalliongis and Miller [9] where
the isometry groups of the lens spaces are described in many details. The
involutions of prism manifolds are studied in [20] and [11].

The existence of a hyperelliptic involution for each manifold and its unique-
ness up to conjugacy implies that each spherical 3-manifold can be represented
in exactly one way as the 2-fold branched cover of S3 along a link. We note
that not all the manifolds can be obtained as the 2-fold branched cover of a
link, and, if it exists, this representation is generally highly not unique (see, for
example, [10, 16, 24]). In Subsection 5.5, we prove that in the spherical case,
all the singular sets of quotient orbifolds obtained by hyperelliptic involutions
are Montesinos links, so we can obtain the following result.

Theorem 1.2. Each spherical 3-manifold is the 2-fold branched cover of S3

along a Montesinos link with at most three tangles. If two links give diffeomor-
phic spherical 2-fold branched covers of S3, they are equivalent.

Montesinos links are introduced in [17], see also [2]; a brief description of
this class of links is given in Subsection 5.5 where the proof of Theorem 1.2 is
completed.

Theorem 1.2 can also be proved on the basis of the results already present in
the literature and not using our classification: Dunbar [6] gives a list of spherical
orbifolds whose underlying topological space is S3. We restrict our attention
to the orbifolds whose singular set is a link. Many of these links are already
presented as Montesinos links. There are few exceptions but also these can be
manipulated to obtain Montesinos links. The 2-fold branched cover of S3 along
a Montesinos link is described in [17] via a Seifert fibration. A manifold might
admit inequivalent Seifert fibrations but the topological classification of Seifert
3-manifolds up to homeomorphism is easy to handle except for lens spaces that
admit infinite inequivalent fibrations, see [19]. For lens spaces, the uniqueness
is obtained in [8]. In the other cases, we can use the topological classification
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of Seifert 3-manifolds to obtain the result. In the present paper, Theorem 1.2
is a by-product of the classification.

Even if we skip the hypothesis of being hyperelliptic, our approach can
obtain more geometric information; in Subsection 5.5, some cases are analyzed.
Finally, we note that our method can also be used to study the involutions of
the spherical 3-orbifolds. A general classification would involve a huge number
of cases, so it may not be worth the effort, but our approach can be easily
extended to analyze single cases also in the orbifold setting.

2. Finite subgroup of SO(4)

We use the quaternion algebra to classify the finite subgroups of SO(4). We
essentially follow [4] although it must be mentioned that in Du Val’s list of
finite subgroups of SO(4) there are three missing cases, see also [3, 13, 14].

Let us identify R4 with the quaternion algebra:

H = {a+ bi+ cj + dk | a, b, c, d ∈ R} = {z1 + z2j | z1, z2 ∈ C}.

Given q = z1 + z2j ∈ H, its conjugate is q̄ = z̄1 − z2j. Thus the standard
positive definite quadratic form of R4 is identified as qq̄ = |z1|2 + |z2|2. The
three-sphere S3 is represented as the set of unit quaternions:

S3 = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1} = {z1 + z2j | |z1|2 + |z2|2 = 1} .

which is thus endowed with a multiplicative group structure induced from that
of H. The finite subgroups of S3 are well known. Up to conjugacy, those are:

• Cn = {e2iπk/n, 0 ≤ k < n}

• D∗
4n = C2n ∪ C2nj

• T ∗ = D∗
8 ∪ αD∗

8 ∪ α2D∗
8 , where α =

1

2
(1 + i+ j + k)

• O∗ = T ∗ ∪ βT ∗, where β =
1√
2
(1 + j)

• I∗ =
⋃4

r=0 γ
rT ∗, where γ =

1

2

(
1 +

√
5

2

−1

+
1 +

√
5

2
j + k

)
The group Cn is a cyclic group of order n. In the following, we will write Cn

to refer to the subgroup of S3, and Zn to designate the abstract cyclic group
of order n.

The group D∗
4n is the binary dihedral group of order 4n. It is a central

extension of the dihedral group D2n by a group of order 2, and admits the
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presentation ⟨ζ, j|ζ2n = jζj−1ζ = ζnj2 = 1⟩. Observe in particular that
D∗

4 = {±1,±j} is conjugate to C4 (for this reason, we will only refer to D∗
4n

when n ≥ 2), and D∗
8 = {±1,±i,±j,±k} is also called the quaternion group.

The groups T ∗, O∗ and I∗ are respectively called binary tetrahedral, binary
octahedral, and binary icosahedral groups, and their orders are 24, 48, and 120.

Let Φ : S3 × S3 → SO(4) be the application given by Φ(p, q)(x) = pxq−1.
It is a 2 : 1 surjective morphism whose kernel is equal to {±(1, 1)}. If G is a
subgroup of SO(4), we write G̃ = Φ−1(G). Since (−1,−1) is central, two sub-
groups G and G′ are conjugate in SO(4) if and only if G̃ and G̃′ are conjugate
in S3 × S3, thus reducing the problem of classifying the finite subgroups of
SO(4) up to conjugacy to the classification of the finite subgroups of S3 × S3

containing (−1,−1) up to conjugacy.

Let G̃ be a finite subgroup of S3 × S3, and pr1, pr2 the projections on the
first and second coordinate, respectively. We introduce the groups L = pr1(G̃),
LK = pr1(G̃ ∩ (S3 × {1})), R = pr2(G̃) and RK = pr2(G̃ ∩ ({1} × S3)).
The projections induce two isomorphisms pr1 : G̃/LK × RK → L/LK and
pr2 : G̃/LK ×RK → R/RK , and we define an isomorphism ϕ : L/LK → R/RK

by ϕ = pr2 ◦ pr1−1 .

Conversely, if L and R are finite subgroups of S3 with normal subgroups LK

and RK and an isomorphism ϕ : L/LK → R/RK , then there exists a unique
subgroup H of S3 × S3 such that L = pr1(H), LK = pr1(H ∩ (S3 × {1})),
R = pr2(H), RK = pr2(H ∩ ({1} × S3)) and the isomorphism ϕ is equal to
pr2 ◦ pr1−1. The definition of H is the following:

H = {(x, y) ∈ L×R |ϕ(xLK) = yRK}.

We use the quintuple (L,LK , R,RK , ϕ) to denote the group H.

This presentation describes the subgroups of S3×S3 in terms of subgroups
of S3. With the help of the following lemma, whose proof is straightforward,
we can also understand if two subgroups of S3 × S3 are conjugate.

Lemma 2.1. Let G̃ = (L,LK , R,RK , ϕ) and G̃′ = (L′, L′
K , R′, R′

K , ϕ′) be fi-
nite subgroups of S3 × S3 containing (−1,−1). An element (g, f) ∈ S3 × S3

conjugates G̃ to G̃′ if and only if the following conditions are satisfied:

1. g−1Lg = L′ and f−1Rf = R′

2. g−1LKg = L′
K and f−1RKf = R′

K

3. The equality c̄f ◦ ϕ = ϕ′ ◦ c̄g holds, i.e. the following diagram commutes:
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L/LK

L′/L′
K

R/RK

R′/R′
K

L

L′

R

R′

c̄g c̄f

ϕ

ϕ′

cg cf

Where c̄g (resp. c̄f ) is the application L/LK → L′/L′
K (resp. R/RK →

R′/R′
K) induced on the quotient by cg : L → L′ (resp. cf : R → R′), the

conjugation by g (resp. by f).

Using this lemma and the list of subgroups of S3, it is possible to obtain
a complete classification up to conjugacy of the finite subgroups of S3 × S3

containing ±(1, 1), reported in Table 1.
Note that, in most cases, the group is entirely determined by (L,LK , R,RK)

up to conjugacy, as the isomorphism ϕ is unique or does not change the con-
jugacy class, so we use Du Val’s notation (L/LK , R/RK), sometimes using a
subscript to denote the isomorphism ϕ.

In case of Family 1, we write (C2mr/C2r, C2nr/C2r)s (with gcd(s, r) = 1)
to indicate that the isomorphism ϕ : L/LK → R/RK is the one defined by
ϕ(e2iπ/2mrC2m) = e2iπs/2nrC2n. Similarly, in case of Family 1′, the group
(Cmr/Cm, Cnr/Cn)s (with m,n odd, r even and gcd(s, r) = 1) is given by the
isomorphism ϕ : L/LK → R/RK such that ϕ(e2iπ/mrCm) = e2iπs/nrCn.

In case of Family 11, the isomorphism related to (D∗
4mr/C2m, D∗

4nr/C2n)s
is determined by ϕ(e2iπ/2mrC2m) = e2iπs/2nrC2n and ϕ(j) = j. In case of
Family 11′, the isomorphism related to (D∗

2mr/Cm, D∗
2nr/Cn)s is determined

by ϕ(e2iπ/mrCm) = e2iπs/nrCn and ϕ(j) = j. For Families 26′, 26′′, 31, 31′, 32,
32′, 33 and 33′, the definition of the isomorphism ϕ can be found in [14]. If
we add the word “bis” to the number of the family we are referring to the
family when the roles of L and R are switched with respect to the original
one. A group is conjugate to the corresponding one in the “bis” family by
an orientation reversing isometry, but in SO(4) the two groups might be non-
conjugate. More details can be found in [14, Section 3.2].

