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Abstract. We prove advanced regularity results for solutions to a
sixth order equation arising in the mechanical Kirchhoff-Love’s type
model of the static equilibrium of a nanoplate in bending. Such reg-
ularity properties play a crucial role in the treatment, among others,
of the inverse problem consisting in the determination of the Winkler
coefficient of a nanoplate.
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1. Introduction

This work is within a line of research that intends to further the investigation
of recent models for two-dimensional nanomechanical systems, which we will
refer as nanoplates. In particular, we analyse the regularity properties of the
solutions of the direct problem describing the static equilibrium of nanoplates
as fundamental tools for the subsequent study of related inverse problems. The
modelling of nanostructures has specific challenges due to the presence of small-
scale phenomena. Indeed, classical continuum mechanics lacks its predictive
capability. In recent years, many theories have been proposed in the field
of linear elasticity to model nanostructures. Among these, we mention the
Simplified Strain Gradient Elasticity Theory (SSGET) introduced by Lam [5]
and some recent developments that address the study of the Kirchhoff-Love
nanoplate using SSGET [4, 7].

In our recent paper [2], we consider the issue of the identification of the
Winkler coefficient k of the elastic foundation for a nanoplate from the mea-
surement of the deflection produced by a given concentrated force fδ(P0) at
an internal point P0. We also assume that the nanoplate is clamped at the
boundary and we set Ω ⊂ R2 to be the middle surface of the nanoplate, hav-
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ing constant thickness t. According to the Winkler model and working in
the framework of the Kirchhoff-Love theory in infinitesimal deformation, the
transversal displacement w of the nanoplate satisfies the following boundary
value problem

∂2

∂xi∂xj

(
(Pijlm + Ph

ijlm)
∂2w

∂xl∂xm

− ∂

∂xk

(
Qijklmn

∂3w

∂xl∂xm∂xn

))
+ kw = fδP0 , in Ω,

w = 0, on ∂Ω,
w,n = 0, on ∂Ω,
w,nn = 0, on ∂Ω.

(1)

where n is the unit outer normal to ∂Ω and the summation over repeated
indexes i, j, k, l,m, n = 1, 2 is assumed. Here, f ∈ R, f > 0 and Pijlm, Ph

ijlm

are the Cartesian components of the fourth-order tensors P,Ph respectively,
whereas Qijklmn are the components of the sixth-order tensor Q. Let us also
observe that the fourth order tensor P describes the material response in the
classical Kirchhoff-Love theory, while Ph,Q take into account the parameters
peculiar to the small size effect.

As main result in [2], we prove that for P,Ph ∈ W 2,∞(Ω) ∩H2+s(Ω), and
Q ∈ W 3,∞(Ω) ∩H3+s(Ω), satisfying some suitable isotropic and strong convex-
ity conditions (see the assumptions ii), iii) in Section 2), if wi ∈ H3

0 (Ω), i = 1, 2,
is the solution to (1) for Winkler coefficient k = ki ∈ L∞∩Hs(Ω), i = 1, 2 and
if for a given ε > 0

∥w1 − w2∥L2(Ω) ≤ ε , (2)

then for every σ > 0 the following Hölder estimate holds

∥k1 − k2∥L2(Ωσ) ≤ Cεβ ,

where Ωσ = {x ∈ Ω : dist(x, ∂Ω) > σ} and C > 0, β ∈ (0, 1) are constants
depending on the a priori data and on σ only.

