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Abstract. This research project considers the d-dimensional Mag-
netoHydroDynamics (MHD) system defined on a sufficiently smooth
bounded domain, d = 2, 3 with homogeneous boundary conditions, and
subject to external sources assumed to cause instability. The initial con-
ditions for both fluid and magnetic equations are taken of low regularity.
We then seek to uniformly stabilize such MHD system in the vicinity
of an unstable equilibrium pair, in the critical setting of correspond-
ingly low regularity spaces, by means of explicitly constructed, static,
feedback controls, which are localized on an arbitrarily small interior
subdomain. In addition, the actuators will be minimal in number. The
resulting space of well-posedness and stabilization is a suitable product

space B̃
2−2/p
q,p (Ω) × B̃

2−2/p
q,p (Ω), 1 < p < 2q

2q−1 , q > d, of tight Besov
spaces for the fluid velocity component and the magnetic field compo-
nent (each “close” to L3(Ω) for d = 3). It is known that such Besov
space does not recognize compatibility conditions at the boundary, yet it
provides a “minimal” level of regularity necessary to handle the nonlin-
ear terms. In this paper we provide a solution of the first step: uniform
stabilization of the linearized MHD. Showing maximal Lp-regularity up
to T = ∞ for the feedback stabilized linearized system is critical for the
analysis of well-posedness and stabilization of the feedback nonlinear
problem. The solution of the nonlinear stabilization problem is to be
given in a successive paper [29].
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1. Introduction. Statement of Main Results.

The Magnetohydrodynamics (henceforth referred to as MHD) equation refers
to phenomena arising in electrically conducting magnetic fluids. It is caused by
the induction of current in a conductive fluid flow due to a magnetic field and
moreover by polarization of the fluid and reciprocal changes in the magnetic
field. There is a massive literature on this subject to which we refer. MHD
has been used extensively in Plasma Confinement, Liquid Metal cooling of
nuclear reactors and Electro Magnetic Casting (EMC). The system of MHD
equations consists of the Navier-Stokes equations of a viscous incompressible
fluid flow suitably coupled by high-order coupling with Maxwell-Ohm equations
(of parabolic character) of an electromagnetic field [41, 47, 59, 60].

“Turbulence is the most important unsolved problem of classical Physics”–
Richard Feynman.

Regardless of the presence of electromagnetism, turbulence is a generic phe-
nomenon of large scale fluid flows. This is known as Hydrodynamic (HD)
turbulence. In the present project, we continue our analysis of the localized
feedback stabilization of fluids such as in [24]-[28] in general bounded 2d/3d
domains by means of finitely many controllers (with minimal number of actu-
ators), by considering at first the case of spatially localized interior feedback
controllers. We do so in a functional setting of low regularity, namely with
initial conditions for both the fluid equation and the magnetic equation taken
in Besov space of tight indices (“close” to L3(Ω) for d = 3). The reason for
seeking such generality (over the traditional L2-based Sobolev setting in much
of the literature of feedback stabilization of parabolic PDE-dynamics) is that
this is the “right setting” for our next step: the study of the more challenging
stabilization problem of MHD systems on general 3d domains by means this
time of finitely many, localized, boundary-based static feedback controls. That
in the boundary-based case the aforementioned Besov setting is the critical one
was demonstrated in the case of the 3d Navier-Stokes equations. It was in this
Besov setting (“close” to L3(Ω) for d = 3), that a 20-year old problem was
resolved in the affirmative [27]: That is, that the 3d Navier-Stokes equations
can be stabilized uniformly in the vicinity of an original unstable equilibrium
solution by a boundary-based, localized, static feedback controller, that more-
over is finite-dimensional (and explicitly constructed). Finite dimensionality
of such stabilizing, static, localized, boundary controller in the L2(Ω)-based
Sobolev setting was shown previously in [31] only in the d = 2 case. In the
solution [31] of the d = 3 case, in the L2(Ω)-based Sobolev setting, finite dimen-
sionality of the feedback boundary localized controller requires the additional
assumption that the initial condition be compactly supported on Ω. It is the
aforementioned Besov setting that allows the analysis to eliminate such assump-
tion of compactly-supported initial data. The technical reasons are as follows.
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The chosen Besov space B̃
2−2/p
q,p (Ω) introduced in [24]-[28] with tight indices

(1 < p < 6
5 for d = 3 and 1 < p < 4

3 for d = 2) needs to satisfy two competing
requirements. On the one hand, be of sufficiently low topological level as to not
recognize the boundary conditions in Lq

σ(Ω) in (1.15) below, to be compatible
with the initial data. On the other hand, of sufficiently high topological level
as to be able to handle the nonlinear analysis of well-posedness and stabiliza-
tion of the resultant closed-loop feedback Navier-Stokes problem. Thus, the
generality of the Besov setting in the present paper is also intended to be a
testing ground to attack in the future the more challenging boundary-based
stabilization problem for the MHD systems.

1.1. Controlled Dynamic Magnetohydrodynamic
Equations

Let, at first, Ω be an open connected bounded domain in Rd, d = 2, 3 with
sufficiently smooth boundary Γ = ∂Ω. More specific requirements will be given
below. Let ω be an arbitrarily small open smooth subset of the interior Ω,
ω ⊂ Ω, of positive measure. Let m denote the characteristic function of ω:
m(ω) ≡ 1, m(Ω\ω) ≡ 0. We consider the following Magnetohydrodynamic
equations in the d-velocity field y = {y1, . . . , yd}, the scalar pressure π and the
magnetic field B = {B1, . . . , Bd}. They are perturbed by exterior forces f, g
and subject to the action of a pair u, v of interior localized controls supported
on an arbitrary small subset ω of Ω, to be described below, where Q = (0,∞)×
Ω, Σ = (0,∞)× Γ:

yt − νf∆y + (y · ∇)y +∇π +
1

2
∇(B ·B)− (B · ∇)B = m(x)u(t, x)

+ f(x) in Q, (1.1a)

Bt − νm∆B + (y · ∇)B − (B · ∇)y = m(x)v(t, x)

+ g(x) in Q, (1.1b)

div y = 0, divB = 0 in Q, (1.1c)

y = 0, B · n = 0, (curl B)× n = 0 on Σ, (1.1d)

y(0, x) = y0, B(0, x) = B0 on Ω, (1.1e)

while n is the unit outward normal on ∂Ω. The coefficients νf , νm are the
positive kinematic viscosity and the magnetic viscosity, respectively. The B-
equation (1.1b) is usually written with the term νm curl curl B. We have
invoked the formula curl curlB = −∆B+∇divB as well as div B ≡ 0 in (1.1c),
to rewrite it in a more convenient form. Furthermore, we denote the total

pressure ϱ in the dynamic equation (1.1a) as ϱ := π+
1

2
(B ·B) and in the static

case ϱe := πe +
1

2
(Be ·Be).
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Remark 1.1. In the preceding model, we imposed the following boundary
conditions on the magnetic equation:

B · n = 0, (curl B)× n = 0 on Σ. (1.2)

Alternatively, one could consider Dirichlet boundary conditions for the mag-
netic field:

B = 0 on Σ, (1.3)

as outlined in equations (E.S) or (S.S) of [61].

1.2. Stationary Magnetohydrodynamics equations

The following result represents our basic starting point. See [3]

Theorem 1.1. Consider the following steady-state Magnetohydrodynamics
equations in Ω

−νf∆ye + (ye · ∇)ye +∇ϱe − (Be · ∇)Be = f(x) in Ω, (1.4a)

−νm∆Be + (ye · ∇)Be − (Be · ∇)ye = g(x) in Ω, (1.4b)

div ye = 0, divBe = 0 in Ω, (1.4c)

ye = 0, Be · n = 0, (curl Be)× n = 0 on Γ (1.4d)

where ϱe = πe+
1

2
(Be ·Be). Let 1 < q <∞. For any f, g ∈ Lq(Ω), there exits a

solution (not necessarily unique) (ye, Be, πe) ∈ W2,q(Ω)×W2,q(Ω)×W 1,q(Ω) ≡
(W 2,q(Ω))d × (W 2,q(Ω))d ×W 1,q(Ω), q > d.

1.3. Translated MHD system

We return to Theorem 1.1 which provides an equilibrium triplet {ye, Be, πe}.
Then, we translate by {ye, Be, πe} the original MHD problem (1.1). Thus we
introduce new variables

z = y − ye, B = B −Be p = ϱ− ϱe (1.5a)

and obtain the translated problem

zt − νf∆z + (ye · ∇)z + (z · ∇)ye − (Be · ∇)B
− (B · ∇)Be + (z · ∇)z − (B · ∇)B+∇p = mu in Q, (1.5b)

Bt − νm∆B+ (ye · ∇)B− (B · ∇)ye − (Be · ∇)z

+ (z · ∇)Be + (z · ∇)B− (B · ∇)z = mv in Q, (1.5c)

div z = 0, div B = 0 in Q, (1.5d)

z = 0, B · n = 0, (curl B)× n = 0 on Σ, (1.5e)

z(0, x) = y0(x)− ye(x), B(0, x) = B0(x)−Be(x) on Ω. (1.5f)
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Figure 1: The localized interior set ω.

1.4. Translated Linearized MHD system

The translated linearized problem in the variables {w,W} corresponding to
(1.5) is

wt − νf∆w + (ye · ∇)w + (w · ∇)ye − (Be · ∇)W
−(W · ∇)Be +∇p = mu in Q, (1.6a)

Wt − νm∆W+ (ye · ∇)W− (W · ∇)ye − (Be · ∇)w

+(w · ∇)Be = mv in Q, (1.6b)

divw = 0, divW = 0 in Q, (1.6c)

w = 0, W · n = 0, (curl W)× n = 0 on Σ, (1.6d)

w(0, x) = y0 − ye, W(0, x) = B0 −Be on Ω. (1.6e)

In line with the literature of Navier-Stokes equations, it will be convenient to
introduce the following first order operators

L+
ye
w = (ye · ∇)w + (w · ∇)ye, (1.7)

L+
Be

W = (Be · ∇)W+ (W · ∇)Be, (1.8)

L−
ye
W = (ye · ∇)W− (W · ∇)ye, (1.9)

L−
Be
w = [(Be · ∇)w − (w · ∇)Be] , (1.10)
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L+
ye

and L+
Be

being the Oseen operators for ye and Be respectively. With this
notation we return to the translated linearized system {w,W} in (1.6), and
rewrite it as

wt − νf∆w + L+
ye
(w)− L+

Be
(W) +∇p = mu in Q,

Wt − νm∆W+ L−
ye
(W)− L−

Be
(w) = mv in Q,

divw ≡ 0, divW ≡ 0 in Q,

w ≡ 0, W · n ≡ 0, (curl W)× n ≡ 0 in Σ,

w(0, x) = y0 − ye, W(0, x) = B0 −Be on Ω.

(1.11a)

(1.11b)

(1.11c)

(1.11d)

(1.11e)

1.5. A preliminary, qualitative statement of the main
result of the present paper

While we refer to the subsequent Theorem 2.2 (to be proved in Section 5) for
a complete, quantitative statement of the main result, here we wish to provide
a preliminary, orientative, qualitative version, to enlighten and guide further
reading.

Let 1 < q <∞. Let the linearized problem (1.11) in {w,W} be “unstable”
(Section 2.2) with N unstable eigenvalues {λj}Nj=1, M of which are distinct:

. . . ≤ Re λN+2 ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ2 ≤ Re λ1. (1.12)

Let ε > 0 and set γ0 = |Re λN+1|−ε. We shall then construct (in fact, in many
ways) vectors p1, . . . ,pK and vectors u1, . . . ,uK in the appropriate functional
setting, K = maximal geometric multiplicity of the unstable eigenvalues, such
that the linearized MHD system (1.11) with feedback control uN = {uN , vN}
acting on ω, of the form given by

uN =

[
uN

vN

]
=

K∑
k=1

([
w(t)

W(t)

]
N

,pk

)
uk (1.13)

generates a feedback semigroup SF (t) (to be called eAF,q
t in Theorem 2.2),

which in the appropriate Lq- or Besov functional setting possesses the following
properties: it is analytic; even more, it has Lq-maximal regularity up to T = ∞
(Section 7 of [29]); and is uniformly stable with decay γ0 > 0:

∥SF (t)∥ ≤Me−γ0t, t ≥ 0, M ≥ 1. (1.14)

Indeed, a known, minor modification of the proof taking λN an arbitrarily
preselected eigenvalue, produces an arbitrarily prescribed decay rate. More-
over, using critically the property that SF (t) has L

q-maximal regularity up to
T = ∞, the technical proof of [29] produces uniform stabilization of the original
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nonlinear MHD system (1.4), in the vicinity of the (preselected) equilibrium
pair {ye, Be}. For a comprehensive understanding of maximal regularity theory,
the interested reader is referred to [11].