Most of the quotients of S3 by one of these groups are not manifolds so we
need to discriminate between the groups acting freely on S3, whose associated
quotient is a manifold, and the others, whose associated quotient is an orbifold
with nonempty singular set. The subgroups of SO(4) acting freely have been
classified by Seifert and Threlfall in [22, 23]. A description of these groups is
present in [12] where the notation is similar to ours except for Families 1 and 1′.
For this case we use the results of [13] to determine when the singular locus is
empty.

Finally, we find that the subgroups of SO(4) acting freely are those of
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Table 1: Finite subgroups of SO(4)

family of groups order Φ(G)

1 (C2mr/C2m, C2nr/C2n)s 2mnr gcd(s, r) = 1
1′ (Cmr/Cm, Cnr/Cn)s (mnr)/2 gcd(s, r) = 1, mn odd and r even
2 (C2m/C2m, D∗

4n/D
∗
4n) 4mn

3 (C4m/C2m, D∗
4n/C2n) 4mn

4 (C4m/C2m, D∗
8n/D

∗
4n) 8mn

5 (C2m/C2m, T ∗/T ∗) 24m
6 (C6m/C2m, T ∗/D∗

8) 24m
7 (C2m/C2m, O∗/O∗) 48m
8 (C4m/C2m, O∗/T ∗) 48m
9 (C2m/C2m, I∗/I∗) 120m
10 (D∗

4m/D∗
4m, D∗

4n/D
∗
4n) 8mn

11 (D∗
4mr/C2m, D∗

4nr/C2n)s 4mnr gcd(s, r) = 1
11′ (D∗

2mr/Cm, D∗
2nr/Cn)s mnr gcd(s, r) = 1, mn odd and r even

12 (D∗
8m/D∗

4m, D∗
8n/D

∗
4n) 16mn

13 (D∗
8m/D∗

4m, D∗
4n/C2n) 8mn

14 (D∗
4m/D∗

4m, T ∗/T ∗) 48m
15 (D∗

4m/D∗
4m, O∗/O∗) 96m

16 (D∗
4m/C2m, O∗/T ∗) 48m

17 (D∗
8m/D∗

4m, O∗/T ∗) 96m
18 (D∗

12m/C2m, O∗/D∗
8) 48m

19 (D∗
4m/D∗

4m, I∗/I∗) 240m
20 (T ∗/T ∗, T ∗/T ∗) 288
21 (T ∗/C2, T

∗/C2) 24
21′ (T ∗/C1, T

∗/C1) 12
22 (T ∗/D∗

8 , T
∗/D∗

8) 96
23 (T ∗/T ∗, O∗/O∗) 576
24 (T ∗/T ∗, I∗/I∗) 1440
25 (O∗/O∗, O∗/O∗) 1152
26 (O∗/C2, O

∗/C2) 48
26′ (O∗/C1, O

∗/C1)Id 24
26′′ (O∗/C1, O

∗/C1)f 24
27 (O∗/D∗

8 , O
∗/D∗

8) 192
28 (O∗/T ∗, O∗/T ∗) 576
29 (O∗/O∗, I∗/I∗) 2880
30 (I∗/I∗, I∗/I∗) 7200
31 (I∗/C2, I

∗/C2)Id 120
31′ (I∗/C1, I

∗/C1)Id 60
32 (I∗/C2, I

∗/C2)f 120
32′ (I∗/C1, I

∗/C1)f 60
33 (D∗

8m/C2m, D∗
8n/C2n)f 8mn m,n ̸= 1

33′ (D∗
8m/Cm, D∗

8n/Cn)f 4mn mn odd and m,n ̸= 1
34 (C4m/Cm, D∗

4n/Cn) 2mn mn odd
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• Family 1, G̃ = (C2mr/C2m, C2nr/C2n)s with gcd(r, s) = 1, gcd(m,n) = 1,
mn even or r odd, and gcd(n− sm, 2mnr) = gcd(n+ sm, 2mnr)

• Family 1′, G̃ = (Cmr/Cm, Cnr/Cn)s with m,n odd, r even, gcd(r, s) = 1,
gcd(m,n) = 1, and gcd(n− sm,mnr) = gcd(n+ sm,mnr)

• Family 2, G̃ = (C2m/C2m, D∗
4n/D

∗
4n) with gcd(m, 2n) = 1

• Family 3, G̃ = (C4m/C2m, D∗
4n/C2n), with gcd(m,n) = 1 and m even

• Family 5, G̃ = (C2m/C2m, T ∗/T ∗), with gcd(m, 6) = 1

• Family 6, G̃ = (C6m/C2m, O∗/T ∗), with m odd, 3|m

• Family 7, G̃ = (C2m/C2m, O∗/O∗), with gcd(m, 6) = 1

• Family 9, G̃ = (C2m/C2m, I∗/I∗), with gcd(m, 30) = 1

In accordance to the family of G̃, the manifold S3/G is called a prism
manifold if G̃ is in Family 2 or 3, a tetrahedral manifold if G̃ is in Family 5
or 6, an octahedral manifold if G̃ is in Family 7, and an icosahedral manifold
if G̃ is in Family 9. If G̃ is in Family 1 or 1′, then S3/G is a lens space.

In the following, the study of those groups will in most cases be separated
between the general case and the cases of ”small indices”, that is when one of
the groups involved is C2 or D∗

8 , or when r ∈ {1, 2} for Families 1 and 1′.

3. Isometry groups

An isometry of the spherical 3-orbifold O = S3/G can be lifted to an isome-
try of S3 normalizing G; if the initial isometry is orientation-preserving, then
the lift to S3 is orientation-preserving too. This implies that Isom+(S3/G) ∼=
NormSO(4)(G)/G. By the 2:1 correspondence Φ used in the previous section,

we can deduce that Isom+(S3/G) ∼= NormS3×S3(G̃)/G̃,
Thus, the isometry groups of spherical orbifolds can be computed by an-

alyzing the normalizer of the finite subgroups of S3 × S3. In [12] the case of
3-manifolds is considered, while the isometry groups of all spherical orbifolds
are computed in [14].

Let us recall that the finite subgroups of S3 are known and that their
normalizers are:

NormS3(Cn) = O(2)∗ if n > 2, and NormS3(C2) = S3

NormS3(D∗
4n) = D∗

8n if n > 2, and NormS3(D∗
8) = O∗

NormS3(T ∗) = O∗

NormS3(O∗) = O∗

NormS3(I∗) = I∗
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The group O(2)∗ is generated by the subgroup S1 = {eiθ, θ ∈ R} and j;
this group is a central extension of O(2) by a subgroup of order two.

The computation of the normalizer of a group G̃ = (L,LK , R,RK , ϕ) is
given by the following lemma that is a special case of Lemma 2.1.

Lemma 3.1. Let G̃ = (L,LK , R,RK , ϕ) be a finite subgroup of S3 × S3 con-
taining (−1,−1). An element (g, f) ∈ S3 × S3 normalizes G̃ if and only if the
following conditions are satisfied:

1. g ∈ NormS3(L) ∩NormS3(LK)

2. f ∈ NormS3(R) ∩NormS3(RK)

3. The equality c̄f ◦ ϕ = ϕ ◦ c̄g holds, where c̄g (resp. c̄f ) is the application
L/LK → L/LK (resp. R/RK → R/RK) induced on the quotient by
cg : L → L (resp. cf : R → R), the conjugation by g (resp. by f).

This lemma can be used to compute the orientation-preserving isometry
groups of the spherical 3-manifolds and 3-orbifolds. The isometry groups of
the manifolds are reported in Table 2 where we use the same notation of [14].

We must distinguish between the general case and some cases involving
small indices. In the general case, we suppose that m,n > 1 and r > 2. The
group Dih(S1×S1) is a semidirect product of S1×S1 and Z2 where the group
Z2 acts dihedrally on S1×S1. The symbol ×̃ indicates a central product where
the two central involutions of the factors are identified.

4. Involutions of spherical manifolds

As indicated in Table 2, the orientation-preserving isometry groups of spherical
manifolds can be expressed using the groups Z2, D6, O(2), O(2)∗, S3, SO(3),
SO(4), PSO(4) and Dih(S1×S1), being either one of those or a product (direct
or central) of two of them. It is useful to notice that O(2) is a dihedral extension
of S1.