As is common when tackling inverse problems, the preliminary study of
the fine properties of the solutions to governing equations are instrumental to
theoretical results such as unique continuation estimates as well as quantitative
stability estimates for inverse problems. In this respect, in the present paper
we consider the following sixth order partial differential equation

∂2

∂xi∂xj

(
− (Pijlm + Ph

ijlm)
∂2u

∂xl∂xm

+
∂

∂xk

(
Qijklmn

∂3u

∂xl∂xm∂xn

))
= g in Ω, (3)
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and we are interested in analyzing the regularity properties of its solutions
under suitable assumptions on the coefficients and the source term g. More
precisely, our main purpose is to prove the following.
Let g ∈ Hs(Ω), for some 0 < s < 1 and let w ∈ H3

0 (Ω) be a weak solution
to (3), where P,Ph ∈ W 2,∞(Ω) ∩H2+s(Ω), Q ∈ W 3,∞(Ω) ∩H3+s(Ω), satisfy
some suitable isotropic and strong convexity conditions (see (8)-(9) and (14)-
(15)) . Then for every σ > 0, we have that

∥u∥H6+s(Ωσ) ≤ C
(
∥u∥H3(Ωσ

2
) + ∥g∥Hs(Ω)

)
, (4)

where C > 0 is a constant depending on the a priori data and on σ only.
The proof of the above mentioned stability result fundamentally relies on

the smoothness property at hand. Without ambitions of completeness, we try
to give the reader an idea of the argument adopted in [2] and where the use of
regularity strongly comes into play.

It is easy to observed that if we set u = w1 − w2, then u is a solution to

∂2

∂xi∂xj

(
− (Pijlm + Ph

ijlm)
∂2u

∂xl∂xm

+
∂

∂xk

(
Qijklmn

∂3u

∂xl∂xm∂xn

))
− k2u = (k2 − k1)w1 in Ω, (5)

or rather a solution to (3) with g = k2u + (k2 − k1)w1 ∈ Hs(Ω). Thanks to
the regularity result, we may infer that u ∈ H6+s(Ωσ) and, combining the well
known interpolation inequality

∥u∥H6(Ωσ) ≤ C∥u∥
6

6+s

H6+s(Ωσ)
∥u∥

s
6+s

L2(Ωσ)

with (2) and (4), we obtain the following control on the sixth order terms by
means of the lower order ones and of measurement error, namely

∥u∥H6(Ωσ) ≤ C
(
∥u∥H3(Ωσ

2
) + ∥g∥Hs(Ω)

) 6
6+s · ε

s
6+s (6)

By exploiting again the equation (5), the estimate (6) and standard energy
bounds, we can obtain the following estimate∫

Ωσ

(k1 − k2)
2w2

1 ≤ Cε
2s

6+s .

Finally, thanks to strong unique continuation estimates, which in turn rely on
preliminary regularity results of the solutions, we end up with∫

Ωσ

(k1 − k2)
2 ≤ Cε2β .
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Our goal in this notes is to provide a detailed proof of Proposition 4.1 in
[2] .

Let us observe that, although the method of proof is based on the path
traced in [1], [3], our result improves upon the more classical ones because of
the less restrictive conditions on the smoothness of the coefficients and because
we are considering fractional exponent Sobolev spaces. Another new feature
of the present result is that we keep constructive track of the dependence of
constants on a priori data, which is a fundamental aspect when dealing with
quantitative estimate of stability in inverse problem.

2. The nanoplate model

Let us consider a nanoplate Ω×
(
− t

2 ,
t
2

)
with middle surface Ω represented by

a bounded domain of R2 and having constant thickness t, t << diam(Ω). We
assume that the boundary ∂Ω of Ω is of class C2,1 with constants ρ0, M0 and
that

|Ω| ≤ M1ρ
2
0,

where M1 is a positive constant.
We consider the following equation

div (div ((P+ Ph)∇2w))− div (div (div (Q∇3w))) = g, in Ω, (7)

where, for the sake of simplicity, the compact notation in the left hand side
denotes the following sixth order elliptic operator

∂2

∂xi∂xj

(
(Pijlm + Ph

ijlm)
∂2w

∂xl∂xm
− ∂

∂xk

(
Qijklmn

∂3w

∂xl∂xm∂xn

))
,

where the summation over repeated indexes i, j, k, l,m, n = 1, 2 is implied.
We shall denote by M2,M3 the Banach spaces of second order and third

order tensors and by M̂2, M̂3 the corresponding subspaces of tensors having
components invariant with respect to permutations of all the indexes. More-
over, the space of bounded linear operators between Banach spaces X and Y
will be denoted by L(X,Y ).

