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Non-orientable 3-manifolds of
cubic-complexity one
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Abstract. We classify all closed non-orientable P2-irreducible 3-
manifolds obtained by identifying the faces of a cube, i.e. those with
cubic-complexity one. We show that they are the four flat ones.
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1. Introduction

The study of closed 3-manifolds constructed by identifying the faces of a cube
started with Poincaré [17] in 1895 to produce examples of manifolds in the
study of the fundamental group and of the Betti numbers. In this paper we
will deal with the non-orientable case by starting a classification process.

Non-orientable 3-manifolds seem to be much more sporadic than orientable
ones. For instance, among the 8 three-dimensional geometries, only 5 have
non-orientable representatives [18]. Moreover, among cusped hyperbolic 3-
manifolds of Matveev complexity up to nine, only 14045 of 75956 are non-
orientable, as shown in the Callahan-Hildebrand-Weeks-Thistlethwaite-Burton
census [7, 9, 20]. Also, among closed P2-irreducible 3-manifolds of Matveev
complexity up to seven, only 8 of 318 are non-orientable [5, 6]. Eventually,
all three closed P2-irreducible 3-manifolds of surface-complexity zero are ori-
entable [1]. Here we show that, among closed P2-irreducible 3-manifolds of
cubic-complexity one, only 4 of 15 are non-orientable.

We refer to three different complexities on 3-manifolds, used to carry out
the classification processes. The Matveev complexity was defined in [15], and
in the cases described above equals the minimum number of tetrahedra needed
to triangulate the manifold if it is distinct from the sphere S3, the projective
space RP3 and the Lens space L3,1 (having Matveev complexity zero) [14].
The cubic-complexity is the minimum number of cubes needed to cubulate the
manifold (i.e. to construct the manifold by gluing cubes along the boundary
squares) [19]. The surface-complexity is the minimum number of triple points
needed by the image of a transverse immersion of a closed surface to divide the
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Figure 1: A cubulation of the 3-dimensional torus S1 × S1 × S1 with one cube
(the letters show that the identification of each pair of opposite faces is the
obvious one, i.e. the one without twists and reflections).

manifold into balls, and is equal to the cubic-complexity under some hypotheses
on the manifold, but it is more flexible [1, 3]. For the sake of completeness, we
recall that analogous interesting definitions involving surface immersions are
the Montesinos complexity and the triple point spectrum, given by Vigara [21]
and studied by Lozano and Vigara [11, 12, 13].

In this paper, we classify all closed non-orientable P2-irreducible 3-manifolds
with cubic-complexity (and hence surface-complexity) one: in some way they
are the “simplest” ones, because it turns out that they are the four flat ones.

Usually the classification process is computer-aided. In this case one could
study all 83 = 512 possible gluings for the boundary squares of the cube and
identify the object obtained (which may not be a manifold), but we have pre-
ferred to use some simple theoretical results to simplify the search among the
manifolds with Matveev complexity up to six, avoiding hence the complete
enumeration. We plan for a subsequent paper to continue the classification
process with the aid of a computer.

2. Definitions

Throughout this paper, all 3-manifolds are assumed to be connected and closed.
By M , we will always denote such a (connected and closed) 3-manifold. Using
the Hauptvermutung, we will freely intermingle the differentiable, piecewise
linear and topological viewpoints.

A cubulation of M is a cell-decomposition of M such that

• each 2-cell (called a square) is glued along 4 edges,

• each 3-cell (called a cube) is glued along 6 faces arranged like the boundary
of a cube.

Note that self-adjacencies and multiple adjacencies are allowed. In the figures
we have used (non-symmetric) letters to show the gluing information. In Fig. 1
we have shown a cubulation of the 3-dimensional torus S1 × S1 × S1 with one
cube.
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Definition 2.1. The cubic-complexity of M is equal to c if M possesses a
cubulation with c cubes and has no cubulation with less than c cubes.

The classification in the orientable case has been carried out by Korablev
and Kazakov [10].