If G is a group, we denote by Invol(G) the set of involutions of G, and by
I(G) the set of conjugacy classes of the involutions. In Table 3, we describe
a complete set of representatives of I(G) for each of these groups G, that is a
set containing exactly one element for each conjugacy class of involutions. We
recall the two conjugate involutions give diffeomorphic quotients, thus in this
context we are interested in the classification of involutions up to conjugacy.
In Table 3, we denote by c an involution acting dihedrally on the normal sub-
group S1 in the group O(2), and we use the following notations for the groups
SO(3), SO(4) and PSO(4):

Rθ =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 =

[
1 01×2

02×1 rθ

]
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Table 2: Isometry groups

G̃ (general case) Isom+(S3/G)
1 (C2mr/C2m, C2nr/C2n)s Dih(S1 × S1)
1′ (Cmr/Cm, Cnr/Cn)s Dih(S1 × S1)
2 (C2m/C2m, D∗

4n/D
∗
4n) O(2)× Z2

3 (C4m/C2m, D∗
4n/C2n) O(2)× Z2

5 (C2m/C2m, T ∗/T ∗) O(2)× Z2

6 (C6m/C2m, T ∗/D∗
8) O(2)

7 (C2m/C2m, O∗/O∗) O(2)
9 (C2m/C2m, I∗/I∗) O(2)

G̃ (small indices) Isom+(S3/G)
1 (C2m/C2m, C2n/C2n) O(2)×O(2)

(C4m/C2m, C4n/C2n) O(2)×̃O(2)
(C2/C2, C2n/C2n) SO(3)×O(2)
(C2/C2, C2/C2) PSO(4)

1′ (C2m/Cm, C2n/Cn) O(2)∗×̃O(2)∗

(C2/C1, C2n/Cn) S3×̃O(2)∗

2 (C2/C2, D
∗
4n/D

∗
4n) SO(3)× Z2

(C2m/C2m, D∗
8/D

∗
8) O(2)×D6

(C2/C2, D
∗
8/D

∗
8) SO(3)×D6

5 (C2/C2, T
∗/T ∗) SO(3)× Z2

7 (C2/C2, O
∗/O∗) SO(3)

9 (C2/C2, I
∗/I∗) SO(3)

with rθ =

[
cos θ − sin θ
sin θ cos θ

]

Tθ,ρ =

[
rθ 0
0 rρ

]
We now analyse the cases when the isometry group is the product of two

groups. It is easy to see that if F,G are two groups, then Invol(F × G) =
Invol(F ) × Invol(G) ∪ {1F } × Invol(G) ∪ Invol(F ) × {1G}. Furthermore, in a
direct product two involutions (a, b) and (a′, b′) are conjugate if and only if a
and b are conjugate to a′ and b′, respectively. If I(F ) (resp. I(G)) is a complete
set of representatives of I(F ) (resp. I(G)), then the union of I(F ) × I(G),
{1F }×I(G) and I(F )×{1G} is a complete set of representatives of I(F ×G).
These remarks can be used to compute the involutions and their conjugacy
classes in the isometry groups that are direct products of groups in Table 3.
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Table 3: Conjugacy classes of involutions
group G representation complete set of representatives of:

of the group G I(G) R(G)

Z2 {[0], [1]} [1]

D6 {1, r, r2, s, sr, sr2} s

S1 {eiθ, θ ∈ R} −1 i

O(2) S1 ∪ cS1 −1, c i

O∗(2) S1 ∪ S1j −1 i, j

S3 {q ∈ H|∥q∥ = 1} −1 i

SO(3) Rπ

SO(4) T0,π, Tπ,0, Tπ,π

PSO(4) {[Q], Q ∈ SO(4)} [T0,π], [Tπ,0],

[Tπ/2,−π/2], [Tπ/2,π/2]

Dih(S1 × S1) (S1 × S1)⋊ Z2 ((−1,−1), [0]), ((−1, 1), [0]),

((1,−1), [0]), ((1, 1), [1])

Consider now A and B, two groups containing an involution in the centre.
We use −1 to denote the central involution of both A and B. We want to
compute the involutions and their conjugacy classes of the central product
A×̃B = A × B/{±(1, 1)}. The central products appearing in Table 2 are of
this type.

We can see that an element (x, y) in A × B, gives an involution in the
quotient A×̃B if and only if (x, y) belongs to Invol(A × B) \ {(−1,−1)} or
to Rac(A) × Rac(B), where Rac(G) = {z ∈ G|z2 = −1}. We note also that
elements in Invol(A × B) \ {(−1,−1)} can not be conjugate to elements of
Rac(A) × Rac(B). We denote by R(G) the conjugacy classes of the elements
in Rac(G).

In the last column of Table 3, we provide a complete set of representatives
for R(G) for the groups involved as factors in central products.

The central products appearing as isometry groups are: O(2)×̃O(2),O(2)∗×̃
O(2)∗ and S3×̃O(2)∗. We consider as example the group O(2)×̃O(2). In the
group O(2) × O(2) we have 8 involutions up to conjugacy: (−1,−1), (−1, c),
(c,−1), (c, c), (1,−1), (1, c), (c, 1), and (−1, 1). In the quotient O(2)×̃O(2) =
O(2)×O(2)/{±(1, 1)} we have that:
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• the element (−1,−1) gives the trivial element;

• the cosets of (−1, 1) and (1,−1) coincide;

• the cosets of (−1, c) and (1,−c) coincide and this implies that the cosets
of (−1, c) and (1, c) are conjugate;

• analogously the cosets of (c,−1) and (c, 1) are conjugate.

Finally, in O(2)×̃O(2) a complete set of representatives of the set of the
conjugacy classes of involutions is given by the cosets of the following elements:
(−1, 1), (1, c), (c, 1), (c, c), (i, i).

An analogous computation can be made for the other central products. For
O(2)∗×̃O(2)∗ a complete set of representatives is given by the cosets of (1,−1),
(i, i), (j, j), (i, j), and (j, i).

For the group S3×̃O(2)∗, we have three conjugacy classes of involutions
given by the cosets of (1,−1), (i, i) and (i, j).

The conjugacy classes of involutions are summarised in Table 11, 12 and 13:
each line of the second column corresponds to a conjugacy class of involutions.
The only exception is Family 1 in Table 11, which has four conjugacy classes
of involutions, but three are treated together. These tables show the geometric
features of the involutions. How to read and complete them is explained in the
following sections.

5. Geometric properties of involutions

The advantage of this approach is the possibility of easily obtaining geometric
information about involutions; for example, we can identify which act freely
and which are hyperelliptic. Most of the geometric properties can be deduced
by the quotient of the manifold by the involution.

5.1. Extensions given by involutions.

Given a closed spherical 3-manifold S3/G and an involution f ∈ Isom+(S3/G),
we have (S3/G)/⟨f⟩ = S3/⟨G, f̄⟩, where f̄ is any lift of f to NormSO(4)(G).
Any quotient orbifold S3/⟨G, f̄⟩ admits a Seifert fibration and the formulae
in [13] give the Seifert invariants. To use these formulae we work in S3 × S3;
we note that ⟨G, f̄⟩ = Φ(⟨G̃, f̃⟩), where f̃ is any lift of f to NormS3×S3(G̃), i.e.
a preimage of f̄ under Φ.

We recall that the conjugacy classes of involutions can be computed follow-
ing the strategy presented in Section 4.

In this section, we will try to be consistent with the following notations: G
is a finite subgroup of SO(4), G̃ is the associated subgroup of S3 × S3, f is an
involution of Isom+(S3/G), f̄ is one of its lifts to NormSO(4)(G), and f̃ is one of
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the lifts of f to NormS3×S3(G̃); for the sake of brevity, we often denote ⟨G̃, f̃⟩
by H.

Remark 5.1. We know that ⟨G̃, f̃⟩ = G̃∪f̃ G̃ is an extension of index 2 of G̃, but
also that if G̃ = (L,LK , R,RK , ϕ), ⟨G̃, f̃⟩ = (L′, L′

K , R′, R′
K , ϕ′) and f̃ = (p, q),

then L′ = L ∪ pL and R′ = R ∪ qR.
Moreover, we can also compute L′

K and R′
K : we denote by πR : R → R/RK

(resp. πL : L → L/LK) the projection from R (resp. L) to the quotient R/RK

(resp. L/LK).

• If p ∈ L, then an element z of S3 belongs to R′
K if and only if z belongs

to RK or there exists (x, y) ∈ G̃ such that (p, q)(x, y) = (1, z). We obtain
the following equivalences:

∃(x, y) ∈ G̃ s.t. (p, q)(x, y) = (1, z)

⇔ ∃(x, y) ∈ G̃ s.t. x = p−1 and qy = z

⇔ ∃y ∈ R s.t. (p−1, y) ∈ G̃ and qy = z
⇔ ∃y ∈ R s.t. πR(y) = ϕ(πL(p

−1)) and qy = z
⇔ ∃y ∈ π−1

R (ϕ(πL(p
−1))) s.t. z = qy.

Therefore we have that R′
K = RK ∪ q π−1

R (ϕ(πL(p
−1))); moreover the

union is disjoint and |R′
K | = 2|RK | holds, otherwise there would be some

y ∈ π−1
R (ϕ(πL(p

−1))) such that qy belongs to RK , and then we would have

(p−1, y) ∈ G̃ and (1, qy) ∈ G̃, so (p, q) = (1, qy)(p−1, y)−1 ∈ G̃, which is
impossible. Similarly, if q ∈ R, then L′

K = LK ∪ p π−1
L (ϕ−1(πR(q

−1)))
and |L′

K | = 2|LK |.

• Conversely, if p /∈ L (resp. q /∈ R), then |L′| = 2|L| (resp. |R′| = 2|R|),
and there is no element (x, y) in G̃ such that x = p−1, so R′

K = RK (resp.
L′
K = LK).