1.6. Comparison with the literature

A detailed technical comparison with the literature is provided in [29]. Here
we quote two references. In paper [5] (where B · n = 0 on ∂Ω is used rather
than B × n = 0 on ∂Ω), the authors select localized, interior, proportional,
infinite dimensional feedback controls of the form (used in past literature)
u = −m1kk(y − ye); v = −m2k2(B − Be) under several additional assump-
tions on the constants ki and the characteristic functions mi. In contrast, the
L2(Ω)-Sobolev treatment of [33] is based on the same decomposition technique
(described in Section 2.2 of the present paper) that was introduced in [50]. The
stabilizing feedback operator is finite dimensional of an unknown dimension,
and moreover not explicit. Additional technical and conceptual differences are
provided in [29]. Among the several critical differences, we mention in particu-
lar two. First, in the Hilbert setting of [33], maximal regularity and analyticity
of the strongly continuous semigroup are equivalent properties [46]. In the
Banach setting, in particular the Besov setting of the research of the present
authors, one needs to establish maximal regularity, as this property implies,
but it is generally not implied by, analyticity of the strongly continuous (s.c.)
semigroup. Establishing such maximal regularity property, in the present Besov
setting of the s.c. analytic semigroup that stabilizes the linearized problem is
a challenging task. This is carried out in [29, Section 7], following the strategy
in [24, 28]. Second, the finite dimensional approach introduced in [50], and fol-
lowed in both [33] and the present paper, critically requires at the very outset
a unique continuation property (UCP) result to assert the Kalman algebraic,
finite rank condition of the finite dimensional unstable component of the over-
all system. This is the “ignition key” of paper [55], the basic preliminary task
needed at the very beginning of the analysis of the stabilization of a parabolic
system. See the several illustrations in [55]. In our work, it amounts to es-
tablishing a UCP for a static, over-determined eigenvalue problem [(3.26) in
Theorem 3.3 of the present paper]. This is a delicate property which is estab-
lished by Carleman-type estimates [30], following the strategy of [53, 54, 56].
In contrast, [33] establishes a UCP for the dynamic coupled problem (3.3)
in [33], by virtue of Carleman-type inequalities for parabolic equations. To
this end, [33] “makes use of refined estimates for elliptic equations obtained
in Imanuvilov and Puel [20] and couple them with estimates for the parabolic
part of the system” [33, p. 973]. Our approach is much more direct.
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1.7. Helmholtz decomposition

To eliminate the pressure term in the fluid equation (∇p in the nonlinear (1.5b),
or ∇p in the linear (1.6a)) one needs, as usual, to introduce the Helmholtz
(Leray) decomposition. A first difficulty one faces in extending the local ex-
ponential stabilization result for the interior localized problem (1.1) from the
Hilbert-space setting in [4, 6, 31], and references therein to the Lq setting is the
question of the existence of a Helmholtz (Leray) projection for the domain Ω in
Rd. More precisely: Given an open set Ω ⊂ Rd, the Helmholtz decomposition
answers the question as to whether Lq(Ω) can be decomposed into a direct sum
of the solenoidal vector space Lq

σ(Ω) and the space Gq(Ω) of gradient fields.
Here,

Lq
σ(Ω) = {y ∈ C∞

c (Ω) : div y = 0 in Ω}
∥·∥q

= {g ∈ Lq(Ω) : div g = 0; g · n = 0 on ∂Ω},
for any locally Lipschitz domain Ω ⊂ Rd, d ≥ 2

Gq(Ω) = {y ∈ Lq(Ω) : y = ∇p, p ∈W 1,q
loc (Ω)} where 1 ≤ q <∞.

(1.15)

Both of these are closed subspaces of Lq. Henceforth in this paper, we assume
that the bounded domain Ω ⊂ Rd under consideration admits a Helmholtz
decomposition Lq(Ω); i.e. that it can be decomposed into the direct sum (non-
orthogonal except for q = 2)

Lq(Ω) = Lq
σ(Ω)⊕Gq(Ω). (1.16)

The unique linear, bounded and idempotent (i.e. P 2
q = Pq) projection operator

Pq : Lq(Ω) −→ Lq
σ(Ω) having Lq

σ(Ω) as its range and Gq(Ω) as its null space
is called the Helmholtz projection. Paper [27] collects results of the literature
where the Helmholtz decomposition holds true: e.g. a bounded C1-domain in
Rd, 1 < q < ∞ [15, Theorem 1.1, p. 107; Theorem 1.2, p. 114]; a bounded
convex domain, d ≥ 2, 1 < q <∞ [13], any open set in Rd, for q = 2 [10]; and
where fails (for some q ̸= 2) [34].

1.8. Functional framework: definition of Besov spaces
Bs

q,p(Ω) on domains of class C1 as real interpolation of
Sobolev spaces:

Let m be a positive integer, m ∈ N, 0 < s < m, 1 ≤ q < ∞, 1 ≤ p ≤ ∞, then
we define [16, p. 1398] the real interpolation space

Bs
q,p(Ω) = (Lq(Ω),Wm,q(Ω)) s

m ,p (1.17a)

This definition does not depend on m ∈ N [57, p. xx]. This clearly gives

Wm,q(Ω) ⊂ Bs
q,p(Ω) ⊂ Lq(Ω) and ∥y∥Lq(Ω) ≤ C ∥y∥Bs

q,p(Ω) . (1.17b)
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We shall be particularly interested in the following special real interpolation

space of the Lq and W2,q spaces
(
m = 2, s = 2− 2

p

)
:

B
2− 2

p
q,p (Ω) =

(
Lq(Ω),W2,q(Ω)

)
1− 1

p ,p
. (1.18)

Our interest in (1.18) is due to the following characterization [2, Theorem 3.4],
[16, p. 1399]: if A1,q denotes the Stokes operator to be introduced below
in (1.20), then(

Lq
σ(Ω),D(A1,q)

)
1− 1

p ,p
=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2 (1.19a)(

Lq
σ(Ω),D(A1,q)

)
1− 1

p ,p
=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · n|Γ = 0
}

≡ B̃2−2/p
q,p (Ω) if 0 < 2− 2

p
<

1

q
; or 1 < p <

2q

2q − 1
. (1.19b)

Notice that, in (1.19b), the condition g ·n|Γ = 0 is an intrinsic condition of the
space Lq

σ(Ω) in (1.15), not an extra boundary condition as g|Γ = 0 in (1.19a).

This way in case (1.19b), we define the subspace B̃
2−2/p
q,p (Ω) of B

2−2/p
q,p (Ω), which

is a critical state space in the present study.

Remark 1.2. In the analysis of well-posedness and stabilization of the non-
linear MHD problem (1.1), with interior localized controls {u, v} in feedback
form to be carried out in the successive paper [29], we shall need to impose
the constraint q > 3, to obtain the embedding W1,q(Ω) ↪→ L∞(Ω) in our case
of interest d = 3, as already noted at the end of Section 1.7. What is then
the allowable range of the parameter p in such case q > 3? The intended
goal of the present paper is to obtain the sought-after stabilization result in a

function space, such as a B2−2/p
q,p (Ω)-space, that does not recognize boundary

conditions of the initial condition (I.C.), for otherwise it will force compatibil-
ity condition on the boundary, and hence reduce the class of control problems
under consideration. Thus, we need to avoid the case in (1.19a), as this implies
a Dirichlet homogeneous B.C. Instead, we need to fit into the case (1.19b),
where the condition g ·n = 0 on Γ is an intrinsic condition of the space Lq

σ(Ω),
as already noted below (1.19b). For d = 3, we shall then impose the condition

2− 2

p
<

1

q
<

1

3
and then obtain that p must satisfy p <

6

5
. Moreover, analytic-

ity and maximal regularity of the Stokes problem will require p > 1. Thus, in
conclusion, the allowed range of the parameters p, q under which we shall solve
the well-posedness and stabilization problem of the nonlinear MHD feedback

system (9.1) in [29] for d = 3, following [24]-[28] in the space B̃2−2/p
q,p (Ω) defined
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in (1.19b), which - as intended - does not recognize boundary conditions is:

q > 3, 1 < p <
6

5
.

1.9. Abstract translated nonlinear model

Premise. The fluid component (z in the nonlinear model (1.5b), w in the
linear model (1.6a)) is as usual subject to the application of the Helmholtz
projector to eliminate the pressure term ∇p and thus fall into the solenoidal
space Lq

σ(Ω), taking advantage of the two conditions: z ≡ 0 on Σ, div z ≡ 0 in
Q, property of this space, and similarly for w. The equation of the magnetic
component (B in the nonlinear model (1.5c), W in the linear model (1.6b))
enjoys similar properties: B · n ≡ 0 on Σ, divB ≡ 0 on Q; W · n ≡ 0 on Σ,
divW ≡ 0 in Q, intrinsic to the solenoidal space Lq

σ(Ω). Accordingly, we shall
apply the Helmholtz projection also to the magnetic equations which therefore
will be studied in Lq

σ(Ω) as well. This will justify the definition of the operator
A2,q and Nq below in (1.21), (1.26).

Let 1 < q <∞ be fixed. We set recalling (1.7)-(1.10)

A1,qf = −Pq∆f,

D(A1,q) = W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lq

σ(Ω), (1.20)

A2,qF = −Pq∆F,

D(A2,q) =
{
F ∈ W2,q(Ω) ∩ Lq

σ(Ω), (curl F )× n ≡ 0 on Γ
}
, (1.21)

Ao,ye,qf = PqL+
ye
f = Pq [(ye · ∇)f + (f · ∇)ye] ,

D(Ao,ye,q) = D(A
1/2

1,q) ⊂ Lq
σ(Ω), (1.22)

Ao,Be,qF = PqL+
Be
F = Pq [(Be · ∇)F + (F · ∇)Be] ,

D(Ao,Be,q) = D(A
1/2

2,q) ⊂ Lq
σ(Ω), (1.23)

L−
Be
f = PqL−

Be
f = Pq [(Be · ∇)f − (f · ∇)Be] ,

D(L−
Be

) = D(A
1/2

2,q) ⊂ Lq
σ(Ω), (1.24)

L−
ye
F = PqL−

ye
F = Pq[(ye · ∇)F − (F · ∇)ye],

D(L−
ye
) = D(A

1/2

2,q) ⊂ Lq
σ(Ω), (1.25)

Nq

([
f

F

])
=

[
Pq[(f · ∇)f − (F · ∇)F ]

Pq[(f · ∇)F − (F · ∇)f ]

]
. (1.26)

For D(A
1/2

1,q) see (1.41b) below. A1,q is of course the Stokes operator of the fluid
component and Ao,ye,q the corresponding Oseen perturbation operator, while
Aye,q = −(νfA1,q + Ao,ye,q) is the corresponding Oseen operator. Similarly,
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A2,q is the magnetic operator with Ao,Be,q the Oseen perturbation operator
of the magnetic component. Next we apply the Helmholtz projector Pq to
the z-equation (1.5b), recall (1.7), (1.8) and thus eliminate the pressure term,
Pq∇p = 0:

zt−νf (Pq∆)z+(PqL+
ye
)z−(PqL+

Be
B)+Pq[(z ·∇)z−(B·∇)B] = Pqmu. (1.27a)

Similarly, we apply Pq to the B-equation in (1.5c) and obtain via (1.9), (1.10):

Bt−νm(Pq∆)B+PqL−
ye
B−PqL−

Be
z+Pq[(z ·∇)B− (B ·∇)z] = Pqmv. (1.27b)

We combine (1.27a) and (1.27b) to obtain the following PDE problem

d

dt

[
z

B

]
=

[
νfPq∆ 0

0 νmPq∆

][
z

B

]
+

[
−PqL+

ye
PqL+

Be

PqL−
Be

−PqL−
ye

] [
z
B

]

−Nq

[
z

B

]
+

[
Pqmu

Pqmv

]
in Q,

div z ≡ 0, div B ≡ 0 in Q,

z ≡ 0, B · n ≡ 0, curl B× n ≡ 0 in Σ,

z(0, x) = y0 − ye, B(0, x) = B0 −Be on Ω.