On the elasticity tensors P, Ph, Q we make the following assumptions:
i) Regularity

∥P∥W 2,∞(Ω,L(M̂2,M̂2)) ≤ A1ρ
3
0, ∥P∥H2+s(Ω,L(M̂2,M̂2)) ≤ A2ρ

3
0,

∥Ph∥W 2,∞(Ω,L(M̂2,M̂2)) ≤ A1ρ
3
0, ∥Ph∥H2+s(Ω,L(M̂2,M̂2)) ≤ A2ρ

3
0,

∥Q∥W 3,∞(Ω,L(M̂3,M̂3)) ≤ A1ρ
5
0, ∥Q∥H3+s(Ω,L(M̂3,M̂3)) ≤ A2ρ

5
0,

where A1, A2 are positive constants.
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ii) Isotropy

Pαβγδ = B((1− ν)δαγδβδ + νδαβδγδ), (8)

Ph
αβγδ = (2a2 + 5a1)δαγδβδ + (−a1 − a2 + a0)δαβδγδ,

Qijklmn =
1

3
(b0 − 3b1)δijδknδlm ++

1

6
(b0 − 3b1)

(
δik(δjlδmn + δjmδln)

+ δjk(δilδmn + δimδln)
)
+Q8(δkn(δilδjm + δimδjl))+

+Q9(δjn(δilδkm + δimδkl) + δin(δjlδkm + δjmδkl)), (9)

where 2(Q8 + 2Q9) = 5b1.
The bending stiffness (per unit length) B = B(x) is given by the function

B(x) =
t3E(x)

12(1− ν2(x))
, a.e. in Ω,

where the Young’s modulus E and the Poisson’s coefficient ν of the material
can be written in terms of the Lamé moduli µ and λ as follows

E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
.

The coefficients ai(x), i = 0, 1, 2, are given by

a0(x) = 2µ(x)tl20, a1(x) =
2

15
µ(x)tl21, a2(x) = µ(x)tl22 a.e. in Ω, (10)

where the material length scale parameters li are assumed to be positive con-
stants. We denote

l = min{l0, l1, l2}.

The coefficients bi(x), i = 0, 1, are given by

b0(x) = 2µ(x)
t3

12
l20, b1(x) =

2

5
µ(x)

t3

12
l21 a.e. in Ω. (11)

iii) Strong convexity for P+ Ph, Q.
We assume the following ellipticity conditions on µ and λ:

µ(x) ≥ α0 > 0, 2µ(x) + 3λ(x) ≥ γ0 > 0 a.e. in Ω, (12)

where α0, γ0 are positive constants. By (10), (11) and (12) we also have

ai(x) ≥ tl2αh
0 > 0, i = 0, 1, 2,

bj(x) ≥ t3l2βh
0 > 0, j = 0, 1,

a.e. in Ω, (13)
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where αh
0 = 2

15α0 and βh
0 = 1

30α0.
By (12), (13) we obtain the following strong convexity conditions on P+Ph

and Q. For every A ∈ M̂2 we have

(P+ Ph)A ·A ≥ t(t2 + l2)ξP|A|2 a.e. in Ω; (14)

for every B ∈ M̂3 we have

QB ·B ≥ t3l2ξQ|B|2 a.e. in Ω; (15)

where ξP, ξQ are positive constants only depending on α0 and γ0.
In the sequel, we will refer to the set of parameters

ρ0, M0, M1, α0, γ0, t, l, A1, A2

as the a priori data, whereas the dimensional parameter ρ0 shall appear explic-
itly in our estimates.

3. Main Result

Theorem 3.1. Let w ∈ H3(Ω) be a weak solution to (7) with g ∈ Hs(Ω). For
any σ > 0, we have that

∥w∥H6+s(Ωσρ0
) ≤ C

(
∥w∥H3(Ωσ

2
ρ0

) + ∥g∥Hs(Ω)

)
,

where C > 0 depends on the a priori data, on σ and on s only.