Thus, we obtained a complete description (safe for the isomorphism ϕ′) of
H = ⟨G̃, f̃⟩ = (L′, L′

K , R′, R′
K , ϕ′). The other data determine the isomorphism

except for Families 1 and 1′. We start describing the computation for Family 2
when m = 1. Then we consider the most complicated cases of Families 1 and 1′

in detail. The other families can be treated by following the same strategy.
The results of these computations are contained in Tables 4, 5, 6, 7 and 8.

For each group G, the tables give an extension ⟨G̃, f̃⟩ for each conjugacy class
of involutions. For a, b, r ∈ Z we write a|b if a divides b and a ≡ b[r] if a and b
are congruent modulo r. The remainder of the euclidean division of a by b is
denoted by a%b. The tables considering small indices contain some extensions
that are in Families 1′ and 1′ with r = 4; in this case, the subscript s can be
omitted since we can replace s with r− s obtaining a conjugate group (see [13,
page 803])
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Family 2: G̃ = (C2/C2, D
∗
4n/D

∗
4n). We have NormS3×S3(G̃) = (S3/S3, D∗

8n/
D∗

8n), and Isom+(S3 /G) = NormS3×S3(G̃)/G̃ = SO(3) × Z2. Therefore,
Isom+(S3/G) has three conjugacy classes of involutions, whose representatives
are (Rπ, 0), (I3, 1) and (Rπ, 1).

• If f = (Rπ, 0) then f̃ = (i, 1) is a lift of f to S3 × S3. Therefore we have
H = ⟨(C2/C2, D

∗
4n/D

∗
4n), (i, 1)⟩ = (C4/C4, D

∗
4n/D

∗
4n).

• If f = (I3, 1) then f̃ = (1, eiπ/4n) is a lift of f to S3 × S3. Therefore we
have H = ((C2/C2, D

∗
4n/D

∗
4n), (1, e

2iπ/4n)⟩ = (C2/C2, D
∗
8n/D

∗
8n)

• Of f = (Rπ, 1) then f̃ = (i, eiπ/4n) is a lift of f to S3 × S3. Therefore
we have H = ⟨(C2/C2, D

∗
4n/D

∗
4n), (i, e

2iπ/4n))⟩ = (C4/C2, D
∗
8n/D

∗
4n), be-

cause i /∈ C2 and e2iπ/4n /∈ D∗
4n.

Family 1′: G̃ = (Cmr/Cm, Cnr/Cn)s. We recall that S3/G is a manifold if
and only if gcd(r, s) = 1, r even, m odd, n odd, gcd(m,n) = 1 and gcd(n −
sm,mnr) = gcd(n + sm,mnr). We have NormS3×S3(G̃) = (O(2)∗/S1, O(2)∗/
S1) and Isom+(S3/G) = NormS3×S3(G̃)/G = Dih(S1×S1/G̃) ∼= Dih(S1×S1),
seen as (S1×S1)⋊Z2. The conjugacy classes of the involutions are represented
by ((−1, 1), 0), ((1,−1, ), 0), ((−1,−1), 0) and ((1, 1), 1). As explained in [14],
the isomorphism between S1 × S1 and S1 × S1/G̃ is given by

γ : S1 × S1 → S1 × S1/G̃ (eiα, eiβ) →
(
ei(

α
mr+

β
m ), ei(

sα
nr+

(s+1)β
n )

)
G̃

Therefore, we have:

γ(−1, 1) =
(
ei

π
mr , ei

sπ
nr

)
G̃, γ(1,−1) =

(
ei

π
m , ei

(s+1)π
n

)
G̃ and

γ(−1,−1) =
(
ei

π
mr (1+r), ei

π
nr (rs+r+s)

)
G̃

which give us the lifts of ((−1, 1), 0), ((1,−1), 0) and ((−1,−1), 0) respectively.
The lift of ((1, 1), 1) is (j, j).

• Suppose f̃ = (eiπ/mr, eisπ/nr). We denote by (L′/L′
K , R′/R′

K)s′ the rep-

resentation of H = G̃ ∪ f̃ G̃ as subgroup of S3 × S3. Since eiπ/mr ∈
C2mr \ Cmr, we have L′ = C2mr. For the same reason, we also have
R′ = C2nr. By the discussion in Remark 5.1, we have L′

K = LK = Cm

and R′
K = RK = Cn In order to find s′, it is sufficient to find an element y

such that (eiπ/mr, y) ∈ H, and we note that y = eisπ/nr works, so s′ = s.
We obtain groups in Family 1′.

• Suppose f̃ = (eiπ/m, ei(s+1)π/n). With the same notations as above,
we have eiπ/m = e2iπ(r/2)/mr ∈ Cmr because r is even, and therefore
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L′ = Cmr. Symmetrically, R′ = Cnr. To find L′
K and R′

K we can either
use Remark 5.1 or compute it directly: if z ∈ R′

K , then either z ∈ RK or

there exists (x, y) ∈ G̃ such that f̃ ·(x, y) = (1, z), and then x = e−iπ/m, so
y ∈ e−isπ/nCn, hence z ∈ eiπ/nCn (⊂ C2n). Conversely, {1} × eiπ/nCn is
contained in f̃ G̃, which is why R′

K = C2n. Similarly, L′
K = C2m. Finally,

we have s′ = s%(r/2) since (e2iπ/2m(r/2), e2iπs/2n(r/2)) ∈ H, so H =
(C2m(r/2)/C2m, C2n(r/2)/C2n)s%(r/2). These groups belong to Family 1.

• Suppose f̃ = (eiπ(1+r)/mr, eiπ(rs+r+s)/nr). With the same reasoning
as in the first case, we find L′ = C2mr, R

′ = C2nr, L
′
K = Cm and

R′
K = Cn. To find s′, we search y such that (eiπ/mr, y) ∈ H. We

have (e2iπ/mr, e2iπs/nr) ∈ H, so

(eiπ(1+r)/mr, eiπ(rs+r+s)/nr)(e2iπ/mr, e2iπs/nr)−r′

= (e2iπ/2mr, e2iπ(r+s)/2nr) ∈ H

and then s′ = r+ s. Finally, we get H = (C2mr/Cm, C2nr/Cn)s+r which
are groups in Family 1′.

• If f̃ = (j, j), then H = (D∗
2mr/Cm, D∗

2nr/Cn)s and we are in Family 11′.

Family 1: Consider G̃ = (C2mr/C2m, C2nr/C2n)s, with gcd(r, s) = 1,
gcd(m, n) = 1, mn even or r odd, and gcd(n−sm, 2mnr) = gcd(n+sm, 2mnr).

We have NormS3×S3(G̃) = (O(2)∗/S1, O(2)∗/S1) and Isom+(S3/G) =
NormS3×S3(G̃)/G = Dih(S1 × S1/G̃) = Dih(S1 × S1). The situation is sim-
ilar to Family 1′, and the conjugacy classes are the same. The isomorphism
between S1 × S1 and S1 × S1/G̃ is given by

γ : S1 × S1 → S1 × S1/G̃ (eiα, eiβ) →
(
ei(

α
2mr+

β
2m ), ei(

sα
2nr+

(s+1)β
2n )

)
G̃

Therefore, we have:

γ(−1, 1) = (eiπ/2mr, eisπ/2nr)G̃, γ(1,−1) = (eiπ/2m, ei(s+1)π/2n)G̃ and

γ(−1,−1) = (eiπ(1+r)/2mr, eiπ(rs+r+s)/2nr)G̃,

which give us the lifts of ((−1, 1), 0), ((1,−1), 0) and ((−1,−1), 0), respectively.
The lift of ((1, 1), 1) is (j, j).

Let us first consider what happens when r is even. Everything works the
same way as in Family 1′, and so we get:

• If f̃ = (eiπ/2mr, eisπ/2nr) then H = (C2m·2r/C2m, C2n·2r/C2n)s (Family
1).
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Table 4: Fibrations of the quotients: general case (first part)

extensions of the group base local e
(C2mr/C2m, C2nr/C2n)s (1) orbifold invariants

3 extensions in Family 1 cf. Table 9 cf. Table 9
depending on m,n, r and s
(see Subsection 5.1)
(D∗

4mr/C2m, D∗
4nr/C2n)s (11) D2(;nr, nr) cf. Table 9 -mnr

gcd(r, s) = 1, gcd(m,n) = 1, mn even or r odd,

and gcd(n− sm, 2mnr) = gcd(n+ sm, 2mnr)

extensions of the group base local e
(Cmr/Cm, Cnr/Cn)s (1′) orbifold invariants

(C2mr/Cm, C2nr/Cn)s (1′) S2(nr, nr) cf. Table 10 -mnr
(Cmr/C2m, Cnr/C2n)s%(r/2) (1) S2(nr/2, nr/2) cf. Table 9 - 4mnr
(C2mr/Cm, C2nr/Cn)s+r (1′) S2(nr, nr) cf. Table 10 -mnr
(D∗