Theorem 2.2. There are 11 (connected and closed) P2-irreducible orientable
3-manifolds with cubic-complexity one, and 80 with cubic-complexity two.

Remark 2.3. A more flexible definition, strictly related to cubic-complexity, is
surface-complexity, which is the minimum number of triple points of the image
of a transverse immersion of a closed surface dividing the manifold into balls.
It satisfies some properties, but for the purpose of this paper we recall only
that the surface-complexity of a P2-irreducible 3-manifold, different from the
sphere S3, the projective space RP3 and the Lens space L4,1, is equal to the
cubic-complexity of M , and that the three manifolds S3, RP3 and L4,1 have
surface-complexity zero [1, 2]. For the sake of completeness, we mention that
the three manifolds S3, RP3 and L4,1 have cubic-complexity one [10].

3. The classification

The main result of this paper is the following.

Theorem 3.1. There are 4 (connected and closed) P2-irreducible non-orientable
3-manifolds with cubic-complexity one: they are the four flat ones.

The definitions for the flat and the Sol geometries (the latter being men-
tioned below) and the relations with Seifert fibrations can be found in [18]. We
just recall that each of the four flat manifolds has three Seifert fibrations up to
fibration-preserving diffeomorphism, which can be visualised by means of the
cubulation (see Table 2 below).

Remark 3.2. Since there is no non-orientable P2-irreducible 3-manifold with
surface-complexity or cubic-complexity zero, the surface-complexity of such
a manifold equals its cubic-complexity (see Remark 2.3), so Theorem 3.1 on
cubic-complexity applies also to surface-complexity.

Matveev complexity and triangulations In the proof we will use the
Matveev complexity of M , defined in [15]. We do not need all details (see [16]
for a comprehensive treatise); we only need the fact that for a P2-irreducible
M distinct from S3,RP3, L3,1 the Matveev complexity equals the minimum
number of tetrahedra needed to triangulate M . In [4, 5, 6] the list of non-
orientable P2-irreducible 3-manifolds with Matveev complexity at most 7 is
given.
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Remark 3.3. For the aim of this paper, we need only the list up to complex-
ity 6: i.e.

• no non-orientable P2-irreducible 3-manifold has Matveev complexity less
than 6, and

• the non-orientable P2-irreducible 3-manifolds with Matveev complexity 6
are the four flat ones and the torus bundle with monodromy ( 1 1

1 0 ), which
is a Sol manifold.

From cubulations to triangulations Triangulations and cubulations are
related to each other. There are a few ways to obtain a triangulation from
a cubulation of a manifold. A first simple construction is shown in [1], while
a cheaper one is shown in [19]. If we start from a cubulation with c cubes,
the former construction leads to a triangulation with a number of tetrahedra
between 5c and 8c, while the latter to a triangulation with exactly 6c tetrahedra.
We will need a finer analysis of the triangulation obtained if we start from a
cubulation with one cube, and we will use the ideas of both constructions.

Let us start from a cubulation of M with one cube. It can be constructed
by starting from the abstract cube and by identifying the boundary squares in
pairs. Consider now a triangulation of the abstract cube such that the induced
triangulation of each boundary square is composed of two triangles: we will call
such a triangulation a block. In each square the triangulation is unambiguously
defined by the diagonal that is the common edge of the two triangles. We will
call the set of these diagonals a diagonal pattern. When we identify two squares
to get M , either the diagonal (and hence the two triangles) match or not. If
the three pairs of diagonals match, we get a triangulation of M . Otherwise, we
will change the block.

We will use the four blocks that are described in Table 1. Note that the
name chosen for the flipped block underlines that a diagonal is flipped with
respect to the 5-tetrahedron block; however, like the 4-valent block, the flipped
block also has a 4-valent internal edge (“the flipped diagonal”), the star of the
4-valent internal edge is an octrahedron, and the block is obtained by gluing
two tetrahedra to the octahedron (but not along two opposite triangles). Note
also that the number of tetrahedra of the four blocks is at most 6.