(1.28a)

(1.28b)

(1.28c)

(1.28d)

Taking advantage of the divergence free conditions div z = 0, div B = 0 in
Q along with z ≡ 0 on Σ, and recalling Lq

σ(Ω) in (1.15), we see that the
corresponding abstract equation of the PDE-coupled system (1.28) is

d

dt

[
z

B

]
=

[
−νfA1,q 0

0 −νmA2,q

][
z

B

]
+

[
−Ao,ye,q Ao,Be,q

L−
Be

−L−
ye

][
z

B

]

−Nq

[
z

B

]
+

[
Pqmu

Pqmv

]
in Lq

σ(Ω)× Lq
σ(Ω). (1.29)

1.10. Abstract translated linearized model

The linearized versions of the PDE-problem (1.28) and its corresponding ab-
stract equation (1.29) are, respectively

d

dt

[
w

W

]
=

[
νfPq∆ 0

0 νmPq∆

][
w

W

]
+

[
−PqL+

ye
PqL+

Be

PqL−
Be

−PqL−
ye

] [
w
W

]

+

[
Pqmu

Pqmv

]
in Q,

div w ≡ 0, div W ≡ 0 in Q,

w ≡ 0, W · n ≡ 0, curl W× n ≡ 0 in Σ

(1.30a)

(1.30b)

(1.30c)
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along with the initial conditions [w(0),W(0)] = [w0,W0], and

d

dt

[
w

W

]
=

[
−νfA1,q 0

0 −νmA2,q

][
w

W

]
+

[
−Ao,ye,q Ao,Be,q

L−
Be

−L−
ye

][
w

W

]

+

[
Pqmu

Pqmv

]
in Lq

σ(Ω)× Lq
σ(Ω). (1.31)

1.11. The Stokes operator (−A1,q) and the magnetic
operator (−A2,q) generate strongly continuous,
analytic, uniformly stable semigroups e−A1,qt and
e−A2,qt on Lq

σ(Ω), 1 < q < ∞. [17, 35, 42, 47]

Theorem 1.2. Let d ≥ 2, 1 < q <∞ and let Ω be a bounded domain in Rd of
class C3. Then

Part A: On the Stokes operator (−A1,q) and the corresponding Oseen operator
Aye,q = −(νfA1,q +Ao,ye,q)

(i) the Stokes operator −A1,q = Pq∆ in (1.20), repeated here as

−A1,qψ = Pq∆ψ, ψ ∈ D(A1,q) = W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lq

σ(Ω) (1.32)

generates a s.c analytic semigroup e−A1,qt on Lq
σ(Ω). See [17, 35, 47] and

the review paper [19, Theorem 2.8.5, p. 17]. For q = 2, A1,q=2 is positive
self-adjoint on L2

σ(Ω).

(ii) With reference to (1.31), the Oseen operator Aye,q

Aye,q = −(νfA1,q +Ao,ye,q), D(Aye,q) = D(A1,q) ⊂ Lq
σ(Ω) (1.33)

generates a s.c analytic semigroup eAye,qt on Lq
σ(Ω). This follows as

Ao,ye,q is relatively bounded with respect to A
1/2

1,q , defined in (1.41b) see
(1.22): thus a standard theorem on perturbation of an analytic semigroup
generator applies [36, Corollary 2.4, p. 81].

(iii) One has{
0 ∈ ρ(A1,q) = the resolvent set of the Stokes operator A1,q

A−1
1,q : Lq

σ(Ω) −→ Lq
σ(Ω) is compact.

(1.34a)

(1.34b)

Similarly, the operator Aye,q has compact resolvent on Lq
σ(Ω).
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(iv) The s.c. analytic Stokes semigroup e−A1,qt is uniformly stable on Lq
σ(Ω):

there exist constants M ≥ 1, δ > 0 (possibly depending on q) such that∥∥e−A1,qt
∥∥
L(Lq

σ(Ω))
≤Me−δt, t > 0. (1.35)

Part B: On the magnetic operator (−A2,q) and the corresponding perturbation
operator A2,q = −(νmA2,q + L−

ye
)

(v) Similarly, the operator −A2,q in (1.22) generates a s.c. analytic semi-
group e−A2,qt on Lq

σ(Ω), which moreover is uniformly stable here: there
exist constants M ≥ 1, δ > 0 (possibly depending on q), such that∥∥e−A2,qt

∥∥
L(Lq

σ(Ω))
≤Me−δt, t > 0 (1.36a)

[34], repeated also in [37], [33, p. 968]. Moreover, A2,q has compact
resolvent on Lq

σ(Ω). For q = 2, A2,q=2 is positive self adjoint on L2
σ(Ω)

[34, p. 3382], [60], [14, Lemma 1]

(vi) Likewise, with reference to (1.31), the operator

A2,q = −(νmA2,q + L−
ye
), D(A2,q) = D(A2,q) (1.36b)

generates a s.c. analytic semigroup eA2,qt on Lq
σ(Ω) and it has a compact

resolvent on Lq
σ(Ω), as D(L−

ye
) = D(A

1
2
2,q) on Lq

σ(Ω) by (1.25).

Part C: On the linear diagonal principal part operator Ao,q of the linear
[w, W]-problem in (1.31)

(vii) With reference to (1.31), the operator

Ao,q =

[
−νfA1,q 0

0 −νmA2,q

]
:

Lq
σ(Ω)×Lq

σ(Ω) ⊃ D(Ao,q) = D(A1,q)×D(A2,q) → Lq
σ(Ω)×Lq

σ(Ω),
(1.37)

generates a s.c. analytic semigroup eAo,qt on Lq
σ(Ω) × Lq

σ(Ω), which is
uniformly stable here: there exist constants M ≥ 1, δ > 0, such that∥∥eAo,qt

∥∥
L(Yq

σ(Ω))
≤Me−δt, t > 0, Yq

σ(Ω) ≡ Lq
σ(Ω)× Lq

σ(Ω). (1.38)

Moreover, Ao,q has a compact resolvent on Lq
σ(Ω)× Lq

σ(Ω) ≡ Yq
σ(Ω).
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(viii) The operator

Ãq = Ao,q +Π =

[
−νfA1,q 0

0 −νmA2,q

]
+

[
−Ao,ye,q Ao,Be,q

L−
Be

−L−
ye

]
Lq
σ(Ω)×Lq

σ(Ω) ⊃ D(Ãq) = D(A1,q)×D(A2,q) → Lq
σ(Ω)×Lq

σ(Ω) ≡ Yq
σ(Ω)

D(Π) ≡ D((−Ao,q)
1/2), by (1.22)-(1.25) (1.39)

is the generator of the s.c. analytic semigroup eÃqt on Lq
σ(Ω)× Lq

σ(Ω) ≡
Yq

σ(Ω), has compact resolvent here, so that the problem (1.31) is rewritten
as

d

dt

[
w
W

]
= Ãq

[
w
W

]
,

[
w(0)
W(0)

]
=

[
w0

W0

]
on Yq

σ(Ω). (1.40)

1.12. Domains of fractional powers, D(Aα
1,q), 0 < α < 1 of

the Stokes operator A1,q and D(Aα
2,q), 0 < α < 1, of the

magnetic operator A2,q on Lq
σ(Ω), 1 < q < ∞.

Theorem 1.3. For the domains of fractional powers D(Aα
1,q), 0 < α < 1, of the

Stokes operator A1,q in (1.20) = (1.32), the following complex interpolation
relation holds true [18] and [19, Theorem 2.8.5, p. 18]

[D(A1,q),L
q
σ(Ω)]1−α = D(Aα

1,q), 0 < α < 1, 1 < q <∞; (1.41a)

in particular

[D(A1,q),L
q
σ(Ω)] 12 = D(A

1/2

1,q) ≡ W1,q
0 (Ω) ∩ Lq

σ(Ω). (1.41b)

Thus, on the space D(A
1/2

1,q), the norms

∥∇ · ∥Lq(Ω) and ∥ ∥W1,q(Ω) (1.41c)

are equivalent via Poincaré inequality.

Similarly, for the domains of fractional powers D(Aα
2,q) of the magnetic operator

Aα
2,q in (1.21)

[D(A2,q),L
q
σ(Ω)]1−α = D(Aα

2,q), 0 < α < 1, 1 < q <∞; . (1.42)
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1.13. Linearized fluid and magnetic operators on the

Besov space B̃
2−2/p
q,p (Ω)

Part A: The Stokes operator −A1,q and the Oseen operator
Aye,q, 1 < q <∞ generate s.c. analytic semigroups on the Besov
spaces

(Lq
σ(Ω),D(A1,q))1− 1

p ,p
=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g|Γ = 0
}

if
1

q
< 2− 2

p
< 2; (1.43a)

(Lq
σ(Ω),D(A1,q))1− 1

p ,p
=
{
g ∈ B2−2/p

q,p (Ω) : div g = 0, g · n|Γ = 0
}

≡ B̃2−2/p
q,p (Ω) if 0 < 2− 2

p
<

1

q
. (1.43b)

Theorem 1.2(i) states that the Stokes operator −A1,q generates a s.c analytic
semigroup on the space Lq

σ(Ω), 1 < q < ∞, hence on the space D(A1,q)
in (1.32), with norm ∥ · ∥D(A1,q)

= ∥A1,q · ∥Lq
σ(Ω) as 0 ∈ ρ(A1,q). Then,

one obtains that the Stokes operator −A1,q generates a s.c. analytic semi-
group on the real interpolation spaces in (1.43). Next, the Oseen operator
Aye,q = −(νfA1,q + Ao,ye,q) in (1.33) likewise generates a s.c. analytic semi-

group eAye,qt on Lq
σ(Ω) since Ao,ye,q is relatively bounded w.r.t. A

1/2

1,q , as

Ao,ye,qA
−1/2

1,q is bounded on Lq
σ(Ω). Moreover Ayeq generates a s.c. analytic

semigroup on D(Aye,q) = D(A1,q) (equivalent norms). Hence Aye,q generates
a s.c. analytic semigroup on the real interpolation space of (1.43). Here below,

however, we shall formally state the result only in the space B̃2−2/p
q,p (Ω) for the

case 2− 2/p <
1/q. i.e. 1 < p < 2q/2q−1, as this does not contain B.C. The ob-

jective of the present paper is precisely to obtain stabilization results on spaces
that do not recognize B.C.

Theorem 1.4. Let 1 < q <∞, 1 < p < 2q/2q−1.

(i) The Stokes operator −A1,q in (1.32) generates a s.c. analytic semigroup

e−A1,qt on the space B̃
2−2/p
q,p (Ω) defined in (1.19b) = (1.43b) which more-

over is uniformly stable, as in (1.35),∥∥e−A1,qt
∥∥
L
(
B̃

2−2/p
q,p (Ω)

) ≤Me−δt, t > 0. (1.44)

(ii) The Oseen operator Aye,q in (1.33) generates a s.c. analytic semigroup

eAye,qt on the space B̃
2−2/p
q,p (Ω) in (1.19b) = (1.43b).
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Part B: The magnetic operator −A2,q and its corresponding
perturbation A2,q = −(νmA2,q + L−

ye
) generate s.c. analytic

semigroups on B̃2−2/p
q,p (Ω) for 1 < p <

2q

2q − 1
.

For 0 < 2 − 2

p
<

1

q
, or 1 < p < 2q

2q−1 , the homogeneous Dirichlet BC ψ|Γ = 0

of the Stokes operator (−A1,q) in (1.32) is not recognized in the interpolation
characterization (1.43b). For the same range of p, then the higher level BC
(curl B)× n = 0 on Γ is likewise not recognized, and we have as in [1, (1.15a-
b), Theorem 3.4], [16, p. 1399].

Since the operator A2,q has different boundary conditions from the Stokes
operator A1,q, we use the maximal Lp-regularity for the Stokes operator with
Neumann, Robin or Navier boundary conditions to conclude that the magnetic
operator A2,q has maximal Lp-regularity. The magnetic boundary conditions
that we have to consider are first order boundary conditions which are com-
parable with such first order Neumann, Robin or Navier boundary conditions.
More specifically

B · n = 0, (curl B)× n = 0. (1.45)

Then we refer to [43, Theorem 3.1], [45, Theorem 1.2], [44, Theorem 3.1] for
maximal regularity up to T < ∞. For maximal Lp-regularity up to T = ∞,
along with exponential stability we quote the subsequent theorems of the same
references [43, Theorem 3.2], [45, Theorem 1.2], [44, Theorem 3.2]. Further-
more, to characterize the real interpolation space between Lq

σ(Ω) and D(A2,q)
we refer to [49] and [44, Remark 1.3] and symbolically

(Lq
σ(Ω),D(A2,q))1− 1

p ,p
=
{
B ∈ B2−2/p

q,p (Ω) : div B = 0, B · n|Γ = 0
}

≡ B̃2−2/p
q,p (Ω) if 1− 2

p
<

1

q
, (1.46a)

(Lq
σ(Ω),D(A2,q))1− 1

p ,p

=
{
B ∈ B2−2/p

q,p (Ω) : div B = 0, B · n|Γ = 0, (curl B)× n|Γ = 0
}

if 1− 2

p
>

1

q
. (1.46b)

From (1.43b), we have for the Stokes case, (Lq
σ(Ω),D(A1,q))1− 1

p ,p
≡ B̃

2−2/p
q,p (Ω)

for 1 < p < 2q/2q−1. This implies that 1 < p < 2q/q−1. Then by (1.46a) we have

(Lq
σ(Ω),D(A2,q))1− 1

p ,p
≡ B̃2−2/p

q,p (Ω). Similar to the Stokes setting in (1.43b),

this does not contain B.C. and fits to the objective of the present paper.