Before proving Theorem 3.1, let us state the following lemma whose proof
can be carried out by slightly adapting the proof of Theorem 3.9 in [6].

Lemma 3.2. Let w ∈ H3(Bσ) be a weak solution to (7) with g ∈ L2(Bσ). We
have that w ∈ H6(Bσ

8
) and

∥w∥H6(Bσ
8
) ≤ C

(
∥w∥H3(Bσ

2
) + ∥g∥L2(Bσ)

)
where C > 0 depends only on α0, γ0,

t
ρ0
, l

ρ0
, A1.

Proof of Theorem 3.1. By straightforward computation,

div (div (P∇2w)) = B∆2w +

3∑
|α|=2

CαD
αw, (16)

div (div (Ph∇2w)) = Bh∆2w +

3∑
|α|=2

Ch
αD

αw,

div (div (div (Q∇3w))) = B̄∆3w +

5∑
|α|=3

C̄αD
αw, (17)
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where B̄ = b0+2b1, B
h = a0+4a1+a2; Cα, C

h
α involve up to the second order

derivatives of B, ν, a0, a1, a2 and C̄α involve up to the third order derivatives
of b0, b1.

Let us denote

Lw = −div (div ((P+ Ph)∇2w)) + div (div (div (Q∇3w))).

In view of (16)–(17), we may rewrite Lw in the form

Lw = B̄∆3w + L0(w),

with

L0(w) =

5∑
|α|=2

dαD
αw,

where dα involve up to third order derivative of B, ν, µ.
Therefore we may rewrite (7) as follows

B̄∆3w + L0(w) = −g. (18)

We now localize the equation by considering a cut-off function φ with the fol-
lowing properties. We assume without loss of generality that 0 ∈ Ω, B6R(0) ⊂
Ω. Let φ ∈ C∞

0 (Ω) such that supp(φ) ⊂ Bρ(0) with ρ = 3
4R and

0 ≤ φ(x) ≤ 1 , φ ≡ 1 for |x| ≤ R

2
,

|∇kφ| ≤ C

Rk
, k = 1, . . . , 6 .

Let us consider the function

v = wφ .

We have that
∆3(v) = φ∆3w + F0(w,φ) (19)

where

F0(w,φ) =
{
[2∇φ · ∇(∆2w) + ∆φ∆2w]

+ 4[∇(∆φ) · ∇(∆w) + 2∇2φ · ∇2(∆w) +∇φ · ∇(∆2w)]

+ 2[∆2w∆φ+ 2∇(∆w) · ∇(∆φ) + ∆w∆2φ]

+ 4[∇2(∆w) · ∇2φ+ 2∇3w · ∇3φ+∇2w · ∇2(∆φ)]+

+ 4[∇(∆w) · ∇(∆φ) + 2∇2w · ∇2(∆φ) +∇w · ∇(∆2φ)]

+ [∆w∆2φ+ 2∇w · ∇(∆2φ) + w∆3φ]
}
=

5∑
|α|=0

eαD
6−|α|φDαw.
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By (18) and (19), we have that

L(v) = B̄∆3v + L0(v)

= B̄[φ∆3w + F0(w,φ)] + L0(v)− φL0(w) + φL0(w)

= φ(B̄∆3w + L0(w)) + L0(v)− φL0(w) + B̄F0(w,φ)

= −φg + L0(v)− φL0(w) + B̄F0(w,φ),

which leads to

∆3v = −φg

B̄
− φL0(w)

B̄
+ F0(w,φ).

Let us set

F (x) = −φ(x)g(x)

B̄(x)
− φ(x)L0(w)(x)

B̄(x)
+ F0(w,φ)(x).