Lemma 3.4. Each 3-manifold with a cubulation with one cube has a triangula-
tion obtained by gluing the squares of one of the four blocks described above.

Proof. Consider a cubulation of a 3-manifold M with one cube. Identify the
cube with the 5-tetrahedron block and glue the squares to get M . The gluing
pairs the six boundary squares into three pairs (in each of which the two squares
are identified to each other). If we consider the diagonal pattern given by the
5-tetrahedron block (Fig. 2), the pairing is inherited by the diagonal pattern. If
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Name Description Number of
tetrahedra

Picture

5-tetrahedron
block

Four tetrahedra
glued along the
faces of a central
one

5

flipped
block

Obtained from
the previous one
by gluing a tetra-
hedron along the
two triangles of a
square

6

5-valent
block

Obtained from the
star of a 5-valent
edge by gluing a
tetrahedron along
one of the triangles
of the boundary

6

4-valent
block

Obtained from the
star of a 4-valent
edge (which is an
octahedron) by glu-
ing two tetrahedra
along two opposite
triangles of the
boundary

6

Table 1: Four blocks.

Figure 2: The diagonal pattern of the 5-tetrahedron block.
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(a) (b) (c)

Figure 3: The diagonal pattern if one (a), two (b) or three (c) pairs of diagonals
do not match.

the three pairs of the diagonals match, we get a triangulation of M . Otherwise,
one, two or three of them do not match.

If one pair of diagonals does not match, we consider the flipped block (i.e. we
add a tetrahedron) in order to change one of the two non-matching diagonals,
getting a diagonal pattern (shown, up to symmetry, in Fig. 3-a) whose pairs of
diagonals match, and hence getting a triangulation of M .

If two pairs of diagonals do not match, it is easy to prove that there are two
diagonals, one for each non-matching pair, in adjacent squares. If we change
these two diagonals, we get (up to symmetry) the diagonal pattern shown in
Fig. 3-b. Therefore, if we consider the 5-valent block, whose pairs of diagonals
match, we get a triangulation of M .

Finally, if all of the three pairs of diagonals do not match, it is easy to prove
that there are three diagonals, one for each non-matching pair, in squares that
share a vertex of the cube. There are two possibilities: either the vertex belong
to all of the three diagonals, or it does not belong to any of them. In the
former case we change the three diagonals, in the latter case we change the
other three diagonals. In both cases we get (up to symmetry) the diagonal
pattern shown in Fig. 3-c. Therefore, if we consider the 4-valent block, whose
pairs of diagonals match, we get a triangulation of M .

In all cases, we have got a triangulation obtained by gluing the squares of
one of the four blocks described above, and the proof is complete.

Proof of Theorem 3.1 We can now prove the main result of the paper.

Proof of Theorem 3.1. Consider a non-orientable P2-irreducible 3-manifold M
with a cubulation with one cube. By Lemma 3.4, we have that the Matveev
complexity of M is at most 6, so, by Remark 3.3, M is either one of the four
flat manifolds or the torus bundle with monodromy ( 1 1

1 0 ). In Table 2 we have
shown a cubulation of the four flat manifolds with one cube, so they have
cubic-complexity one.

Instead, the torus bundle with monodromy ( 1 1
1 0 ) does not have a cubulation

with one cube, so it has cubic-complexity greater than one. In order to prove
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Burton notation [6] Regina’s notation
for Seifert fibrations [8]

Cubulation

K2 × S1
KB x S1

A= x S1

T x~ S1

R
RG G
F

F

T 2 × I/( 0 1
1 0 )

SFS [KB: (1,1)]

M_ x S1

SFS [T/o2: (1,1)]

R
RG G
F

F

K2 × I/( 1 0
0 −1

) KB/n3 x~ S1

A=/o2 x~ S1

SFS [D_: (2,1) (2,1)]

R
RG G
F

F

K2 × I/(−1 1
0 −1

) SFS [KB/n3: (1,1)]