2mr/Cm, D∗
2nr/Cn)s (11′) D2(;nr/2, nr/2) cf. Table 10 -mnr

gcd(r, s) = 1, r even, m odd, n odd,

gcd(m,n) = 1 and gcd(n− sm,mnr) = gcd(n+ sm,mnr)

extensions of the group base local e
(C2m/C2m, D∗

4n/D
∗
4n) (2) orbifold invariants

(C2m/C2m, D∗
8n, D

∗
8n) (2) S2(2, 2, 2n) m

2 ,
m
2 ,

m
2n -m2n

(C4m/C4m, D∗
4n/D

∗
4n) (2) S2(2, 2, n) 2m

2 , 2m
2 , 2m

n - 2mn
(D∗

4m/D∗
4m, D∗

4n/D
∗
4n) (10) n even D2(; 2, 2, n) m

2 ,
m
2 ,

m
n -m2n

n odd D2(2;n) m
2 ,

m
n -m2n

(C4m/C2m, D∗
8n/D

∗
4n) (4) S2(2, 2, 2n) m

2 ,
m+1
2 , m+n

2n -m2n
(D∗

4m/C2m, D∗
8n/D

∗
4n) (13bis) n odd D2(; 2, 2, n) m

2 ,
m
2 ,

m
n -m2n

n even D2(2;n) m
2 ,

m
n -m2n

gcd(2n,m) = 1

extensions of the group base local e
(C4m/C2m, D∗

4n/C2n) (3) orbifold invariants

(C4m/C2m, D∗
8n/C4n) (3) S2(2, 2, 2n) m+1

2 , m+1
2 , m

2n -m2n
(C4m/C4m, D∗

4n/D
∗
4n) (2) S2(2, 2, n) 2m

2 , 2m
2 , 2m

n - 2mn
(D∗

8m/D∗
4m, D∗

4n/C2n) (13) D2(2;n) m+1
2 , m

n -m2n
(C4m/C2m, D∗

8n/D
∗
4n) (4) S2(2, 2, 2n) m

2 ,
m+1
2 , m+n

2n -m2n
(D∗

8m/C2m, D∗
8n/C4n) (11) D2(; 2n, 2n) cf. Table 9 -m2n

gcd(m,n) = 1 and m even
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Table 5: Fibrations of the quotients: general case (second part)

extensions of the group base local e
(C2m/C2m, T ∗/T ∗) (5) orbifold invariants

(C2m/C2m, O∗/O∗) (7) S2(2, 3, 4) m
2 ,

m
3 ,

m
4 -m12

(C4m/C4m, T ∗/T ∗) (5) S2(2, 3, 3) 2m
2 , 2m

3 , 2m
3 -m3

(D∗
4m/D∗

4m, T ∗/T ∗) (14) D2(3; 2) m
2 ,

m
3 -m12

(C4m/C2m, O∗/T ∗) (8) S2(2, 3, 4) m+1
2 , m

3 ,
m+2
4 -m12

(D∗
4m/C2m, O∗/T ∗) (16) D2(; 2, 3, 3) m

2 ,
m
3 ,

m
3 -m12

gcd(m, 6) = 1

extensions of the group base local e
(C6m/C2m, T ∗/D∗

8) (6) orbifold invariants

(C12m/C4m, T ∗/D∗
8) (6) S2(2, 3, 3) 2m

2 , 2m+1
3 , 2m+2

3 -m3
(D∗

12m/C2m, O∗/D∗
8) (18) D2(; 2, 3, 3) m

2 ,
m+1
3 , m+2

3 -m12
m odd and 3|n
extensions of the group base local e
(C2m/C2m, O∗/O∗) (7) orbifold invariants

(C4m/C4m, O∗/O∗) (7) S2(2, 3, 4) 2m
2 , 2m

3 , 2m
4 -m6

(D4m/D4m, O∗/O∗) (15) D2(; 2, 3, 4) m
2 ,

m
3 ,

m
4 -m24

gcd(m, 6) = 1

extensions of the group base local e
(C2m/C2m, I∗/I∗)(9) orbifold invariants

(C4m/C4m, I∗/I∗) (9) S2(2, 3, 5) 2m
2 , 2m

3 , 2m
5 -m15

(D∗
4m/D∗

4m, I∗/I∗) (19) D2(; 2, 3, 5) m
2 ,

m
3 ,

m
5 -m60

gcd(m, 30) = 1

• If f̃ = (eiπ/2m, ei(s+1)π/2n) then we have H = (C4m(r/2)/C4m, C4n(r/2)/
C4n)s%(r/2) (Family 1).

• If f̃ = (eiπ(1+r)/2mr, eiπ(rs+r+s)/2nr) then we have H = (C4mr/C2m, C4nr

/C2n)r+s (Family 1).

• If f̃ = (j, j), then we have H = (D∗
4mr/C2m, D∗

4nr/C2n)s (Family 11)

If r is odd, we can suppose without loss of generality that s is odd; otherwise,
we can replace s with r − s obtaining a conjugate group (see [13, page 803])

• Suppose f̃ = (eiπ/2mr, eisπ/2nr). We have both eiπ/2mr /∈ C2mr and
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eisπ/2nr /∈ C2nr, so L′ = C4mr, R
′ = C4nr, and we then find L′

K = C2m,
R′

K = C2n and s′ = s, so H = (C4mr/C2m, C4nr/C2n)s (Family 1).

• Suppose f̃ = (eiπ/2m, ei(s+1)π/2n); since s + 1 is even, we have eiπ/2m /∈
C2mr and ei(s+1)π/2n = er((s+1)/2)2iπ/2nr ∈ C2nr, and therefore L′ =
C4mr, R

′ = C2nr. We then find L′
K = C4m, R′

K = C2n. To find s′, we
need to find an element of the form (e2iπ/4mr, y) in H. We know that
a := (er2iπ/4mr, er((s+1)/2)2iπ/2nr) and b := (e2(2iπ)/4mr, es(2iπ)/2nr) are
in H, so, by writing r = 2k + 1 (r is odd), we have

ab−k = (e2iπ/4mr, e((r(s+1)−2ks)/2)2iπ/4nr) = (e2iπ/4mr, e((r+s)/2)2iπ/2nr)

belongs to H. We obtain s′ = (s + r)/2, and H = (C4mr/C4m, C2nr/
C2n)(r+s)/2 (Family 1).

• Suppose f̃ = (eiπ(1+r)/2mr, eiπ(rs+r+s)/2nr); r + 1 is even and rs + r + s
is odd, so L′ = C2mr, R

′ = C4nr. We then find L′
K = C2m, R′

K = C4n

and s′ = 2s%r, so H = (C2mr/C2m, C4nr/C4n)2s%r (Family 1).

• If f̃ = (j, j), the computation is the same as in the case of r even, and
H = (D∗

4mr/C2m, D∗
4nr/C2n)s (Family 11).

5.2. Seifert fibrations of the quotient orbifolds.

For any involution of a spherical 3-manifold, the group Φ(H) leaves invariant
the Hopf fibration of S3, thus the Hopf fibration induces a Seifert fibration on
the quotient orbifold (S3/G)/⟨f⟩ = S3/Φ(H). We can use the formulae given
in [13] to compute the invariants of the Seifert fibration of (S3/G)/⟨f⟩. We use
the same notation used in [13]. For all groups but those in Families 1,1′, 11
and 11′, the local invariants are given by closed formulae, therefore for these
groups, the values of the local invariants are directly inserted in Tables 4, 5,
6, 7 and 8. For Families 1,1′, 11 and 11′ the computation is more complicated
and, in many cases, the results are difficult to insert in a single cell of a table, so
we report in Table 9 and 10 the details of the formulae that give the invariants
for these four families. The last column of Tables 4, 5, 6, 7 and 8 contains
the Euler classes of the fibrations. We recall that, if the underlying topological
space of the base orbifold is a disk, it is denoted by

D2(a1, a2, . . . ; b1, b2, . . . )

where the integers appearing before the semicolon represent the cone points
in the interior of the disk.

We can deduce many geometric features of the involution from the invariants
of the fibration. For the sake of simplicity, we denote (S3/G)/⟨f⟩ = S3/Φ(H)
by Of and its base orbifold by Bf .
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Table 6: Fibration of the quotients: small indices (first part)

extensions of the group base local e
(C2m/C2m, C2n/C2n) (1) orbifold invariants

(C4m/C4m, C2n/C2n) (1) S2(n, n) cf. Table 9 -mn
(D∗

4m/D∗
4m, C2n/C2n) (2bis) n even D2(n) m

n -mn
n odd RP 2(n) m

n -mn
(C4m/C2m, C4n/C2n) (1) S2(n, n) cf. Table 9 -mn
(D∗

4m/C2m, D∗
4n/C2n) (11) D2(;n, n) cf. Table 9 -mn

(C4m/C2m, D∗
4n/C2n) (3) S2(2, 2, n) m+1

2 , m+1
2 , m

n -mn
(C2m/C2m, C4n/C4n) (1) S2(2n, 2n) cf. Table 9 -mn
(C2m/C2m, D∗

4n/D
∗
4n) (2) S2(2, 2, n) m

2 ,
1
2 ,

m
n -mn

(D∗
4m/C2m, C4n/C2n) (3bis) n odd D2(n) m

n -mn
n even RP 2(n) m

n -mn
gcd(n,m) = 1

extensions of the group base local e
(C4m/C2m, C4n/C2n) (1) orbifold invariants

(C4m/C4m, C4n/C4n) (1) S2(2n, 2n) cf. Table 9 - 2mn
(D∗

8m/D∗
4m, C4n/C2n) (4bis) D2(2n) m+n

2n -m2n
(D∗

8m/C2m, D∗
8n/C2n) (11) D2(; 2n, 2n) cf. Table 9 -m2n

(C8m/C2m, C8n/C2n) (1) S2(4n, 4n) cf. Table 9 -m2n
(C4m/C2m, D∗

8n/D
∗
4n) (4) S2(2, 2, 2n) m

2 ,
m+1
2 , m+n

2n -m2n
gcd(m,n) = 1 and mn even

extensions of the group base local e
(C2/C2, C2n/C2n) (1) orbifold invariants

(C4/C4, C2n/C2n) (1) S2(n, n) cf. Table 9 - 4n
(C2/C2, C4n/C4n) (1) S2(2n, 2n) cf. Table 9 - 1n
(C2/C2, D