Theorem 1.5. Let 1 < q <∞, 1 < p < 2q/2q−1.
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(i) The magnetic operator −A2,q in (1.21) generates a s.c. analytic semi-

group e−A2,qt on the space B̃
2−2/p
q,p (Ω) defined in (1.43b) or (1.46), which

moreover is uniformly stable, as in (1.35),∥∥e−A2,qt
∥∥
L
(
B̃

2−2/p
q,p (Ω)

) ≤Me−δt, t > 0. (1.47)

(ii) The corresponding operator A2,q = −(νmA2,q +L−
ye
) in (1.36b) generates

a s.c. analytic semigroup eA2,qt on the space B̃
2−2/p
q,p (Ω) in (1.46).

1.14. Space of maximal Lp regularity on Lq
σ(Ω) of the

Stokes operator −A1,q, 1 < p < ∞, 1 < q < ∞ up to
T = ∞.

We return to the dynamic Stokes problem in {φ(t, x), π(t, x)}
φt −∆φ+∇π = F in (0, T ]× Ω ≡ Q,

div φ ≡ 0 in Q,

φ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ,

φ|t=0 = φ0 in Ω,

(1.48a)

(1.48b)

(1.48c)

(1.48d)

rewritten in abstract form, after applying the Helmholtz projection Pq to
(1.48a) and recalling A1,q in (1.20) = (1.32) as

φ′ +A1,qφ = Fσ ≡ PqF, φ0 ∈ (Lq
σ(Ω),D(A1,q))1− 1

p ,p
. (1.49)

Next, we introduce the space of maximal regularity for {φ,φ′} as [19, p. 2;
Theorem 2.8.5.iii, p. 17], [16, pp. 1404-5], with T up to ∞ (since e−A1,qt is
uniformly stable):

XT
p,q,σ = Lp(0, T ;D(A1,q)) ∩W 1,p(0, T ;Lq

σ(Ω)) (1.50)

(recall (1.32) for D(A1,q)) and the corresponding space for the pressure as

Y T
p,q = Lp(0, T ; Ŵ 1,q(Ω)), Ŵ 1,q(Ω) =W 1,q(Ω)/R. (1.51)

The following embedding, also called trace theorem, holds true [2, Theorem
4.10.2, p. 180, BUC for T = ∞], [38].

XT
p,q,σ ⊂ XT

p,q ≡ Lp(0, T ;W2,q(Ω)) ∩W 1,p(0, T ;Lq(Ω))

↪→ C
(
[0, T ];B2−2/p

q,p (Ω)
)
. (1.52)
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For a function g such that div g ≡ 0, g|Γ = 0 we have g ∈ XT
p,q ⇐⇒ g ∈

XT
p,q,σ, by (1.15).

The solution of Eq (1.49) is

φ(t) = e−A1,qtφ0 +

∫ t

0

e−A1,q(t−τ)Fσ(τ)dτ. (1.53)

The following is the celebrated result on maximal regularity on Lq
σ(Ω) of

the Stokes problem due originally to Solonnikov [48] reported in [19, Theo-
rem 2.8.5.(iii) and Theorem 2.10.1, p. 24 for φ0 = 0], [39], [16, Proposition 4.1,
p. 1405].

Theorem 1.6. Let 1< p, q <∞, T ≤ ∞. With reference to problem (1.48)=
(1.49), assume

Fσ ∈ Lp(0, T ;Lq
σ(Ω)), φ0 ∈ (Lq

σ(Ω),D(A1,q))1− 1
p ,p

. (1.54)

Then, with reference to (1.47), (1.48), (1.49), there exists a unique solution
φ ∈ XT

p,q,σ, π ∈ Y T
p,q to the dynamic Stokes problem (1.48) or (1.49), continu-

ously on the data: there exist constants C0, C1 independent of T, Fσ, φ0 such
that via (1.52)

C0 ∥φ∥
C
(
[0,T ];B

2−2/p
q,p (Ω)

) ≤ ∥φ∥XT
p,q,σ

+ ∥π∥Y T
p,q

≡ ∥φ′∥Lp(0,T ;Lq
σ(Ω)) + ∥A1,qφ∥Lp(0,T ;Lq

σ(Ω)) + ∥π∥Y T
p,q

≤ C1

{
∥Fσ∥Lp(0,T ;Lq

σ(Ω)) + ∥φ0∥(Lq
σ(Ω),D(A1,q))1− 1

p
,p

}
,

(1.55)

T ≤ ∞. In particular,

(i) With reference to the variation of parameters formula (1.53) of problem
(1.49) arising from the Stokes problem (1.48), we have recalling (1.50):
the map

Fσ −→
∫ t

0

e−A1,q(t−τ)Fσ(τ)dτ : continuous (1.56)

Lp(0, T ;Lq
σ(Ω)) −→ XT

p,q,σ ≡ Lp(0, T ;D(A1,q)) ∩W 1,p(0, T ;Lq
σ(Ω)),

T ≤ ∞. (1.57)

(ii) The s.c. analytic uniformly stable semigroup e−A1,qt generated by the
Stokes operator −A1,q (see (1.20)) on the space (Lq

σ(Ω),D(A1,q))1− 1
p ,p

(see statement below (1.43b)) satisfies

e−A1,qt : continuous (Lq
σ(Ω),D(A1,q))1− 1

p ,p

−→ XT
p,q,σ ≡ Lp(0, T ;D(A1,q)) ∩W 1,p(0, T ;Lq

σ(Ω)), T ≤ ∞. (1.58)
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In particular via (1.43b), for future use, for 1 < q <∞, 1 < p < 2q
2q−1 , the

s.c. analytic uniformly stable semigroup e−A1,qt on the space B̃2−2/p
q,p (Ω),

satisfies

e−A1,qt : continuous B̃2−2/p
q,p (Ω) −→ XT

p,q,σ, T ≤ ∞. (1.59)

(iii) Moreover, for future use, for 1 < q < ∞, 1 < p < 2q
2q−1 , then (1.55)

specializes to

∥φ∥XT
p,q,σ

+ ∥π∥Y T
p,q

≤ C

{
∥Fσ∥Lp(0,T ;Lq

σ(Ω)) + ∥φ0∥
B̃

2−2/p
q,p (Ω)

}
,

T ≤ ∞. (1.60)

1.15. Maximal Lp regularity on Lq
σ(Ω) of the Oseen

operator Aye,q, 1 < p < ∞, 1 < q < ∞, up to T < ∞.

We next transfer the maximal regularity of the Stokes operator (−A1,q) on
Lq
σ(Ω)-asserted in Theorem 1.6 into the maximal regularity of the Oseen oper-

ator Aye,q = −νfA1,q −Ao,q in (1.33) exactly on the same space XT
p,q,σ defined

in (1.50), however only up to T <∞.
Thus, consider the dynamic Oseen problem in {ψ(t, x), π(t, x)} with equi-

librium solution ye:
ψt −∆ψ + Le(ψ) +∇π = F in (0, T ]× Ω ≡ Q,

div ψ ≡ 0 in Q,

ψ|Σ ≡ 0 in (0, T ]× Γ ≡ Σ,

ψ|t=0 = ψ0 in Ω,

(1.61a)

(1.61b)

(1.61c)

(1.61d)

Le(ψ) = (ye.∇)ψ + (ψ.∇)ye (1.62)

rewritten in abstract form, after applying the Helmholtz projector Pq to (1.61a)
and recalling Aye,q in (1.33), as

ψt = Aye,qψ + PqF = −νfA1,qψ −Ao,ye,qψ + Fσ,

ψ0 ∈
(
Lq
σ(Ω),D(A1,q)

)
1− 1

p ,p
(1.63)

whose solution is

ψ(t) = eAye,qtψ0 +

∫ t

0

eAye,q(t−τ)Fσ(τ)dτ. (1.64)

ψ(t) = e−νfA1,qtψ0 +

∫ t

0

e−νfA1,q(t−τ)Fσ(τ)dτ

−
∫ t

0

e−νfA1,q(t−τ)Ao,ye,qψ(τ)dτ. (1.65)
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Theorem 1.7. Let 1 < p, q <∞, 0 < T <∞. Assume (as in (1.54))

Fσ ∈ Lp (0, T ;Lq
σ(Ω)) , ψ0 ∈ (Lq

σ(Ω),D(A1,q))1− 1
p ,p

(1.66)

where D(A1,q) = D(Aye,q), see (1.33). Then there exists a unique solution
ψ ∈ XT

p,q,σ in (1.50), π ∈ Y T
p,q in (1.51) of the dynamic Oseen problem (1.61),

continuously on the data: that is, there exist constants C0, C1 independent of
Fσ, ψ0 such that

C0 ∥ψ∥
C

(
[0,T ];B

2−2/p
q,p (Ω)

) ≤ ∥ψ∥XT
p,q,σ

+ ∥π∥Y T
p,q

≡ ∥ψ′∥Lp(0,T ;Lq
σ(Ω)) + ∥A1,qψ∥Lp(0,T ;Lq

σ(Ω)) + ∥π∥Y T
p,q

≤ CT

{
∥Fσ∥Lp(0,T ;Lq

σ(Ω)) + ∥ψ0∥(Lq
σ(Ω),D(A1,q))1− 1

p
,p

}
(1.67)

where T <∞. Equivalently, for 1 < p, q <∞, (i) and (ii) below:

i. The map

Fσ −→
∫ t

0

eAye,q(t−τ)Fσ(τ)dτ : continuous

Lp(0, T ;Lq
σ(Ω)) −→ Lp (0, T ;D(Aye,q) = D(A1,q)) (1.68)

where then automatically, see (1.63)

Lp(0, T ;Lq
σ(Ω)) −→W 1,p(0, T ;Lq

σ(Ω)) (1.69)

and ultimately

Lp(0, T ;Lq
σ(Ω)) −→ XT

p,q,σ ≡ Lp (0, T ;D(A1,q)) ∩W 1,p(0, T ;Lq
σ(Ω)).

(1.70)

ii. The s.c. analytic semigroup eAye,qt generated by the Oseen operator Aye,q

(see (1.33)) on the space (Lq
σ(Ω),D(A1,q))1− 1

p ,p
satisfies for 1 < p, q <∞

eAye,qt : continuous (Lq
σ(Ω),D(A1,q))1− 1

p ,p
−→

Lp (0, T ;D(Aye,q) = D(A1,q)) (1.71)

and hence automatically by (1.50)

eAye,qt : continuous (Lq
σ(Ω),D(A1,q))1− 1

p ,p
−→ XT

p,q,σ. (1.72)
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In particular, for future use, for 1 < q <∞, 1 < p < 2q
2q−1 , we have that the

s.c. analytic semigroup eAye,qt on the space B̃2−2/p
q,p (Ω), defined in (1.43b)

satisfies

eAye,qt : continuous B̃2−2/p
q,p (Ω) −→ Lp (0, T ;D(Aye,q) = D(A1,q)) ,

T <∞. (1.73)

and hence automatically

eAye,qt : continuous B̃2−2/p
q,p (Ω) −→ XT

p,q,σ, T <∞. (1.74)

A proof is given in [27, Appendix A].

1.16. Maximal Lp-regularity on Lq
σ(Ω) of the magnetic

operator (−A2,q), up to T = ∞; and of the
perturbation A2,q = −(νmA2,q + L−

ye) up to
T < ∞; 1 < q < ∞.

Part A: We begin with the operator (−A2,q) in (1.21) up to T = ∞. Thus, we
consider the problem

ψt −∆ψ = F in (0, T ]× Ω ≡ Q,

div ψ ≡ 0 in Q,

ψ · n = 0, (curl ψ)× n ≡ 0 in (0, T ]× Γ ≡ Σ,

ψ|t=0 = ψ0 in Ω,

(1.75a)

(1.75b)

(1.75c)

(1.75d)

or in abstract form (refer to the W-equation (1.30a), (1.31))

ψt = −A2,qψ + Fσ, Fσ = PqF (1.76)

or its variation of parameters formula

ψ(t) = e−A2,qtψ0 +

∫ t

0

e−A2,q(t−τ)Fσ(τ)dτ. (1.77)

The following result is the perfect equivalent of Theorem 1.6 for Stokes
operator transported to the magnetic operator (−A2,q), in the range 1 < p <
2q

2q − 1
of our interest.

Theorem 1.8. Let 1 < p, q <∞, T ≤ ∞. With reference to problem (1.75) or
(1.76), we have
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(i) the map

Fσ −→
∫ t

0

e−A2,q(t−τ)Fσ(τ)dτ :

continuous Lp(0, T ;Lq
σ(Ω)) −→ Lp (0, T ;D(A2,q)) (1.78)

so that then, by (1.76) and (1.78)

ψt ∈ Lp(0, T ;Lq
σ(Ω)) continuously (1.79)

with respect to Fσ ∈ Lp(0, T ;Lq
σ(Ω)).

(ii) Let 1 < q < ∞, 1 < p <
2q

2q − 1
. The s.c. analytic semigroup e−A2,qt

generated by the magnetic operator −A2,q in the space B̃
2−2/p
q,p (Ω) (recall

(1.46)) satisfies

e−A2,qt : continuous B̃2−2/p
q,p (Ω) −→ Lp(0, T ;D(A2,q))∩W 1,p(0, T ;Lq

σ(Ω)).
(1.80)

Part B: We now consider the perturbation A2,q = −(νmA2,q + L−
ye
), however

up to T <∞.

