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1. Introduction

The classical Liouville-Bratu-Gelfand Problem
∆u+ λeu = 0 in B,

u > 0 in B,

u = 0 on ∂B,

(1)

where B is a ball of radius R centered in the origin and λ is a real number,
has been extensively studied in the recent years by many authors due to its
versatility and usefulness which make it a valuable tool in various scientific
and engineering disciplines. Its rich history begins with the paper [16] by Liou-
ville published in 1853 where he proposed and studied the partial differential
equation:

uxy(x, y)±
1

2a2
eu(x,y) = 0, a ∈ R∗, (2)

known in the literature, along its two alternative forms

uxx ± uyy = λeu,

as the Liouville equation.
In [16], Liouville obtained an exact solution for n = 1 and a solution in

terms of an arbitrary harmonic function for n = 2. More than half a century
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later, in 1914, Bratu, in [4], found two solutions of the problem for the case
0 < λ < 2/R2 when n = 2. In [8], Gelfand considered the problem of thermal
self-ignition of a chemically active mixture of gases for plane, cylindrical and
spherical vessels. In addition, for the three-dimensional case, he looked into
the possible values of the parameter λ for which the problem admits solution
and studied their multiplicity.

In mathematics, Liouville’s equation appears in the study of isothermal
coordinates in differential geometry. It describes the conformal factor of a
metric on a surface of constant Gaussian curvature. This equation is used to
analyse the geometry of surfaces and is related to the uniformization problem
of Riemann surfaces.

Since there is a huge number of applications of the Liouville-Bratu-Gelfand
Problem and its generalizations in physics and engineering, we mention just
a few fields where it can be encountered: chemical reactor theory; electro-
spinning process for the fabrication of nano-fibers (nano-technology); radiative
heat transfer; thermal reaction processes in a rigid material where the process
depends on the balance between chemically generated heat and heat transfer
by conduction; modeling of electrically conducting solids, analysis of Joule
losses in electrically conducting solids; thermo-electro-hydrodynamics models;
elasticity theory; modeling of the formation and evolution of planetary nebulae
in astrophysics; Liouville quantum field theory which appears in the context
of string theory, and which is a two-dimensional conformal field theory whose
classical equation of motion is a generalization of Liouville’s equation, etc. See
[1, 6, 15, 21, 22] and the references therein for further details.

An important result of Gidas, Ni and Nirenberg, [9], implies that that any
solution of (1) — if it exists — must be a radial function. That is, (1) reduces
to the following problem for an ordinary differential equation:

y′′(r) + n−1
r y′(r) + λey(r) = 0 r ∈ (0, R),

y′(0) = y(R) = 0,

y > 0, r ∈ [0, R).

(3)

Clément, de Figueiredo and Mitidieri, in the seminal paper [5], proposed
and studied the following generalization of (3):

−(xα|y′|βy′)′ = λ xγey in (0, R),

y′(0) = y(R) = 0,

y > 0 in [0, R),

(4)

assuming that the constants involved satisfy the constraints

α− β − 1 = 0, β > −1, γ > −1. (5)
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One can observe that the equation in (4) contains the radial forms of Laplace,
p−Laplace and k−Hessian operators.

They explicitly identified a constant λ∗ > 0 for problem (4), establishing
that there is a unique solution when λ = λ∗ and exactly two solutions when
0 < λ < λ∗. Furthermore, by employing the method of first integrals, they
derived explicit formulas for these solutions, assuming that conditions (5) are
satisfied. Subsequently, Bozhkov and Martins, [3], reached the same conclusion
using symmetry methods.

In the present work, we investigate a more general, than that in (3), radial
ODE involving variable coefficients,

u′′ + ν(r)u′ + λ(r)eµ(r)u = 0, (6)

under the prism of enhanced group analysis. That is, we first perform the
group classification of (6) employing its equivalence transformations and then,
we classify the non equivalence classes found using their Lie point symmetries.

The article is shaped as follows: in section 2 we introduce the main concepts
used in our analysis, the next section contains the main body of results. Finally,
we close the present work with some comments and concluding remarks.

2. Methodology

2.1. Symmetries

In the heart of our analysis resides the concept of symmetry. Symmetry, loosely
put, is a transformation — a diffeomorphism — between elements of a differ-
ential equation that leaves it invariant. These symmetries form a group, and
for our purposes we will restrict ourselves to its connected component, which
forms a Lie group. This means that the kind of symmetries that we shall use
will depend on a continuous variable, ε, and we shall identify the symmetry
that corresponds to ε = 0 with the identity transformation — which is a sym-
metry of any differential equation. But this is not the only reason for making
this assumption: we can now elegantly represent any such symmetry with an
element of a Lie algebra, that is, with a special type of vector space.