∗
4n/D

∗
4n) (2) S2(2, 2, n) 1

2 ,
1
2 ,

1
n - 1n

(C4/C2, C4n/C2n) (1) S2(2n, 2n) cf. Table 9 - 1n
(C4/C2, D

∗
4n/C2n) (3) S2(2, 2, n) 2

2 ,
2
2 ,

1
n - 1n

extensions of the group base local e
(C2/C2, C2/C2) (1) orbifold invariants

(C4/C2, C4/C2) (1) S2(2, 2) 2
2 ,

2
2 -1

(C4/C4, C2/C2) (1) S2 cf. Table 9 -4
(C2/C2, C4/C4) (1) S2(2, 2) cf. Table 9 -1
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Table 7: Fibration of the quotients: small indices (second part)

extensions of the group base local e
(C2m/Cm, C2n/Cn) (1

′) orbifold invariants

(C2m/C2m, C2n/C2n) (1) S2(n, n) cf. Table 9 - 2mn
(C4m/Cm, C4n/Cn) (1

′) S2(2n, 2n) cf. Table 10 -m2n
(D∗

4m/Cm, D∗
4n/Cn) (11

′) D2(;n, n) cf. Table 10 -m2n
(C4m/Cm, D∗

4n/Cn) (34) S2(2, 2, n) m
2 ,

m+1
2 , m+n

n -m2n
(D∗

4m/Cm, C4n/Cn) (34bis) D2(n; ) (m+n)/2
n -m2n

mn odd and gcd(m,n) = 1

extensions of the group base local e
(C2/C1, C2n/Cn) (1

′) orbifold invariants

(C2/C2, C2n/C2n) (1) S2(n, n) cf. Table 9 - 2n
(C4/C1, C4n/Cn) (1

′) S2(2n, 2n) cf. Table 10 - 1
2n

(C4/C1, D
∗
4n/Cn) (34) S2(2, 2, n) 1

2 ,
2
2 ,

(n+1)/2
n - 1

2n

n odd

extensions of the group base local e
(C2/C1, C2/C1) (1

′) orbifold invariants

(C4/C1, C4/C1)1 (1′) S2(2, 2) 2
2 ,

1
2 - 12

(C2/C2, C2/C2) (1) S2 -2

extensions of the group base local e
(C2/C2, D

∗
4n/D

∗
4n) (2) orbifold invariants

(C4/C4, D
∗
4n/D

∗
4n) (2) S2(2, 2, n) 2

2 ,
2
2 ,

2
n - 2n

(C2/C2, D8n∗/D8n∗) (2) S2(2, 2, 2n) 1
2 ,

1
2 ,

1
2n - 1

2n

(C4/C2, D
∗
8n/D

∗
4n) (4) S2(2, 2, 2n) 1

2 ,
2
2 ,

n+1
2n - 1

2n

extensions of the group base local e
(C2m/C2m, D∗

8/D
∗
8) (2) orbifold invariants

(C4m/C4m, D∗
8/D

∗
8) (2) S2(2, 2, 2) 2m

2 , 2m
2 , 2m

n -m

(D∗
4m/D∗

4m, D∗
8/D

∗
8) (10) D2(; 2, 2, 2) m

2 ,
m
2 ,

m
2 -m4

(C2m/C2m, D∗
16/D

∗
16) (2) S2(2, 2, 4) m

2 ,
m
2 ,

m
4 -m4

(C4m/C2m, D∗
16/D

∗
8) (4) S2(2, 2, n) m

2 ,
m+1
2 , m+2

4 -m4
(D∗

4m/C2m, D∗
16/D

∗
8) (13bis) D2(2; 2) m

2 ,
m
2 ,

m
2 -m4

m odd
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Table 8: Fibration of the quotients: small indices (third part)

extensions of the group base local e
(C2/C2, D

∗
8/D

∗
8) (2) orbifold invariants

(C4/C4, D
∗
8/D

∗
8) (2) S2(2, 2, 2) 2

2 ,
2
2 ,

2
2 -1

(C2/C2, D
∗
16/D

∗
16) (2) S2(2, 2, 4) 1

2 ,
1
2 ,

1
4 - 14

(C4/C2, D
∗
16/D

∗
8) (4) S2(2, 2, 4) 1

2 ,
2
2 ,

3
4 - 14

extensions of the group base local e
(C2/C2, T

∗/T ∗) (5) orbifold invariants

(C4/C4, T
∗/T ∗)(5) S2(2, 3, 3) 2

2 ,
2
3 ,

2
3 - 13

(C2/C2, O
∗, O∗) (7) S2(2, 3, 4) 1

2 ,
1
3 ,

1
4 - 1

12

(C4/C2, O
∗/T ∗), (8) S2(2, 3, 4) 2

2 ,
1
3 ,

3
4 - 1

12

extensions of the group base local e
(C2/C2, O

∗/O∗) (7) orbifold invariants

(C4/C4, O
∗/O∗) (7) S2(2, 3, 4) 2

2 ,
2
3 ,

2
4 - 16

extensions of the group base local e
(C2/C2, I

∗/I∗) (9) orbifold invariants

(C4/C4, I
∗/I∗) (9) S2(2, 3, 5) 2

2 ,
2
3 ,

2
5 - 1

15

5.3. Hyperelliptic involutions.

If the underlying topological space of Of is S3, then the underlying topological
space of the base orbifold Bf is eitherD2 or S2, see [6, Section 5]. We recall that,
ifm/n is a local invariant of a cone point of Bf , the gcd(m,n) is the index of sin-
gularity of the fibre. If we replace m/n with (m/ gcd(m,n))/(n/ gcd(m,n)) the
underlying topological space of Of does not change. We call (m/ gcd(m,n))/
(n/ gcd(m,n)) the reduced local invariant.

Suppose that Bf is a disk. The Seifert orbifolds appearing as the quotient
of involutions in Tables 4, 5, 6, 7 and 8 admit at most one cone point in the
interior of the disk. If Bf has no cone points, the underlying topological space
of Of is S3, see [5, Proposition 2.10]. If we have one cone point, the underlying
topological space of Of is S3 if and only if the reduced local invariant of the
cone point is an integer, see [5, Proposition 2.11]. This situation corresponds
to a fibre that is singular but not exceptional.

We consider now the case when Bf is a sphere. The underlying topological
space of Of is S3 if and only if the fibration obtained replacing the local
invariants with the reduced ones gives a Seifert fibration of the sphere.

The Seifert fibrations for S3 are well known (see [21] or also [15, Sections 2.5
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and 4.1]): they have base orbifold S2(u, v) for u, v ≥ 1 two coprime integers,
hence at most two exceptional fibres. The local invariants are given by (the
classes modulo 1 of) v̄/u and ū/v where uū + vv̄ = 1, and the Euler class is
±1/uv. If u or v equals 1, we mean that the corresponding point in the base
orbifold is regular and hence there is no local invariant to associate (the above
formula would indeed give 0 as output). In particular, for u = v = 1 we obtain
the Hopf fibration.

If the group G is in Family 1 or 1′, then the invariants of the fibration are
difficult to compute, hence we use another method to determine whether the
underlying space is S3. Table 9 and 10 describes the underlying topological
space of S3/G as a lens space L(l, ∗), where l is an integer depending on m,n, r
and s. Therefore, the underlying space is S3 if and only if l = 1. The integer l
can always be determined provided that it is analysed on a case-by-case basis,
but a global analysis might be difficult. Here we prove that the extensions
in Family 1 and 1′ are not associated with hyperelliptic involutions except
(C4/C1;C4/C1). The following remark is useful during the analysis.

Remark 5.2. If G̃ = (C2mr/C2m, C2nr/C2n)s is a group of Family 1 such that
the underlying space of the quotient S3/G is S3 we have l = 1 in Table 9; this
implies 2m′n′r = l1l2b1b2, with h = gcd(m,n), m′ = m/h and n′ = n/h. Let
p ̸= 2 be a prime number dividing m′. Then p|b1b2, so p|b1 or p|b2, and in both
cases p|n′, that is impossible. Therefore m′ = 2k; if we suppose that k ≥ 1
then l1 = l2 = 1 e 2|b1b2, so 2|n′, which is impossible. We obtain that if the
underlying space of the quotient S3/G is S3 then necessarily m′ = 1.