M_/n2 x~ S1

SFS [RP2: (2,1) (2,1)]
R

GG R
F

F

Table 2: A cubulation of the four flat manifolds.

this (and hence to conclude the proof), we suppose by contradiction that a
cubulation with one cube exists. By Lemma 3.4 there exists a triangulation
obtained by gluing the squares of one of the four blocks shown in Table 1.
First of all we can rule out the 5-tetrahedron block because the manifold has
Matveev complexity 6 (see Remark 3.3). In order to rule out the other three
blocks, we will analyse the valences of the edges of the triangulations that can
be obtained by means of them. The valences of the internal edge and of the
edges corresponding to the diagonals in the three blocks are listed in Table 3.
In each triangulation obtained with these three blocks there is at least one edge
with valence 4: the internal one in the case of the flipped block and in the case
of the the 4-valent block, and the edge corresponding to a diagonal in the case
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Block Valence of the
internal edge

Valences of the
diagonal edges

flipped block 4 1, 3, 3, 3, 3, 3

5-valent block 5 2, 2, 2, 2, 3, 3

4-valent block 4 2, 2, 3, 3, 3, 3

Table 3: The valences of the internal and diagonal edges of the three blocks.

of the 5-valent block (indeed two of the four diagonals whose corresponding
edge has valance 2 must be glued together). In [6] the unique triangulation
with 6 tetrahedra of the torus bundle with monodromy ( 1 1

1 0 ) is shown; for the
sake of the clarity, we mention that, as a matter of fact, the matrix used is(−1 1

1 0

)
, but the resulting manifold is the same (as shown in [5, Corollary A.6]).

It has no edge with valence 4 (see also [8]), so we have got a contradiction and
the theorem is proved.

Remark 3.5. The proof that the torus bundle with monodromy ( 1 1
1 0 ) has not

cubic-complexity one can be also given by means of the orientable census of
manifolds with cubic-complexity at most two, given in [10]. Indeed a cubula-
tion with one cube of the torus bundle with monodromy ( 1 1

1 0 ) would lift to a
cubulation with two cubes of its orientable double covering, which is the torus
bundle with monodromy ( 2 1

1 1 ), but this manifold does not appear in the list
of [10].

Acknowledgements

The author would like to thank the anonymous referee for their useful comments
and corrections.

References

[1] G. Amendola, A 3-manifold complexity via immersed surfaces, J. Knot Theory
Ramifications 19 (2010), no. 12, 1549–1569.

[2] G. Amendola, Orientable closed 3-manifolds with surface-complexity one, Atti
Semin. Mat. Fis. Univ. Modena Reggio Emilia 57 (2010), 17–26.

[3] G. Amendola, A complexity of compact 3-manifolds via immersed surfaces,
Boll. Unione Mat. Ital. 15 (2022), no. 3, 365–379.

[4] G. Amendola and B. Martelli, Non-orientable 3-manifolds of small com-
plexity, Topology Appl. 133 (2003), no. 2, 157–178.

[5] G. Amendola and B. Martelli, Non-orientable 3-manifolds of complexity up
to 7, Topology Appl. 150 (2005), no. 1–3, 179–195.



NON-ORIENTABLE 3-MANIFOLDS (9 of 9)

[6] B. A. Burton, Structures of small closed non-orientable 3-manifold triangula-
tions, J. Knot Theory Ramifications 16 (2007), no. 05, 545–574.

[7] B. A. Burton, The cusped hyperbolic census is complete, arXiv:1405.2695

(2014), 1–32.
[8] B. A. Burton, R. Budney, W. Pettersson, et al., Regina: Software for

low-dimensional topology, http://regina-normal.github.io/, 1999–2023.
[9] P. J. Callahan, M. V. Hildebrand, and J. R. Weeks, A census of cusped

hyperbolic 3-manifolds, Math. Comp. 68 (1999), no. 225, 321–332.
[10] Ph. G. Korablev and A. A. Kazakov, Manifolds of cubic complexity two,
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