With reference to the W-equation in (1.30a),we consider the uncoupled part
νm ≡ 1

ψt −∆ψ + L−
ye
ψ = F in (0, T ]× Ω ≡ Q,

div ψ ≡ 0 in Q,

ψ · n, (curl ψ)× n ≡ 0 in (0, T ]× Γ ≡ Σ,

ψ|t=0 = ψ0 in Ω,

(1.81a)

(1.81b)

(1.81c)

(1.81d)

or an abstract form (refer to (1.31))

ψt = −A2,qψ − L−
ye
ψ + Fσ, Fσ = PqF

= A2,qψ + Fσ, (1.82a)

recalling A2,q in (1.21), L−
ye

in (1.25), A2,q in (1.36b). Let ψ0 = 0. We write
the variation of parameters formula of the problem (1.82) in two ways.

ψ(t) =

∫ t

0

eA2,q(t−τ)Fσ(τ)dτ

=

∫ t

0

e−A2,q(t−τ)(−L−
ye
ψ)(τ)dτ +

∫ t

0

e−A2,q(t−τ)Fσ(τ)dτ. (1.83)
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Theorem 1.9 ([29, Theorem 1.8]). Let 1 < p, q < ∞, T < ∞. With reference
to problem (1.81)-(1.83), we have

(i) the map (recall Theorem 1.4B )

Fσ −→
∫ t

0

eA2,q(t−τ)Fσ(τ)dτ :

continuous Lp(0, T ;Lq
σ(Ω)) −→ Lp (0, T ;D(A2,q) = D(A2,q)) (1.84)

so that then, by (1.82a)

ψt ∈ Lp(0, T ;Lq
σ(Ω)) continuously (1.85)

with respect to Fσ ∈ Lp(0, T ;Lq
σ(Ω)).

(ii) Let 1 < q < ∞, 1 < p <
2q

2q − 1
. The s.c. analytic semigroup eA2,qt

generated by the operator A2,q = −(νmA2,q +L
−
ye
) in (1.36b) in the space

B̃
2−2/p
q,p (Ω) (recall (1.46)) satisfies

eA2,qt : continuous B̃2−2/p
q,p (Ω) −→

Lp(0, T ;D(A2,q) = D(A2,q)) ∩W 1,p(0, T ;Lq
σ(Ω)). (1.86)

1.17. Maximal Lp-regularity on Lq
σ(Ω)× Lq

σ(Ω) of the
operator Ao,q in (1.37) up to T = ∞, and of the

operator Ãq = Ao,q +Π in (1.39) up to
T < ∞, 1 < p, q < ∞.

Theorem 1.10. (i) Consider the abstract problem

dh

dt
= Ao,qh+ F, Ao,q =

[
−νfA1,q 0

0 −νmA2,q

]

h =

[
h1
h2

]
∈ Yq

σ(Ω) = Lq
σ(Ω)× Lq

σ(Ω) (1.87)

recalling Ao,q from (1.37). Then, for h0 = 0F −→ h(t) ≡
∫ t

0

eAo,q(t−τ)F(τ)dτ :

continuous Lp(0, T ;Yq
σ(Ω)) −→ Lp(0, T ;D(Ao,q)).

(1.88)
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(ii) Consider the abstract problem

df

dt
= Ãqf + F, Ãq = Ao,q +Π, Π =

[
−Ao,ye,q Ao,Be,q

L−
Be

−L−
ye

]
. (1.89)

recalling the operator Π in (1.39). Then, for f0 = 0 and T <∞,F −→ f(t) ≡
∫ t

0

eÃq(t−τ)F(τ)dτ :

continuous Lp(0, T ;Yq
σ(Ω)) −→ Lp(0, T ;D(Ãq) = D(Ao,q)).

(1.90)

Proof. (i) is an immediate corollary of the maximal Lp-regularity of the
Stokes operator (−A1,q) up to T = ∞ in Theorem 1.6 and of maximal
Lp-regularity of the magnetic operator (−A2,q) up to T = ∞ in Theorem
1.8(i).

(ii) follows from (i) by perturbation [12, 23, 58], as Π is A
1/2
o,q - bounded in

Yq
σ(Ω), see (1.39).

2. Spectral decomposition of the linearized problem

2.1. Preliminaries

We return to the linearized [w,W]-problem (1.40) defined by the operator Ãq

on Yq
σ(Ω) ≡ Lq

σ(Ω) × Lq
σ(Ω). We have seen in Theorem 1.2(viii) that Ãq in

the generator of a s.c. analytic semigroup eÃqt on Yq
σ(Ω) and, moreover, it has

compact resolvent on Yq
σ(Ω). The assumption for the problem investigated in

the present paper to be relevant is that: the generator Ãq of a s.c. analytic
compact semigroup is unstable on Lq

σ(Ω)× Lq
σ(Ω) ≡ Yq

σ(Ω), in the sense that

there are N unstable eigenvalues λ1, λ2, . . . , λN of Ãq

. . . ≤ Re λN+2 ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ2 ≤ Re λ1 (2.1)

where the eigenvalues of Ãq are numbered in order of decreasing real parts. For
each unstable eigenvalue λi, i = 1, . . . , N , let

{Φij}ℓij=1 =

{[
φij

ψij

]}ℓi

j=1

, φij , ψij ∈ Lq
σ(Ω) (2.2)

be the ℓi-linearly independent (normalized) eigenfunctions on Yq
σ(Ω)≡Lq

σ(Ω)×
Lq
σ(Ω), where ℓi denotes the geometric multiplicity of λi, and let λ̄i be the
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•λN+1 • •

λ1λN

Figure 2: The eigenvalues of Ãq

(unstable) eigenvalues of the Lq
σ(Ω)× Lq

σ(Ω)-adjoint Ã∗
q :

ÃqΦij = λiΦij , Φij ∈ D(Ãq), i = 1, . . . , N, j = 1, . . . , ℓi, (2.3a)

Ã∗
qΦ

∗
ij = λ̄iΦ

∗
ij , Φ∗

ij ∈ D(Ã∗
q), Φ∗

ij =

[
φ∗
ij

ψ∗
ij

]
. (2.3b)

We recall the linearized problem (1.31) in the notation of (1.40)

d

dt

[
w
W

]
= Ãq

[
w
W

]
+

[
Pqmu
Pqmv

]
, η =

[
w
W

]
. (2.4)

The properties of the operator Ãq are collected in Theorem 1.2(viii). Accord-
ingly, its eigenvalues satisfy their location property in Fig 2. Denote by PN

and P ∗
N (which actually depend on q) the projections given explicitly in [22,

p. 178]

PN = − 1

2πi

∫
C

(
λI − Ãq

)−1

dλ : Yq
σ(Ω) onto (Yq

σ)
u
N ⊂ Yq

σ(Ω) (2.5)

P ∗
N = − 1

2πi

∫
C̄

(
λI − Ã∗

q

)−1

dλ : (Yq
σ(Ω))

∗ = Yq′

σ (Ω)

onto [(Yq
σ)

u
N ]∗ ⊂ Yq′

σ (Ω). (2.6)

where C (respectively, its conjugate counterpart C̄ ) is a smooth closed curve

that separates the unstable spectrum from the stable spectrum of Ãq (respec-

tively, Ã∗
q). As in [4, Section 3.4, p. 37], following [50], [51], we decompose

the space Yq
σ = Yq

σ(Ω) ≡ Lq
σ(Ω)× Lq

σ(Ω) into the sum of two complementary
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subspaces (not necessarily orthogonal):

Yq
σ = (Yq

σ)
u
N ⊕ (Yq

σ)
s
N ; (Yq

σ)
u
N ≡ PNYq

σ; (Yq
σ)

s
N ≡ (I − PN )Yq

σ;

dim (Yq
σ)

u
N = N (2.7)

(superscript u = unstable; superscript s = stable), where each of the spaces

(Yq
σ)

u
N and (Yq

σ)
s
N is invariant under Ãq, and let

Ãu
q,N = PN Ãq = Ãq|(Yq

σ)
u
N
; Ãs

q,N = (I − PN )Ãq = Ãq|(Yq
σ)

s
N

(2.8)

be the restrictions of Ãq to (Yq
σ)

u
N and (Yq

σ)
s
N respectively. The original point

spectrum (eigenvalues) {λj}∞j=1 of Ãq is then split into two sets,

σ(Ãu
q,N ) = {λj}Nj=1; σ(Ãs

q,N ) = {λj}∞j=N+1, (2.9)

and (Yq
σ)

u
N is the generalized eigenspace of Ãu

q,N . The system (2.4) on Yq
σ ≡

Lq
σ(Ω)× Lq

σ(Ω) can accordingly be decomposed as

η = ηN + ζN , ηN = PNη, ζN = (I − PN )η. (2.10)

After applying PN and (I −PN ) (which commute with Ãq) on (2.4), we obtain
via (2.8)

on (Yq
σ)

u
N : η′

N − Ãu
q,NηN = PN

[
Pq(mu)

Pq(mv)

]
; ηN (0) = PN

[
w(0)

W(0)

]
(2.11)

on (Wq
σ)

s
N : ζ′

N − Ãs
q,NζN = (I − PN )

[
Pq(mu)

Pq(mv)

]
;

ζN (0) = (I − PN )

[
w(0)

W(0)

]
(2.12)

respectively.

Main Results. We may now state the main feedback stabilization result of
the linearized problem (2.4). The proof is constructive. How to construct the
finitely many stabilizing vectors will be established in the proof.
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We anticipate the fact below that, for 1 < p, q <∞:

(Yq
σ)

u
N = space of generalized

eigenfunctions of Ãq (i.e. Ãu
N )

corresponding to its distinct

unstable eigenvalues

⊂

 (Lq
σ(Ω),D(A1,q))1− 1

p ,p

[D(A1,q),L
q
σ(Ω)]1−α = D(Aα

1,q), 0 ≤ α ≤ 1
⊂ Lq

σ(Ω). (2.13)

recalling (1.41a).

Remark 2.1. The original assumption

. . . ≤ Re λN+2 ≤ Re λN+1 < 0 ≤ Re λN ≤ . . . ≤ Re λ2 ≤ Re λ1 (2.14)

at the beginning of Section 2.1 is intrinsic to the notion of ‘stabilization’, where
by then one seeks to construct a feedback control that transforms an original
unstable problem (with no control) into a stable one. However, as is well-known,
the same entire procedure [50] can be employed to either stabilize an originally
unstable system into a stable one with an arbitrary preassigned decay rate or
else to enhance at will the stability of an originally stable one (Re λ1 < 0).

2.2. Uniform stabilization with an arbitrary decay rate of
the ηN -dynamics (2.11) by a suitable
finite-dimensional interior localized feedback control
uN = [uN , vN ]

Here below in Theorem 2.1 as well as in Theorem 3.2 below, we say the Finite
Dimensional Spectral Assumption (FDSA) is satisfied to mean that for each

of the distinct eigenvalue λ1, . . . , λM of Ãq algebraic and geometric multiplicity

coincide. Thus, the restriction ÃN in (2.11) is diagonalizable. In this case Kato

[22, p. 41] calls the operator Ãq,N semisimple.

Theorem 2.1. Let 1 < q < ∞. Let λ1, . . . , λM be the unstable distinct M
eigenvalues of Ãq and let ω be an arbitrarily small open portion of the interior
with smooth boundary ∂ω. As established below in Theorem 3.2 under the
FDSA (and in Theorem 4.2 [29] in the general case), there exist constructively
infinitely many interior vectors [u1, . . . ,uK ] in (Yq

σ)
u
N ⊂ Lq

σ(Ω)×Lq
σ(Ω), ui =
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[u1i , u
2
i ] such that the rank conditions

rank


(u1,Φ

∗
i1)ω . . . (uK ,Φ

∗
i1)ω

(u1,Φ
∗
i2)ω . . . (uK ,Φ

∗
i2)ω

...
...