Now we will show that the same holds for n′.We recall we represent S3 as the
set of unit quaternions. Let γ : S3 → S3 be the orientation-reversing isometry
of S3 such that γ(h) = h̄. We have that γ−1G̃γ = (C2nr/C2n, C2mr/C2m)ŝ;
the parameter ŝ might be different from s (see [14, Section 3.2]) but for our
purpose is not relevant. The quotient orbifold S3/Φ(γ−1G̃γ) is diffeomorphic
by an orientation-preserving diffeomorphism to S3/G and we obtain again S3

as underlying topological space. This implies n′ = 1.

The same result can be obtained for the Family 1′.

For example, we consider the Family 1′ extensions in the general case, that is
G̃ = (Cmr/Cm, Cnr/Cn)s in Table 4. We have four involutions up to conjugacy;
the fourth one in the table gives as quotient a Seifert fibred orbifold whose base
orbifold is a disk without cone points so the underlying topological space is the
3-sphere and the involution is hyperelliptic. The other involutions are given by
extensions of Family 1 and 1′ and a more careful analysis is needed.

Consider f the involution given by the extension (C2mr/Cm, C2nr/Cn)s of
Family 1′ and suppose that the underlying topological space of Of is S3. We
recall that since S3/G is a manifold we have gcd(n,m) = 1 thus m = m′ and
n = n′; by Remark 5.2 we obtain m = n = 1. Since gcd(r, s) = 1 and r even
then gcd(1−s, 1+s, r) = 2. Since S3/G is a manifold, the singular set is trivial
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and this implies that gcd((1 − s)/2, r/2) = 1 and gcd((1 + s)/2, r/2) = 1, see
Table 10. One between (1 − s)/2 and (1 + s)/2 is even so we obtain that r/2
is odd.

The underlying topological space of Of is a lens space L(l, ∗) where

l =
2r

2 gcd((1− s)/2, r) gcd((1− s)/2, r)
.

Considering that gcd((1− s)/2, r/2) = 1 = gcd((1 + s)/2, r/2) = 1 and r/2
odd, we obtain that l = (r/2) > 1 (in the general case r > 2). We can conclude
that f cannot be hyperelliptic.

If the involution is given by the extension (C2mr/Cm, C2nr/Cn)s+r the anal-
ysis is very similar and the involution cannot be hyperelliptic.

Finally, we consider the involution given by (Cmr/C2m, Cnr/C2n)s%(r/2) in
Family 1. To use formulae in Table 9 we have to see the group in the following
way:

(C2m(r/2)/C2m, C2n(r/2)/C2n)ŝ

where ŝ is odd (if s%(r/2) is even we can replace it with (r/2)− s%(r/2)).
Again we obtain m = n = 1, gcd((1−s)/2, r/2) = 1 = gcd((1+s)/2, r/2) =

1 and r/2 odd. If the underlying topological space of Of is the lens space L(l, ∗)
we have that

l =
2(r/2)

l1l2b1b2
.

Since r/2 is odd l1 = l2 = 1. Since ŝ is odd we have that gcd(1 − ŝ, 1 +
ŝ, 2(r/2)) = 2 and b1 = gcd((1−ŝ)/2, r/2) = 1 and b2 = gcd((1+ŝ)/2, r/2) = 1.
We obtain that l = (r/2) > 1.

For the other groups, similar computations can be carried out. The results
are collected in the last column of Table 11, 12 and 13. If “Y” appears the
involution is hyperelliptic, while “N” means that it is not; if a condition occurs
in the column, the involution is hyperelliptic if and only if the condition is
verified. We note that the group (C2/C1, C2/C1) is the trivial one and the
corresponding quotient is the 3-sphere. It is well known that in this case, we
have two conjugacy classes of involutions: one containing involutions acting
freely and the other one consisting of hyperelliptic involutions.

5.4. Involutions acting freely.

If the Seifert fibration invariants of Of are explicit, it is easy to compute the
number of components and to check whether f acts freely (in this case Of is a
manifold).

We recall the following facts about Seifert fibrations:
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Table 9: Seifert fibrations for Families 1 and 11.

G = Φ((C2mr/C2m, C2nr/C2n)s) (Family 1)
and

G = Φ((D∗
4mr/C2m, D∗

4nr/C2n)s) (Family 11)

We define: h = gcd(m,n), m′ = m
h
, n′ = n

h
, a = gcd(n′ − sm′, n′ + sm′, 2m′n′r),

b1 = gcd(n
′−sm′

a
, 2m′n′r

a
), b2 = gcd(n

′+sm′

a
, 2m′n′r

a
).

Remark: W.L.O.G. we assume s odd

if n′m′ is even, we define: in both cases we define:

ν minimal positive integer s.t. gcd( n′

aν
, a) = 1 d = ν2a(n′+sm′)+2n′m′r

f2aνb2

l1 = l2 = 1 g = ν2a(n′−sm′)−2n′m′r
l1aνb1

l = 2m′n′r
l1l2b1b2

if n′m′ is odd, we define: g s.t. gg ≡ 1modl

ν minimal positive integer s.t. gcd( 2n
′

aν
, a
2
) = 1 c s.t.

(
νs+ r 2n′

aν

)
c ≡ 1modn′r

li =

{
2 if r

bi
is even

1 if r
bi

is odd

The orbifold S3/Φ((C2mr/C2m, C2nr/C2n)s) fibers over S2(nr, nr) with local in-
variants dcl2b2h

nr
and − gcl1b1h

nr
and Euler class − 2m

nr
.

The underlying topological space of S3/Φ((C2mr/C2m, C2nr/C2n)s) is the lens
space L(l, dg).

The singular set of S3/Φ((C2mr/C2m, C2nr/C2n)s) is a link with at most two
components of singular index l2b2h and l1b1h (if the singular index is 1 the corre-
sponding component consists of non-singular points).

The orbifold S3/Φ((D∗
4mr/C2m, D∗

4nr/C2n)s) fibers over D2(;nr, nr) with local
invariants dcl2b2h

nr
and − gcl1b1h

nr
and Euler class − m

nr
.

The underlying topological space of S3/Φ((D∗
4mr/C2m, D∗

4nr/C2n)s) is the 3-
sphere.



INVOLUTIONS OF SPHERICAL 3-MANIFOLDS (25 of 31)

Table 10: Seifert fibrations for Families 1′ and 11′.

G = Φ((Cmr/Cm, Cnr/Cn)s) (Family 1′)
and

G = Φ((D∗
2mr/Cm, D∗

2nr/Cn)s) (Family 11′)

We define: h = gcd(m,n)
m′ = m

h

n′ = n
h

a = gcd(n′ − sm′, n′ + sm′,m′n′r)

b1 = gcd(n
′−sm′

a
, m′n′r

a
)

b2 = gcd(n
′+sm′

a
, m′n′r

a
)

ν minimal positive integer s.t. gcd( 2n
′

aν
, a
2
) = 1

d = ν2a(n′+sm′)+2n′m′r
2aνb2

g = ν2a(n′−sm′)−2n′m′r
2aνb1

l = m′n′r
2b1b2

g s.t. gg ≡ 1modl

c s.t.
(
νs+ r 2n′

aν

)
c ≡ 1modn′r

The orbifold S3/Φ((Cmr/Cm, Cnr/Cn)s) fibers over S
2
(
nr
2
, nr

2

)
with local invari-

ants dcb2h
nr
2

and − gcb1h
nr
2

and Euler class − 2m
nr

.

The underlying topological space of S3/Φ((Cmr/Cm, Cnr/Cn)s) is the lens space
L(l, dg).

The singular set of S3/Φ((Cmr/Cm, Cnr/Cn)s) is a link with at most two compo-
nents of singular index b2h and b1h (if the singular index is 1 the corresponding
component consists of non-singular points).

The orbifold S3/Φ((D∗
2mr/Cm, D∗

2nr/Cn)s) fibers over D2
(
; nr

2
, nr

2

)
with local

invariants dcb2h
nr
2

and − gcb1h
nr
2

and Euler class − m
nr

.

The underlying topological space of S3/Φ((D∗
2mr/Cm, D∗

2nr/Cn)s) is the 3-sphere.
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• If the underlying topological space of Bf is a disk, we have at least one
singular fibre and f does not act freely

• If the underlying topological space of Bf is a 2-sphere or the projective
plane, the possible singular points of Of are contained in the fibres cor-
responding to the cone points of Bf ; in particular, if p/q is the local
invariant of a cone point, the points of the fibre have singularity index
gcd(p, q). If gcd(p, q) = 1 the fibre consist of non-singular points.

If the extension corresponding to the involution is not in Family 1 or 1′,
these two facts allow us to understand whether f acts freely or, equivalently,
when Of is a manifold.

For Family 1 and Family 1′, we can use again the formulae in Table 9 and
10 to obtain this information. Indeed, the situation seems too complicated to
obtain a closed formula that fully describes the situation.

For the small indices groups of Tables 12 and 13 the situation is clear also
for groups in Family 1 and 1′ so the table is complete.