We notice that

∥w∥H6+s(BR
2
) = ∥v∥H6+s(BR

2
) ≤ ∥v∥H6+s(BRn )

≤ C

(∫
Rn

(1 + |ξ|2)6+s|v̂(ξ)|2dξ
)1/2

,

where with v̂ we denote the Fourier transform of v. We wish to obtain a bound
on the last term on the right hand side of the above inequality.

In this respect we recall that

∆̂3v(ξ) = (2πi)6|ξ|6v̂(ξ) ,

which leads to
(2πi)6|ξ|6v̂(ξ) = F̂ (ξ) . (20)

After straightforward computation, since (1 + x)6 ≤ 32(1 + x6) for x ≥ 0,
we have

(1 + |ξ|2)6+s|v̂(ξ)|2 ≤ 32[(1 + |ξ|2)s|v̂(ξ)|2 + (1 + |ξ|2)s(|ξ|6|v̂(ξ)|)2].

Combining the above inequality and (20) we obtain that

(1 + |ξ|2)6+s|v̂(ξ)|2 ≤ C[(1 + |ξ|2)s|v̂(ξ)|2 + (1 + |ξ|2)s(|F̂ (ξ)|)2] ,

where C is an absolute positive constant.
Integrating the above inequality over R2 we get

∥v̂∥2H6+s(R2) ≤ C
(
∥v̂∥2Hs(R2) + ∥F̂∥2Hs(R2)

)
.
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From the Plancherel identity we deduce that

∥v∥2H6+s(R2) ≤ C
(
∥v∥2Hs(R2) + ∥F∥2Hs(R2)

)
. (21)

From one hand we have

∥v∥2H6+s(R2) ≥ ∥v∥2H6+s(BR
2
(0)) = ∥w∥2H6+s(BR

2
(0)),

on the other hand

∥v∥2Hs(R2) ≤ ∥v∥2H3(R2) ≤ ∥w∥2H3(Bρ(0))
. (22)

Hence, by combining (21)-(22), we have that

∥w∥2H6+s(BR
2
(0)) ≤ C

(
∥w∥2H3(Bρ(0))

+ ∥F∥2Hs(R2)

)
. (23)

Next, we wish to bound the term ∥F∥Hs(R2). We trivially observe that

∥F∥Hs(R2) ≤
∥∥∥gφ
B̄

∥∥∥
Hs(R2)

+ ∥F0(w,φ)∥Hs(R2) +

∥∥∥∥φL0(w)

B̄

∥∥∥∥
Hs(R2)

. (24)

We bound each term on the right hand side of (24) separately starting from
∥φg

B̄
∥s = ∥φg

B̄
∥Hs(R2). In this respect we recall that B̄(x) = (b0(x) + 2b1(x)), so

that, by (11), (12), there exists a positive constant B0, only depending on l, t,
α0, such that B̄(x) ≥ B0 in Ω. Hence we can deduce that∥∥∥ φ

B̄

∥∥∥
L∞(Ω)

≤ 1

B0
,∥∥∥∇( φ

B̄

)∥∥∥
L∞(Ω)

≤ C

B2
0

(∥∇φ∥L∞(Ω) + ∥∇B̄∥L∞(Ω)) ≤ C,

where C > 0 is a constant depending on the a priori data.
We recall that ∥∥∥φg

B̄

∥∥∥
s
=
∥∥∥φg
B̄

∥∥∥
L2(Rn)

+
[φg
B̄

]
s,R2

,

where [φg
B̄

]
s,R2

=

(∫
R2

∫
R2

∣∣φg
B̄
(x)− φg

B̄
(y)
∣∣

|x− y|2+2s
dxdy

) 1
2

.