(u1,Φ
∗
iℓi
)ω . . . (uK ,Φ

∗
iℓi
)ω

 = ℓi; ℓi ×K for each i = 1, . . . ,M,

(2.15a)
hold true with K = sup {ℓi : i = 1, . . . ,M} where

(uj ,Φ
∗
i1)ω =

([
u1j
u2j

]
,

[
φ∗
ij

ψ∗
ij

])
Lq

σ(ω)×Lq
σ(ω)

. (2.15b)

That is, the matrix in (2.15a) is full rank.
Then: Given γ > 0 arbitrarily large, there exists a K-dimensional interior

controller u = uN = {u1N , u2N} acting on ω, of the form given by

[
u
v

]
= u = uN =

K∑
k=1

µk(t)uk,

uk =

[
u1k
u2k

]
∈ (Yq

σ)
u
N ⊂ Lq

σ(Ω)× Lq
σ(Ω) ≡ Yq

σ(Ω), µk(t) = scalar (2.15c)

see (3.10) below, with the vectors uk = {u1k, u2k} given in (3.10) below under the
FDSA (and in Theorem 4.2 of [29] in the general case) via the rank conditions
(2.15a), such that, once inserted in the dynamics (2.11) yield the estimate

∥ηN (t)∥Lq
σ(Ω)×Lq

σ(Ω) + ∥uN (t)∥Lq
σ(ω)×Lq

σ(ω)

≤ Cγe
−γt ∥PNη0∥Lq

σ(Ω)×Lq
σ(Ω) , t ≥ 0, (2.16a)

where the Lq
σ(Ω)-norm in (2.16a) may be replaced by the (Lq

σ(Ω),D(A1,q))1− 1
p ,p

-

norm , 1 < p, q < ∞; in particular the B̃2−2/p
q,p (Ω)-norm in (1.19b), 1 < q <

∞, 1 < p <
2q

2q − 1
:

∥ηN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

+ ∥uN (t)∥
B̃

2−2/p
q,p (ω)×B̃

2−2/p
q,p (ω)

≤ Cγe
−γt ∥PNη0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

, t ≥ 0. (2.16b)

Here, ηN is the solution of Eq (3.12) under the FDSA (or (4.15) of [29] in
the general case), i.e. (3.7) corresponding to the control u = uN obtained in
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(2.15c). Moreover, such controller u = uN in (2.15c) can be chosen in feedback
form: that is, with reference to the explicit expression (2.15c) = (3.10) for u, of
the form µk(t) = (ηN (t),pk)ω for suitably constructed vectors pk = {p1k, p2k} ∈
((Yq

σ)
u
N )∗ ⊂ Lq′

σ (Ω) × Lq′

σ (Ω) depending on γ. In conclusion, ηN in (2.16) is
the solution of the, feedback equation on (Yq

σ)
u
N (see (2.7))

η′
N − Ãu

q,NηN = PNPq

(
m

(
K∑

k=1

(ηN (t),pk)ωuk

))
,

uk ∈ (Yq
σ)

u
N ⊂ Lq

σ(Ω)× Lq
σ(Ω), pk ∈ ((Yq

σ)
u
N )∗ ⊂ Lq′

σ (Ω)× Lq′

σ (Ω) (2.17)

rewritten (since it is linear) as

η′
N = ĀuηN , ηN (t) = eĀ

utPNη0, ηN (0) = PNη0. (2.18)

The proof will be given in Section 4.

2.3. Feedback stabilization of the original linearized
η ≡ {w,W}-system (2.4) by a finite dimensional
feedback controller u = [u, v]

Theorem 2.2. Let 1 < q < ∞. Let the linearized operator Ãq have N possibly
repeated unstable eigenvalues {λj}Nj=1 of which M are distinct. Let ε > 0 and
set γ0 = |ReλN+1| − ε, see Fig 1. Consider the setting of Theorem 2.1 so
that, in particular, the feedback finite-dimensional control u = uN is given

by u = uN =

K∑
k=1

(ηN (t),pk)uk and satisfies estimates (2.16a), (2.16b) with

γ > 0 arbitrarily large, for vectors p1, . . . ,pk ∈ ((Yq
σ)

u
N )∗ ⊂ Lq′

σ (Ω) × Lq′

σ (Ω)
and vectors u1, . . . ,uk ∈ (Yq

σ)
u
N ⊂ Lq

σ(Ω) × Lq
σ(Ω) given by Theorem 2.1, as

established in Section 4. Thus, the linearized problem (2.4) specializes to (2.19)

with η =

[
w
W

]
and ηN = PNη

d

dt

[
w
W

]
= Ãq

[
w
W

]
+

[
Pq(mu)
Pq(mv)

]
= Ãqη + Pq

(
m

(
K∑

k=1

(ηN (t),pk)ωuk

))
≡ A

F
η = A

F

[
w
W

]
. (2.19)

Here A
F

= A
F,q

is the generator of a s.c. analytic semigroup on either the
space Lq

σ(Ω) × Lq
σ(Ω), 1 < q < ∞, or on the space (Lq

σ(Ω),D(A1,q))1− 1
p ,p

×

(Lq
σ(Ω),D(A2,q))1− 1

p ,p
, 1 < p, q < ∞, in particular on the space B̃2−2/p

q,p (Ω) ×
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B̃2−2/p
q,p (Ω), 1 < q, 1 < p < 2q/2q−1, recall (1.19b). Moreover, such dynamics

η (equivalently, generator A
F
) in (2.19) is uniformly stable in each of these

spaces, say∥∥eAF
tη0

∥∥
Lq

σ(Ω)×Lq
σ(Ω)

= ∥η(t,η0)∥Lq
σ(Ω)×Lq

σ(Ω)

=

∥∥∥∥[ w(t, w0)
W(t,W0)

]∥∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

≤ Cγ0e
−γ0t ∥η0∥Lq

σ(Ω)×Lq
σ(Ω) , η0 =

[
w0

W0

]
, t ≥ 0.

(2.20)

γ0 = |ReλN+1| − ε or, for 0 < θ < 1, and δ > 0 arbitrarily small

∥∥∥∥∥
[
Aθ

1,q

Aθ
2,q

]
eAF

tη0

∥∥∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

=

∥∥∥∥∥
[
Aθ

1,q

Aθ
2,q

]
η(t,η0)

∥∥∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

≤


Cγ0,θe

−γ0t

∥∥∥∥∥
[
Aθ

1,q

Aθ
2,q

]
η0

∥∥∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

, η0 ∈ D(Aθ
1,q)×D(Aθ

2,q), t ≥ 0,

Cγ0,θ,δe
−γ0t ∥η0∥Lq

σ(Ω)×Lq
σ(Ω) , t ≥ δ > 0.

(2.21)

In (2.21), we have recalled the fractional powers of the (-Stokes) operator A1,q

in (1.20) = (1.32), and similarly for the magnetic operator A2,q in (1.21). As
in the case of Theorem 2.1, we may replace the Lq

σ(Ω)×Lq
σ(Ω)-norm in (2.20),

1 < q < ∞, with the (Lq
σ(Ω),D(A1,q))1− 1

p ,p
× (Lq

σ(Ω),D(A2,q))1− 1
p ,p

-norm

1 < p, q < ∞, in particular with B̃
2−2/p
q,p (Ω) × B̃

2−2/p
q,p (Ω)-norm, see (1.19b) or

say

∥∥eAF
tη0

∥∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

= ∥η(t,η0)∥B̃2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

=

∥∥∥∥[ w(t, w0)
W(t,W0)

]∥∥∥∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤ Cγ0
e−γ0t ∥η0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

, t ≥ 0, (2.22)

γ0 = |ReλN+1| − ε, see Figure 1.

The proof is given in Section 5.
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3. Algebraic Rank Condition for the ηN -dynamics in
(2.11) on (Yq

σ(Ω))
u
N under the (preliminary)

Finite-Dimensional Spectral Assumption

Preliminaries. Let M be the number of distinct unstable eigenvalues of Ãq

(or Ã∗
q). For each i = 1, . . . ,M , we denote by

{Φij}ℓij=1 =

{[
φij

ψij

]}ℓi

j=1

, {Φ∗
ij}

ℓi
j=1 =

{[
φ∗
ij

ψ∗
ij

]}ℓi

j=1

the normalized, linearly independent eigenfunctions of Ãq, respectively Ã∗
q , say,

on

Yq
σ(Ω) ≡ Lq

σ(Ω)× Lq
σ(Ω) and

(Yq
σ(Ω))

∗ ≡ (Lq
σ(Ω))

′ × (Lq
σ(Ω))

′ = Lq′

σ (Ω)× Lq′

σ (Ω),
1

q
+

1

q′
= 1, (3.1)

(where in the last equality we have invoked the identity (A.2) in Appendix A

of [27]) corresponding to the M distinct unstable eigenvalues λ1, . . . , λM of Ãq

and λ1, . . . , λM of Ã∗
q respectively,:

ÃqΦij = λiΦij ∈ D(Ãq) = D(A1,q)×D(A2,q)

= [W2,q(Ω) ∩W1,q
0 (Ω) ∩ Lq

σ(Ω)]× [W2,q(Ω) ∩ Lq
σ(Ω)] (3.2)

Ã∗
qΦ

∗
ij = λ̄iΦ

∗
ij ∈ D(Ã∗

q)

= [W2,q′(Ω) ∩W1,q′

0 (Ω) ∩ Lq′

σ (Ω)]× [W2,q′(Ω) ∩ Lq′

σ (Ω)]. (3.3)

recalling (1.20), (1.21), (1.39):

λ̄i

Φ∗
i1, Φ∗

i2, . . . Φ∗
iℓi

ℓi = geometric multiplicity

The Finite Dimensional Spectral Assumption (FDSA)

As noted at the beginning of Section 2.2, we henceforth assume in this section
the Finite Dimensional Spectral Assumption (FDSA). This means that for

each of the distinct eigenvalues λ1, . . . , λM of Ãq, algebraic and geometric
multiplicity coincide:

(Yq
σ)

u
N,i ≡ PN,iY

q
σ(Ω) = span{Φij}ℓij=1;

(Yq′

σ )uN,i ≡ P ∗
N,i(L

q
σ(Ω)× Lq

σ(Ω))
∗ = span{Φ∗

ij}
ℓi
j=1; (3.4)
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Here PN,i, P
∗
N,i are the projections corresponding to the eigenvalues λi and λ̄i,

respectively. For instance, PN,i is given by an integral such as the one on the
RHS of (2.5), where now C is a closed smooth curve encircling the eigenvalue
λi and no other. Similarly for P ∗

N,i. The space Yu
N,i = range of PN,i is the

algebraic eigenspace of the eigenvalues λi, and ℓi = dim Yu
N,i is the algebraic =

geometric multiplicity of λi, so that ℓ1 + ℓ2 + · · ·+ ℓM = N . As a consequence
of the FDSA, we obtain

(Yq
σ)

u
N ≡ PN [Lq

σ(Ω)× Lq
σ(Ω)] = span{Φij}M ℓi

i=1,j=1; (3.5a)

((Yq
σ)

∗)uN = (Yq′

σ )uN ≡ P ∗
N [(Lq

σ(Ω))
∗×(Lq

σ(Ω))
∗] = span{Φ∗

ij}
M ℓi
i=1,j=1. (3.5b)

Without the FDSA, (Yq
σ)

u
N is the span of the generalized eigenfunctions of

Ãq, corresponding to its unstable distinct eigenvalues {λj}Mj=1; and similarly
for ((Yq

σ)
∗)uN (see the subsequent section). In other words, the FDSA says

that the restriction Ãu
q,N in (2.11) is diagonalizable or that Ãu

q,N is semisimple
on (Yq

σ)
u
N in the terminology of [22, p. 41]. Under the FDSA, any vector

η ∈ (Yq
σ)

u
N admits the following unique expansion [22, p. 12, Eq. (2.16)], [6,

p. 1453], in terms of the basis {Φij}M ℓi
i=1,j=1 in (Yq

σ)
u
N and its adjoint basis [22,

p. 12] {Φ∗
ij}

M ℓi
i=1,j=1 in ((Yq

σ)
∗)uN = (Yq′

σ )uN :

(Yq
σ)

u
N ∋ η =

M,ℓi∑
i,j

(η,Φ∗
ij)Φij ; (Φij ,Φ

∗
hk) =

{
1 if i = h, j = k,

0 otherwise,
(3.6)

that is, the system consisting of {Φij} and {Φ∗
hk}, i = 1, . . . ,M, j = 1, . . . , ℓi,

can be chosen to form bi-orthogonal sequences. Here ( , ) denotes the scalar
product between (Yq

σ)
u
N and (Yq′

σ )uN [22, p. 12]. i.e. ultimately, the duality
pairing in Ω between Lq

σ(Ω)×Lq
σ(Ω) and (Lq

σ(Ω))
∗×(Lq

σ(Ω))
∗. Next, we return

to the ηN -dynamics in (2.11), rewritten here for convenience

on (Yq
σ)

u
N : η′

N − Ãu
q,NηN = PN

[
Pqmu
Pqmv

]
; ηN (0) = PN

[
w(0)
W(0)

]
. (3.7)

The term PN

[
Pqmu
Pqmv

]
expressed in terms of adjoint bases.