Figure 1: Montesinos links

5.5. More topological properties of the quotient orbifolds

Starting from the Seifert invariants of the quotient orbifold Of , we can obtain
other topological features of Of .

Seifert spherical orbifolds whose base orbifold is a sphere with at most two
singular points are treated in [15]; in this case, the underlying topological space
is a lens space that can be determined following [7] or [19]. If the base orbifold
is a disk with at most one cone point an explicit description is given in [5]. Also
in this case the underlying topological space is a lens space. The underlying
topological space of the other quotient orbifolds can be determined using the
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Table 11: Geometric properties of involutions, general case

group (family) extension (family) free hyp.

(C2mr/C2m, C2nr/C2n)s 3 extensions in Family 1
(1) - see ∗1 depending on m,n, r and s N

(see Subsection 5.1)

(D∗
4mr/C2m, D∗

4nr/C2n)s (11) N Y

(Cmr/Cm, Cnr/Cn)s (C2mr/Cm, C2nr/Cn)s (1′) N
(1′) - see ∗2 (Cmr/C2m, Cnr/C2n)s%(r/2) (1) N

(C2mr/Cm, C2nr/Cn)s+r N
(D∗

2mr/Cm, D∗
2nr/Cn)s (11′) N Y

(C2m/C2m, D∗
4n/D

∗
4n) (2) (C2m/C2m, D∗

8n/D
∗
8n) (2) Y N

gcd(2n,m) = 1 (C4m/C4m, D∗
4n/D

∗
4n) (2) N N

(D∗
4m/D∗

4m, D∗
4n/D

∗
4n) (10) N n even

(C4m/C2m, D∗
8n/D

∗
4n) (4) N N

(D∗
4m/C2m, D∗

8n/D
∗
4n) (13bis) N n odd

(C4m/C2m, D∗
4n/C2n) (3) (C4m/C2m, D∗

8n/C4n) (3) N N
gcd(m,n) = 1 and (C4m/C4m, D∗

4n/D
∗
4n) (2) N N

m even (D∗
8m/D∗

4m, D∗
4n/C2n) (13) N N

(C4m/C2m, D∗
8n/D

∗
4n) (4) N N

(D∗
4m/C2m, D∗

8n/C4n) (11) N Y
(C2m/C2m, T ∗/T ∗) (5) (C2m/C2m, O∗/O∗) (7) Y N
gcd(m, 6) = 1 (C4m/C4m, T ∗/T ∗) (5) N N

(D∗
4m/D∗

4m, T ∗/T ∗) (14) N N
(C4m/C2m, O∗/T ∗) (8) N N
(D∗

4m/C2m, O∗/T ∗) (16) N Y
(C6m/C2m, T ∗/D∗

8) (6) (C12m/C4m, T ∗/D∗
8) (6) N N

m odd and 3|n (D∗
12m/C2m, O∗/D∗

8) (18) N Y
(C2m/C2m ×O∗/O∗) (7) (C4m/C4m, O∗/O∗) (7) N N
gcd(m, 6) = 1 (D4m/D4m, O∗/O∗) (15) N Y
(C2m/C2m, I∗/I∗) (9) (C4m/C4m, I∗/I∗) (9) N N
gcd(m, 30) = 1 (D∗

4m/D∗
4m, I∗/I∗) (19) N Y

(∗1): if gcd(r, s) = 1, gcd(m,n) = 1, mn even or r odd,

and gcd(n− sm, 2mnr) = gcd(n+ sm, 2mnr)
(∗2): if gcd(r, s) = 1, r even, m odd, n odd

gcd(m,n) = 1 and gcd(n− sm,mnr) = gcd(n+ sm,mnr)
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Table 12: Geometric properties of involutions: small indices (first part)

group (family) extension (family) free hyp.

(C2m/C2m, C2n/C2n) (1) (C4m/C4m, C2n/C2n) (1) n odd N
gcd(n,m) = 1 (D∗

4m/D∗
4m, C2n/C2n) (2bis) n odd N

(C4m/C2m, C4n/C2n) (1) mn even N
(D∗

4m/C2m, D∗
4n/C2n) (11) N Y

(C4m/C2m, D∗
4n/C2n) (3) m even N

(C2m/C2m, C4n/C4n) (1) m odd N
(C2m/C2m, D∗

4n/D
∗
4n) (2) m odd N

(D∗
4m/C2m, C4n/C2n) (3bis) n even N

(C4m/C2m, C4n/C2n) (1) (C4m/C4m, C4n/C4n) (1) N N
gcd(m,n) = 1 and mn even (D∗

8m/D∗
4m, C4n/C2n) (4bis) N N

(D∗
8m/C2m, D∗

8n/C2n) (11) N Y
(C8m/C2m, C8n/C2n) (1) Y N
(C4m/C2m, D∗

8n/D
∗
4n) (4) N N

(C2/C2, C2n/C2n) (1) (C4/C4, C2n/C2n) (1) n odd N
(C2/C2, C4n/C4n) (1) Y N
(C2/C2, D

∗
4n/D

∗
4n) (2) Y N

(C4/C2, C4n/C2n) (1) n even N
(C4/C2, D

∗
4n/C2n) (3) N Y

(C2/C2, C2/C2) (1) (C4/C2, C4/C2) (1) N Y
(C4/C4, C2/C2) (1) Y N
(C2/C2, C4/C4) (1) Y N

(C2m/Cm, C2n/Cn) (1
′) (C2m/C2m, C2n/C2n) (1) Y N

mn odd and gcd(m,n) = 1 (C4m/Cm, C4n/Cn) (1
′) N N

(D∗
4m/Cm, D∗

4n/Cn) (11
′) N Y

(C4m/Cm, D∗
4n/Cn) (34) N N

(D∗
4m/Cm, C4n/Cn) (34bis) N N

(C2/C1, C2n/Cn) (1
′) (C2/C2, C2n/C2n) (1) Y N

n odd (C4/C1, C4n/Cn) (1
′) N N

(C4/C1, D
∗
4n/Cn) (34) N Y

(C2/C1, C2/C1) (1
′) (C4/C1, C4/C1)1 (1′) N Y

(C2/C2, C2/C2) (1) Y N

(C2/C2, D
∗
4n/D

∗
4n) (2) (C4/C4, D

∗
4n/D

∗
4n) (2) N n even

(C2/C2, D8n∗/D8n∗) (2) Y N
(C4/C2, D

∗
8n/D

∗
4n) (4) N n odd
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Table 13: Geometric properties of involutions: small indices (second part)

group (family) extension (family) free hyp.

(C2m/C2m, D∗
8/D

∗
8) (2) (C4m/C4m, D∗

8/D
∗
8) (2) N N

m odd (D∗
4m/D∗

4m, D∗
8/D

∗
8) (10) N Y

(C2m/C2m, D∗
16/D

∗
16) (2) Y N

(C4m/C2m, D∗
16/D

∗
8) (4) N N

(D∗
4m/C2m, D∗

16/D
∗
8) (13bis) N N

(C2/C2, D
∗
8/D

∗
8) (2) (C4/C4, D

∗
8/D

∗
8) (2) N Y

(C2/C2, D
∗
16/D

∗
16) (2) Y N

(C4/C2, D
∗
16/D

∗
8) (4) N N

(C2/C2, T
∗/T ∗) (5) (C4/C4, T

∗/T ∗) (5) N N
(C2/C2, O

∗, O∗) (7) Y N
(C4/C2, O

∗/T ∗) (8) N Y

(C2/C2, O
∗/O∗) (7) (C4/C4, O

∗/O∗) (7) N Y

(C2/C2, I
∗/I∗) (9) (C4/C4, I

∗/I∗) (9) N Y

reduced local invariants, see Subsection 5.3. It turns out that all the underlying
topological spaces are spherical manifolds.

Finally, we focus on the singular set of the quotient orbifolds obtained by
hyperelliptic involutions, so we suppose that the underlying topological space of
Of is S3. In many cases, the obtained Seifert fibration has the base orbifold Bf

of type D2(; b1, b2, . . . , br) with r ≤ 3. This situation is completely described
by [6, Proposition 3]. Let ci/bi be the local invariants of the corner points
of Bf and e the Euler class of the fibration; the local invariants are defined
mod integers so here we suppose that each ci/bi is contained in the interval
(−bi/2, bi/2). We define k in the following way:

k = −2e−
∑
i

ci
bi

We recall that k is an integer. The singular set of Of is a Montesinos link as
described in Figure 5.4; each box labelled by a local invariant ci/bi is a rational
tangle defined by the rational number ci/bi; the box labelled by k represents k
half twists. Since r ≤ 3 the Montesinos link has at most three tangles. More
details can be found in [6]; we remark that we adopt here an opposite sign
convention with respect to [6] for local invariants over cone points and corner
points.

For the other quotient orbifolds, we obtain a fibration whose base orbifold
is a sphere with some cone points. In this case, we can see the singular set
as the union of some fibres of a fibration of the sphere. Also in this case, the
singular set can be represented by a Montesinos link since each of these orbifolds
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admits another fibration whose base orbifold is of type D2(; b1, b2, . . . , br) with
r ≤ 3. The multiple fibrations of spherical orbifolds are described in [14]. This
completes the proof of Theorem 1.2.
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