We have that ∥∥∥φg
B̄

∥∥∥
L2(R2)

=
∥∥∥φg
B̄

∥∥∥
L2(Bρ)

≤ 1

B0
∥g∥L2(Bρ) . (25)
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Moreover, we have that for any x, y ∈ Bρ∣∣∣( φ
B̄
g
)
(x)−

( φ
B̄
g
)
(y)
∣∣∣2

≤ 2

[
φ(x)

B̄
(g(x)− g(y))

]2
+ 2

[( φ
B̄
(x)− φ

B̄
(y)
)
g(y)

]2
= 2

( φ
B̄
(x)
)2

[g(x)− g(y)]2 + 2
( φ
B̄
(x)− φ

B̄
(y)
)2

|g(y)|2

In view of the regularity of φ and B̄ we may bound∣∣∣ φ
B̄
(x)− φ

B̄
(y)
∣∣∣ ≤ ∥∥∥∇( φ

B̄

)∥∥∥
L∞(Bρ)

|x− y| ≤ C|x− y| . (26)

Hence from the two formulas above we deduce that∣∣∣(φg
B̄

)
(x)−

(φg
B̄

)
(y)
∣∣∣2 ≤ 2

∣∣∣ φ
B̄
(x)
∣∣∣2 |g(x)− g(y)|2 + 2C2|x− y|2|g(y)|2 .

It follows that[φg
B̄

]2
s,R2

≤ C

∫
Bρ

dx

∫
Bρ

|g(x)− g(y)|2

|x− y|2+2s
dy + C

∫
Bρ

dx

∫
Bρ

|g(y)|2

|x− y|2s
dy

≤ C[g]2s,R2 + C

∫
Bρ

dx

∫
Bρ

|g(y)|2

|x− y|2s
dy . (27)

By Fubini’s formula we have that∫
Bρ

dx

∫
Bρ

|g(y)|2

|x− y|2s
dy =

∫
Bρ

|g(y)|2
(∫

Bρ

1

|x− y|2s
dx

)
dy.

Let us now show that there exists a contant C > 0 such that for any y ∈ Bρ

we have that ∫
Bρ

1

|x− y|2s
dx ≤ C.

For a fixed y ∈ Bρ, we set z = y − x. Hence, by a change of variable∫
Bρ

1

|x− y|2s
dx =

∫
Bρ(y)

1

|z|2s
dz .

By noticing that Bρ(y) ⊂ B2ρ and by standard computations based on the use
polar coordinates we have that∫

Bρ

1

|x− y|2s
dx ≤

∫
B2ρ(y)

1

|z|2s
dz ≤ π

1− s
22(1−s)ρ2(1−s).
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Hence we have that∫
Bρ

dx

∫
Bρ

|g(y)|2

|x− y|2s
dy ≤ C∥g∥L2(Bρ) . (28)

Combining (27) and (28) we have[φg
B̄

]2
s,R2

≤ C([g]2s,Bρ
+ ∥g∥2L2(Bρ)

) . (29)

Namely, by (25) and (29), ∥∥∥φg
B̄

∥∥∥
s
≤ C∥g∥Hs(Bρ) .

We now handle the term ∥F0∥s appearing in the right hand side of (24) . We
observe that, in view of the regularity of φ, and since the expression of F0

involves at most fifth order derivatives of w, reasoning as above we get

∥F0∥s ≤ C∥w∥H5+s(Bρ) .

We now analyze the term
∥∥∥φL0(w)

B̄

∥∥∥
s
and in this respect we recall that

L0(w) =

5∑
|α|=2

dαD
αw .

We recall that∥∥∥∥φL0(w)

B̄

∥∥∥∥
s

=

∥∥∥∥φL0(w)

B̄

∥∥∥∥
L2(R2)

+

[
φL0(w)

B̄

]
s,R2

. (30)

In view of the regularity of the coefficients we easily bound the first term on
the right hand side of (30), namely we have∥∥∥∥φL0(w)

B̄

∥∥∥∥
L2(R2)

=

∥∥∥∥φL0(w)

B̄

∥∥∥∥
L2(Bρ)

≤ 1

B̄
∥L0(w)∥L2(Bρ) ≤ C∥w∥H5(Bρ).