Letmu ∈ Lq(ω), mv ∈ Lq(ω), q > 1. In the computation below, we notice that

P ∗
NΦ∗

ij = Φ∗
ij as Φ∗

ij ∈ D(Ã∗
q), so that Φ∗

ij is invariant under the projections
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P ∗
N . Similarly, P ∗

q φ
∗
ij = φ∗

ij , P
∗
q ψ

∗
ij = ψ∗

ij . With (f, g)ω =

∫
ω

fḡ dω, we obtain

(Yq
σ)

u
N ∋ PN

[
Pq(mu)

Pq(mv)

]
=

M,ℓi∑
i,j=1

(
PN

[
Pq(mu)
Pq(mv)

]
,

[
φ∗
ij

ψ∗
ij

])
Φij ,

=

M,ℓi∑
i,j=1

([
Pq(mu)

umPq(mv)

]
,

[
φ∗
ij

ψ∗
ij

])
Φij ,

=

M,ℓi∑
i,j=1

([
mu

mv

]
,

[
φ∗
ij

ψ∗
ij

])
Φij ,

=

M,ℓi∑
i,j=1

(
u,Φ∗

ij

)
ω
Φij , u =

[
u
v

]
(3.8)

so that the dynamics (3.7) on (Yq
σ)

u
N becomes by (3.8)

on (Yq
σ)

u
N : η′

N − Ãu
q,NηN =

M,ℓi∑
i,j=1

(u,Φ∗
ij)ωΦij , u =

[
u
v

]
. (3.9)

Selection of the scalar interior control function u = uN in finite
dimensional separated form (with respect to K coordinates).

Next, we select the control u = uN of the form

[
u
v

]
= u =

K∑
k=1

µk(t)uk, uk =

[
u1k
u2k

]
∈ (Yq

σ)
u
N ⊂ Lq

σ(Ω)× Lq
σ(Ω) ≡ Yq

σ(Ω),

µk(t) = scalar (3.10)

so that the term in (3.8) in (Yq
σ)

u
N specializes to

(Yq
σ)

u
N ∋ PN

[
Pq(mu)
Pq(mv)

]
=

M,ℓi∑
i,j=1

{
K∑

k=1

([
u1k
u2k

]
,Φ∗

ij

)
ω

µk(t)

}
Φij . (3.11)

Substituting (3.11) on the RHS of (3.7), we finally obtain

on (Yq
σ)

u
N : η′

N − Ãu
q,NηN =

M,ℓi∑
i,j=1

{
K∑

k=1

([
u1k
u2k

]
,Φ∗

ij

)
ω

µk(t)

}
Φij . (3.12)
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The dynamics (3.12) in coordinate form on (Yq
σ)

u
N .

Our next goal is to express the finite dimensional dynamics (3.12) on the N -
dimensional space (Yq

σ)
u
N in a component-wise form. To this end, we introduce

the following ordered bases βi and β of length ℓi and N respectively:

βi = [Φi1, . . . ,Φiℓi ] : basis on (Yq
σ)

u
N,i

β = β1 ∪ β2 ∪ · · · ∪ βM (3.13)

= [Φ11, . . . ,Φ1ℓ1 ,Φ21, . . . ,Φ2ℓ2 , . . . ,ΦM1, . . . ,ΦMℓM ] : basis on (Yq
σ)

u
N .

Thus, we can represent the N -dimensional vector ηN ∈ (Yq
σ)

u
N as column

vector η̂N = [ηN ]β as,

ηN =

M,ℓi∑
i,j=1

ηij
NΦij ;

and set η̂N = col [η1,1
N , . . . ,η1,ℓ1

N , . . . ,ηi,1
N , . . . ,ηi,ℓi

N , . . . ,ηM,1
N , . . . ,ηM,ℓM

N ].

Remark 3.1. The eigenfunction Φij = {φij , ψij} belongs to Lq
σ(Ω) × Lq

σ(Ω)

as well as to D(Ãq) = D(Ãu
q,N ) in (2.8). Thus, by real/complex interpolation,

see (1.43)/(1.41a) they also belong to

(Lq
σ(Ω),D(A1,q))1− 1

p ,p
× (Lq

σ(Ω),D(A2,q))1− 1
p ,p

as well as to [D(A1,q),L
q
σ(Ω)]1−α × [D(A2,q),L

q
σ(Ω)]1−α

= D(Aα
1,q)×D(Aα

2,q), 0 ≤ α ≤ 1 (3.14)

in particular, Φij = {φij , ψij} ∈ B̃
2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω), see (1.19b) = (1.43b).

Thus, exponential decay in CN ×CN of the CN ×CN -vector η̂N translates at
once into exponential decay with the same rate in any of the spaces Lq

σ(Ω) ×
Lq
σ(Ω), (L

q
σ(Ω),D(A1,q))1− 1

p ,p
× (Lq

σ(Ω),D(A2,q))1− 1
p ,p

,D(Aα
1,q) × D(Aα

2,q), in

particular, B̃2−2/p
q,p (Ω)×B̃2−2/p

q,p (Ω) for the vector ηN , viewed as a vector on any
one of these spaces. This remark applies to ηN (t) and uN (t) in Theorem 2.1,
equations (2.16), (2.17) as well as Theorem 2.2, equations (2.20)-(2.22).

Lemma 3.1. In CN , under the FDSA with respect to the ordered basis β :
{Φij}M ℓi

i=1,j=1 in (3.13) of normalized eigenfunctions of Ãu
q,N , we may rewrite

system (3.7) = (3.12) recalling (3.10) as

(η̂N )′ − Λη̂N = Uµ̂K (3.15)
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where

Λ =


λ1I1 0

λ2I2
. . .

0 λMIM

 : of size N ×N,

Ii : identity matrix of size ℓi × ℓi (3.16)

Ui =


(u1,Φ

∗
i1)ω . . . (uK ,Φ

∗
i1)ω

(u1,Φ
∗
i2)ω . . . (uK ,Φ

∗
i2)ω

...
. . .

...
(u1,Φ

∗
iℓi
)ω . . . (uK ,Φ

∗
iℓi
)ω

 : ℓi ×K;

U =


U1

U2

...
UM

 : N ×K; µ̂K =


µ1

µ2

...
µK

 : K × 1; (3.17)

where (f, g)ω =

∫
ω

fḡ dω and we take K ≥ ℓi, i = 1, . . . ,M . Thus (3.15)

gives the dynamics on (Yq
σ)

u
N as a linear N -dimensional ordinary differential

equation in coordinate form in CN .

Proof. Recalling the basis βi in (3.13) and the definitions of Ui in (3.17), we
can rewrite the term in (3.11) with respect to this basis as{

PN

[
Pq(mu)
Pq(mv)

]}
βi

= Uiµ̂K : ℓi × 1; (3.18)

Then with respect to the basis β in (3.13) and recalling the definition U
in (3.17), we can rewrite the term (3.11) with respect to this basis as

{
PN

[
Pq(mu)
Pq(mv)

]}
β

=


U1

U2

...
UM

 µ̂K =


U1µ̂K

U2µ̂K

...
UM µ̂K

 = Uµ̂K : N × 1. (3.19)

Finally, clearly Ãu
q,N in (3.12) becomes the diagonal matrix Λ in (3.16) with

respect to the basis β, recalling its eigenvalues in (3.2).
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The following is the main result of the present section.

Theorem 3.2. Assume the FDSA. It is possible to select vectors u1, . . . ,uK ∈
Lq
σ(ω)× Lq

σ(ω), ui = [u1i , u
2
i ], see (3.10), q > 1, K = sup {ℓi : i = 1, . . . ,M},

such that the matrix Ui of size ℓi ×K in (3.17) satisfies

rank [Ui] = full = ℓi or (3.20a)

rank


(u1,Φ

∗
i1)ω . . . (uK ,Φ

∗
i1)ω

(u1,Φ
∗
i2)ω . . . (uK ,Φ

∗
i2)ω

...
...

(u1,Φ
∗
iℓi
)ω . . . (uK ,Φ

∗
iℓi
)ω

 = ℓi; ℓi ×K for each i = 1, . . . ,M,

(3.20b)

(uj ,Φ
∗
i1)ω =

([
u1j
u2j

]
,

[
φ∗
ij

ψ∗
ij

])
Lq

σ(ω)×Lq
σ(ω)

(3.20c)

In fact, the vectors Φ∗
i1, . . . ,Φ

∗
iℓi

are linearly independent in Lq′

σ (ω)× Lq′

σ (ω).

Proof. Step 1. By selection, see (3.2) and statement preceding it, the set of
vectors Φ∗

i1, . . . ,Φ
∗
iℓi

is linearly independent in Lq′

σ (Ω)×Lq′

σ (Ω), q
′ is the Hölder

conjugate of q, 1/q +
1/q′ = 1, for each i = 1, . . . ,M . We want to show that

the set {Φ∗
i1, . . . ,Φ

∗
iℓi
} remains linearly independent on Lq′

σ (ω)× Lq′

σ (ω), after
which the desired conclusion (3.20a) for the matrix Ui to be full rank, would
follow for infinitely many choices of the vectors u1, . . . ,uK ∈ Lq

σ(ω)× Lq
σ(ω).

Claim: The set {Φ∗
i1, . . . ,Φ

∗
iℓi
} is linearly independent on Lq′

σ (ω)×Lq′

σ (ω),
for each i = 1, . . . ,M .

The proof will critically depend on a unique continuation result [54] see
also [6, Lemma 3.7, p. 1466]. By contradiction, let us assume that the vectors
{Φ∗

i1, . . . ,Φ
∗
iℓi
} are instead linearly dependent on Lq′

σ (ω)× Lq′

σ (ω) , so that

Φ∗
iℓi =

ℓi−1∑
j=1

αjΦ
∗
iℓj in Lq′

σ (ω)× Lq′

σ (ω) (3.21)

We shall then conclude by [6, Lemma 3.7] and [53] below, that in fact
Φ∗

iℓi
≡ 0 on all of Ω as well, thereby making the system {Φ∗

ij , j = 1, . . . , ℓi}
linearly dependent on Ω, a contradiction. To this end, define the following
function (depending on i) in Lq′

σ (Ω)× Lq′

σ (Ω)

Φ∗ =

ℓi−1∑
j=1

αjΦ
∗
iℓj −Φ∗

iℓi

 ∈ Lq′

σ (Ω)× Lq′

σ (Ω), i = 1, . . . ,M. (3.22)
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so that Φ∗ ≡ 0 in ω by (3.21). As each Φ∗
ij is an eigenvalue of Ã∗

q (or (Ãu
q,N )∗)

corresponding to the eigenvalue λ̄i, see (3.3), so is the linear combination Φ∗.
This property, along with Φ∗ ≡ 0 in ω yields that Φ∗ satisfies the following
eigenvalue problem for the operator Ã∗

q (or (Ãu
q,N )∗):

Ã∗
qΦ

∗ = λ̄Φ∗, div Φ∗ = 0 in Ω; Φ∗ = 0 in ω, by (3.21). (3.23)

with the over-determined condition Φ∗ ≡ 0 in ω. But the linear combination
Φ∗ in (3.22) of the eigenfunctions Φ∗

ij ∈ D(Ã∗
q) satisfies itself the Dirichlet B.C

Φ∗|∂Ω = 0. The crux of the proof consists in showing the following Unique
Continuation Property: that statement (3.23) with an over-determined con-
dition implies, in fact, Φ∗ ≡ 0 on all of Ω, so that by (3.22), the vectors
{Φ∗

i1, . . . ,Φ
∗
iℓi
, } are linearly dependent in Ω: i.e. on Lq′

σ (Ω) × Lq′

σ (Ω), a con-
tradiction.

The proof relies on the explicit PDE-version of statement (3.23). To avoid

introducing additional notation for the adjoint problem Ã∗
q , we shall provide a

proof for the original operator:

ÃqΦ = λΦ, divΦ ≡ 0 in Ω, Φ ≡ in ω (3.24)

=⇒ Φ ≡ 0 on Ω. (3.25)

The PDE-version of the implication in (3.25) is given by the following result.

Theorem 3.3 ([30]). Let ω be an arbitrary open, connected smooth subset of
Ω, thus of positive measure, see Fig 1. Let {φ, ξ, p} ∈ W2,q(Ω) × W2,q(Ω) ×
W 1,q(Ω), q > d, solve the original eigenvalue problem (3.24) (static version of
problem (1.6))

−νf∆φ+ (ye · ∇)φ+ (φ · ∇)ye − (ξ · ∇)Be − (Be · ∇)ξ

+∇p = λφ in Ω,
(3.26a)

−νm∆ξ+(φ · ∇)Be+(ye · ∇)ξ − (ξ · ∇)ye − (Be · ∇)φ = λξ in Ω,
(3.26b)

div φ = 0, div ξ = 0 in Ω,
(3.26c)

φ = 0, ξ · n = 0, (curl ξ)× n = 0 on Γ.
(3.26d)

along with the over-determination condition

φ ≡ 0, ξ ≡ 0 in ω. (3.27)

Then
φ ≡ 0, ξ ≡ 0, p ≡ const in Ω. (3.28)
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The same proof applies, mutatis mutandis, to the adjoint problem (3.23),
with the over-determination Φ∗ ≡ 0 in ω. As already noted the conclusion is
that problem (3.24) implies

Φ∗ = 0 in Lq′

σ (Ω)× Lq′

σ (Ω);

that is Φ∗
iℓi = α1Φ

∗
i1 + α2Φ

∗
i2 + · · ·+ αℓi−1Φ

∗
iℓi−1 in Lq′

σ (Ω)× Lq′

σ (Ω),
(3.29)

i.e. the set {Φ∗
i1, . . . ,Φ

∗
iℓi
} in linearly dependent on Lq′

σ (Ω) × Lq′

σ (Ω). But
this is false, by the very selection of such eigenvectors, see (3.2) and statement
preceding it. Thus, the condition (3.29) cannot hold.