For what concern the second term on the right hand side of (30), we first
observe that in view of (26) we have that∣∣∣∣φL0(w)

B̄
(x)− φL0(w)

B̄
(y)

∣∣∣∣ ≤ C|L0(w)(x)−L0(w)(y)|+C|x− y||L0(w)(y)|.
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Hence we obtain

[
φL0(w)

B̄

]2
s,R2

=

∫
R2

dx

∫
R2

|(φL0(w)
B̄

(x))− (φL0(w)
B̄

(y))|2

|x− y|2+2s
dy

≤ C

∫
Bρ

dx

∫
Bρ

|(L0(w)(x))− (L0(w)(y))|2

|x− y|2+2s
dy

+ C

∫
Bρ

dx

∫
Bρ

|(L0(w)(y))|2

|x− y|2s
dy = I1 + I2.

We notice that, arguing as above, we can obtain the following bound for the
integral I2, namely

I2 ≤ C

∫
Bρ

|(L0(w)(y))|2 ≤ C∥w∥2H5(Bρ)
.

We now handle the integral I1. In this respect we notice that

|(L0(w)(x))− (L0(w)(y))|2 =

∣∣∣∣ 5∑
|α|=2

dα(x)D
αw(x)−

5∑
|α|=2

dα(y)D
αw(y)

∣∣∣∣2

=

∣∣∣∣ 5∑
|α|=2

(dα(x)D
αw(x) + dα(x)D

αw(y)− dα(x)D
αw(y) + dα(y)D

αw(y))

∣∣∣∣2

≤C

∣∣∣∣ 5∑
|α|=2

(dα(x)(D
αw(x)−Dαw(y))

∣∣∣∣2+ C

∣∣∣∣ 5∑
|α|=2

(dα(x)−dα(y))D
αw(y)

∣∣∣∣2 (31)

where C > 0 is an absolute constant. In view of the regularity of dα we have
that

|dα(x)− dα(y)| ≤ ∥∇dα∥L∞(Bρ)|x− y|, ∀ x, y ∈ Bρ.

Hence, by (30)-(31) we have that

|(L0(w)(x))− (L0(w)(y))|2

≤ C

5∑
|α|=2

|Dαw(x)−Dαw(y)|2 + C

5∑
|α|=2

|x− y|2|Dαw(y)|2.
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Therefore, we have

I1 ≤ C

5∑
|α|=2

∫
Bρ

dx

∫
Bρ

|Dαw(x)−Dαw(y)|2

|x− y|2+2s
dy

+ C

5∑
|α=2

∫
Bρ

dx

∫
Bρ

|Dαw(y)|2

|x− y|2s
dy

≤ C

5∑
|α|=2

[Dαw]2s,Bρ
+ C

5∑
|α|=2

∫
Bρ

|Dαw(y)|2
(∫

Bρ

1

|x− y|2s
dx

)
dy

≤ C

5∑
|α|=2

[Dαw]2s,Bρ
+ C

5∑
|α|=2

∥Dαw∥2L2(Bρ)
≤ C

5∑
|α|=2

∥Dαw∥2s,Bρ
.

It follows that[
φL0(w)

B̄

]2
s

≤ C

5∑
|α|=2

∥Dαw∥2s,Bρ
+ C∥w∥2H5(Bρ)

≤ C∥w∥2H6(Bρ)
,

and hence ∥∥∥∥φL0(w

B̄

∥∥∥∥
s

≤ C∥w∥H6(Bρ) .

Finally, we have that ∥F∥Hs(R2) ≤ C
(
∥g∥Hs(Bρ) + ∥w∥H6(Bρ)

)
.

From (23) we have that

∥w∥H6+s(BR
2
) ≤ C

(
∥w∥H3(Bρ) + ∥g∥Hs(Bρ) + ∥w∥H6(Bρ)

)
.

We now use Lemma 3.2 and we get

∥w∥H6(Bρ) ≤ C
(
∥w∥H3(B3R) + ∥g∥L2(B6R)

)
.

It follows that ∥w∥H6+s(BR
2
) ≤ C(∥g∥Hs(B6R) + ∥w∥H3(B3R)).
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