The required unique continuation result is established in [30], following the
scheme in [53, 56]. The original proof is done in the Hilbert setting but we may
invoke the same result because Φ∗ has more regularity and integrability than
required since Φ∗ is an eigenfunction of Ã∗

q . Thus the claim is established. In
conclusion: it is possible to select, in infinitely many ways, interior functions
u1, . . . ,uK ∈ Lq

σ(ω) × Lq
σ(ω), ui = [u1i , u

2
i ] such that the algebraic full rank

condition (3.20) holds true for each i = 1, . . . ,M .

Remark 3.2. The general case without the FDSA uses a controllability char-
acterization of the pair {J,B}, Jordan form [21, p. 204], [32, Ex. #7, p. 102], [8,
p. 212], [9, p. 165], [7, Theorem 3.2.4, p. 148]; and moreover, is computationally
intensive. We refer to Section 4 of [29].

4. Proof of Theorem 2.1: uniform stabilization on
(Yq

σ(Ω))
u
N with arbitrary decay rates of the

ηN -dynamics (2.11) by a suitable finite-dimensional
interior localized feedback control uN = [uN , vN ]

Step 1: Following [50] the proof consists in testing controllability of the linear,
finite-dimensional system (3.7), in short, the pair

{J,B}, B = U : N ×K,K = sup {ℓi; i = 1. . . . ,M} (4.1)

U = [U1, . . . , UM ]tr, Ui given by (4.12) of [29] in the general case (or by (3.17)
under FDSA). J is the Jordan form of Au

N with respect to the Jordan basis
β = β1 ∪ · · · ∪ βM , βi being given by (4.6a) of [29]. But the rank conditions
(4.13) of [29] in the general case precisely asserts such controllability property

of the pair {Ãu
q,N = J,B}, in light of Theorem 4.1 in [29] in the general case,

or Theorem 3.2 under FDSA.

Step 2: Having established the controllability criterion for the pair {Ãu
q,N =

J,B} then by the well-known Popov’s criterion in finite-dimensional theory
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(arbitrary spectral allocation), there exists a real feedback Wonham’s matrix
Q = K ×N , such that the spectrum of the matrix (J +BQ) = (J +UQ) may
be arbitrarily preassigned; in particular, to lie in the left half-plane {λ : Re λ <
−γ < −Re λN+1}, as desired. The resulting closed-loop system (corresponding
to (3.15) under FDSA)

(η̂N )′ − J η̂N = U ûN , (4.2)

is obtained with CN -vector ûN = Qη̂N , Q being the K ×N matrix with row
vectors [p̂1, . . . , p̂K ], µk

N = (η̂N , p̂k) in the CN -inner product and hence decays
with an arbitrary preassigned exponential rate γ > 0

|η̂N (t)|CN ≤ Cγe
−γt |η̂N (0)|CN , t ≥ 0. (4.3)

But the N -dimensional vector ηN ∈ (Yq
σ)

u
N ⊂ Lq

σ(Ω) is represented by the
CN -vector η̂N = [ηN ]β , where in the general case of Section 4 of [29], β is a

Jordan basis of generalized eigenfunctions of Ãq,N (= Ãu
N ) corresponding to its

M distinct unstable eigenvalues. Such basis is given by β = β1 ∪β2 ∪ · · · ∪βM ,
where a representative βi is given in (4.6a) of [29] in the general case. The
whole basis can be read off from (4.15) of [29] in the general case. In the
special case of Section 3 where the FDSA holds, the basis β in (Yq

σ)
u
N is given

by the eigenfunctions of the Ãu
N corresponding to itsM distinct eigenvalues, see

(3.13). But such eigenfunctions/generalized eigenfunctions are in D(Ãq), hence
smooth. Thus, the exponential decay in (4.3) of the coordinate vector η̂N in CN

translates in same exponential decay of the vector ηN (t) ∈ (Yq
σ)

u
N not only in

the Lq
σ(Ω)×Lq

σ(Ω)-norm but also in the D(Ãq) = D(A1,q)×D(A2,q)-norm, see
(1.39), hence in the (Lq

σ(Ω),D(A1,q))1− 1
p ,p

× (Lq
σ(Ω),D(A2,q))1− 1

p ,p
-norm, in

particular in the B̃2−2/p
q,p (Ω)× B̃2−2/p

q,p (Ω)-norm, recall (1.43b). See also Remark

3.1. Thus, returning from CN × CN back to (Yq
σ)

u
N × ((Yq

σ)
u
N )∗, there exist

suitable p1, . . . ,pK ∈ ((Yq
σ)

u
N )∗ ⊂ Lq′

σ (Ω) × Lq′

σ (Ω), such that µk
N = (ηk,pk),

whereby the closed-loop system (2.17) corresponds precisely to (4.15) of [29]
via PNPq(mu) written in terms of the Jordan basis of eigenvectors β in (4.6a)
of [29] in the general case.

Thus not only do we obtain in view of (2.17), (2.18) and (4.3)

∥ηN (t)∥Lq
σ(Ω)×Lq

σ(Ω) =
∥∥∥eĀutPNη0

∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

≤ Cγe
−γt ∥PNη0∥Lq

σ(Ω)×Lq
σ(Ω) , t ≥ 0, (4.4)
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γ > 0 arbitrarily preassigned, but also, say 1 < q <∞, 1 < p <
2q

2q − 1

∥ηN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

=
∥∥∥eĀutPNη0

∥∥∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤ Cγe
−γt ∥PNη0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

, t ≥ 0. (4.5)

Hence with uN = QηN , we obtain not only

∥ηN (t)∥Lq
σ(Ω)×Lq

σ(Ω) + ∥uN (t)∥Lq
σ(ω)×Lq

σ(ω) = ∥ηN (t)∥Lq
σ(Ω)×Lq

σ(Ω)

+ ∥QηN (t)∥Lq
σ(Ω)×Lq

σ(Ω)

≤ (|Q|+ 1)
∥∥∥eĀutPNη0

∥∥∥
Lq

σ(Ω)×Lq
σ(Ω)

≤ Cγe
−γt ∥PNη0∥Lq

σ(Ω)×Lq
σ(Ω) (4.6)

but also, say

∥ηN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

+ ∥uN (t)∥
B̃

2−2/p
q,p (ω)×B̃

2−2/p
q,p (ω)

≤ Cγe
−γt ∥PNη0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

, t ≥ 0. (4.7)

Remark 4.1. Under the FDSA, checking controllability of the system (3.15)
is easier. To this end, we can pursue, as usual, two strategies.

A first strategy invokes the well-known Kalman controllability criterion by
constructing the N ×KN Kalman controllability matrix

K = [B,ΛB,Λ2B, . . . ,ΛN−1B] =


B1 J1B1 . . . JN−1

1 B1

B2 J2B2 . . . JN−1
2 B2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BM JMBM . . . JN−1
M BM

 , (4.8)

B = col [B1, B2, . . . , BM ], Bi = Ui : ℓi × ℓi (4.9)

of size N ×KN, N = dim (Y q
σ )

u
N , Ji = λiIi : ℓi × ℓi, Bi = Ui : ℓi × ℓi, and

requiring that it be full rank.

rank K = full = N. (4.10)

In view of generalized Vandermond determinants, we then have

rank K = N if and only if rank Ui = ℓi (full) i = 1, . . . ,M, (4.11)

precisely as guaranteed by (3.20a). A second strategy invokes the Hautus
controllability criterion:

rank [Λ− λiI,B] = rank [Λ− λiI, U ] = N (full) (4.12)

for all unstable eigenvalues λi, 1, . . . ,M , yielding again the condition that rank
[Ui] = ℓi, 1, . . . ,M , as guaranteed by (3.20a).
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5. Proof of Theorem 2.2: Feedback stabilization of the
original linearized η = {w,W}-system (2.4) by a finite
dimensional feedback controller u = [u, v]

Step 1: According to Theorem 2.1, the finite-dimensional system ηN in (2.11)
is uniformly stabilized by the finite dimensional feedback controller u = uN

given in the RHS of (2.17) with an arbitrary preassigned decay rate γ > 0,
as given, either in the Lq

σ(Ω) × Lq
σ(Ω)-norm as in (2.16a) = (4.6), or in the

(Lq
σ(Ω),D(A1,q))1− 1

p ,p
× (Lq

σ(Ω),D(A2,q))1− 1
p ,p

-norm, or in particular, in the

B̃
2−2/p
q,p (Ω)× B̃

2−2/p
q,p (Ω)-norm as in (2.16b) = (4.7).

Step 2: Next, we examine the impact of such constructive feedback control uN

on the ζN -dynamics (2.12), whose explicit solution can be given by a variation
of parameter formula,

ζN (t) = eÃ
s
q,N tζN (0) +

∫ t

0

eÃ
s
q,N (t−r)(I − PN )Pq(muN (r))dr. (5.1a)

in the notation Ãs
q,N = (I − PN )Ãq, of (2.8).

We now recall from Theorem 1.2(viii) that the operator Ãq in (1.39) gen-
erates a s.c. analytic semigroup not only on Lq

σ(Ω) × Lq
σ(Ω) but also on

(Lq
σ(Ω),D(A1,q))1− 1

p ,p
× (Lq

σ(Ω),D(A2,q))1− 1
p ,p

, in particular on B̃
2−2/p
q,p (Ω) ×

B̃
2−2/p
q,p (Ω). Hence the feedback operator A

F
= A

F,q
in (2.19) similarly gener-

ates a s.c. analytic semigroup on these spaces, being a bounded perturbation
of the operator Ãq. So we can estimate (5.1a) in the norm of either of these

spaces. Furthermore, the (point) spectrum of the generator Ãs
q,N on (Yq

σ)
s
N

satisfies sup{Re σ(As
q,N )} < − |λN+1| < −γ0 by assumption. Thus, we have∥∥∥eAs

q,N t
∥∥∥
L(B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω))

≤Me−γ0t, t > 0. (5.1b)

We shall carry our the supplemental computations explicitly in the space

B̃
2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω) for the case of greatest interest in the nonlinear analysis

of Sections 9 and 10 of [29]. In the norm of B̃
2−2/p
q,p (Ω)× B̃

2−2/p
q,p (Ω), we obtain

from (5.1a) since the operators (I − PN ), Pq are bounded

∥ζN (t)∥ ≤
∥∥∥eÃs

q,N tζN (0)
∥∥∥+ C

∫ t

0

∥∥∥eÃs
q,N (t−τ)

∥∥∥ ∥uN (τ)∥ dτ (5.2)

∥ζN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤ Ce−γ0t ∥ζN (0)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

+ C

∫ t

0

e−γ0(t−r)e−γrdr ∥PNη0∥B̃2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

. (5.3)
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recalling (5.1b) and estimate (2.16b) or (4.7) for ∥uN∥ in the B̃
2−2/p
q,p (ω) ×

B̃
2−2/p
q,p (ω)-norm. Since we may choose γ > γ0 by Theorem 2.1, we then obtain

as ζN (0) = (I − PN )η0 by (2.12):

∥ζN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤ C

[
e−γ0t + e−γ0t

1− e−(γ−γ0)t

γ − γ0

]
∥η0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

≤ Ce−γ0t ∥η0∥B̃2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

, ∀t > 0. (5.4)

Then, estimate (5.4) for ζN (t) along with estimate (4.7) for ηN (t) with γ > γ0
yields the desired estimate (2.21) for η = ηN+ζN in the B̃2−2/p

q,p (Ω)×B̃2−2/p
q,p (Ω)-

norm:

∥η(t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤ ∥ζN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

+ ∥ηN (t)∥
B̃

2−2/p
q,p (Ω)×B̃

2−2/p
q,p (Ω)

≤
[
C̃γ0

e−γ0t + Cγe
−γt
]
∥η0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

≤ Cγ0
e−γ0t ∥η0∥B̃2−2/p

q,p (Ω)×B̃
2−2/p
q,p (Ω)

(5.5)

and (2.22) is proved. Computations similar to these from (5.1a) to (5.4) apply

also in the Lq
σ(Ω)×Lq

σ(Ω)-norm for ζN (t), as the operator Ãq in (1.39) generates
a s.c. analytic semigroup on Lq

σ(Ω) × Lq
σ(Ω), as noted in Theorem 1.2(vii).

This, coupled with estimate (2.16a) for ηN (t), yields estimate (2.20) for the
η = ηN + ζN with Lq

σ(Ω) × Lq
σ(Ω)-norm. Computations such as those in

[6, p. 1473] using the analyticity of the semigroup eAF t show the alternative
estimates (2.21) of Theorem 2.2. Theorem 2.2 is established.
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