There is one more restriction to make: we shall assume that the transforma-
tions, our symmetries, involve only the independent and dependent variables.
In other words we shall work with Lie point symmetries. In particular, for the
study of (6) we shall work with symmetries of the form

X = ξ(r, u)
∂

∂r
+ η(r, u)

∂

∂u
. (7)

Having a symmetry as an element of a Lie algebra of the form (7) we can
retrieve the corresponding continuous transformation, an element of a (local)
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Lie group, by solving the following Cauchy problem
d

dε
r̄ = ξ(r̄, ū), r̄(0) = r,

d

dε
ū = η(r̄, ū), ū(0) = u,

for this reason X is also called infinitesimal generator. We call this procedure
exponentiation.

But how we shall obtain the symmetries of a differential equation? Under
certain conditions that the differential equation must satisfy — and for the case
of (6) there are indeed satisfied — X is a symmetry of (6) if, and only if, it
satisfies the linearised symmetry condition:

X
(2)[u′′ + ν(r)u′ + λ(r)eµ(r)u]

∣∣∣
u′′+ν(r)u′+λ(r)eµ(r)u=0

= 0, (8)

where X
(2) is the second prolongation of the vector field X,

X
(2) = ξ(r, u)

∂

∂r
+ η(r, u)

∂

∂u
+ η1(r, u)

∂

∂u′ + η2(r, u)
∂

∂u′′ ,

where η1(r, u) = Drη − u′Drξ, η2(r, u) = D2
rη − u′D2

rξ and Dr denotes the
total derivative with respect to r.

Considering r, u, u′ as independent variables, (8) breaks down to an overde-
termined — in our case — system of (linear) partial differential equations which
is called the determining equations. Its general solution will provide us with
the general form of the Lie algebra of Lie point symmetries of (6).

Getting the Lie point symmetries of a differential equation is only the be-
ginning. Like the DNA for a living organism, symmetries help us identify and
unearth important properties, reduce the order and even obtain solutions. We
have just skimmed the surface of this remarkably beautiful theory, for more
details see also [18, 17, 2, 11, 20, 10, 12].

Evidently, getting the Lie algebra from (8) on the one hand involves a
great deal of copious and error-prone calculations and on the other hand is
a completely algorithmic procedure. These facts render the use of computer
algebra systems essential. For our purposes we employed the symbolic package
SYM for Wolfram Mathematica™, [7, 14].

2.2. Equivalence transformations

When the differential equation involves arbitrary elements, for instance param-
eters, we deal in fact with a family, or a set, of differential equations. For each
element of this family we can associate the Lie algebra of its Lie point symme-
tries. Due to the structural importance of symmetries it merits our attention
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to try to classify the family with respect to the possible Lie algebras that can
be admitted: enter the group classification!

An efficient way to perform the group classification of a family of differential
equations is by employing its equivalence transformations. Equivalence trans-
formations can be considered as meta-symmetries of the family, being defined
as transformations that leave invariant this set of differential equations as a
whole, and as such, they contain the Lie point symmetries of the family.

Hence, following the same reasoning as in the previous subsection we shall
restrict ourselves to continuous equivalence transformations that involve only
the independent and dependent variables. Therefore, the algorithmic procedure
previously described remains the same with the only differences that now the
infinitesimal generator has the form

X̂ = ξ(r, u; ν, λ, µ)
∂

∂r
+ η(r, u; ν, λ, µ)

∂

∂u
+ ων(r, u; ν, λ, µ)

∂

∂ν

+ ωλ(r, u; ν, λ, µ)
∂

∂λ
+ ηµ(r, u; ν, λ, µ)

∂

∂µ
,

(9)

where α = α(r, u), α = ν, λ, µ, and the first prolongations of ων , ωλ, ωµ follow
the formulas, see also [13],

ωr
α =Drωα − αrDrξ − αuDrη,

ωu
α =Duωα − αrDuξ − αuDuη.

By construction, the equivalence transformations split the family of differ-
ential equations into equivalence classes and all the elements of a class will
have the same Lie algebra of Lie point symmetries. As a result, through the
equivalence classification of the family we achieve also a first take on its group
classification. We choose as the canonical representative of each equivalence
class the simplest possible differential equation — in form — of that class.

3. Enhanced modern group analysis of (6)

By enhanced modern group analysis we mean a toolkit of analytical tools, that
enhances the use of modern group analysis — that is the use of symmetries —
for studying differential equations. Amongst them are, equivalence transfor-
mations for group classification, optimal systems for classifying the invariant
solutions found, the concept of adjointness, or cosymmetry, for obtaining (local)
conservation laws and others.

3.1. Preliminary group classification

We start the study of (6) by its group classification. As previously mentioned,
we shall employ its equivalence transformations. A basis of the Lie algebra of
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equivalence transformations is

X̂1 =u
∂

∂u
+ λ

∂

∂λ
− µ

∂

∂µ
,

X̂2 =
∂

∂u
− µλ

∂

∂µ
,

X̂3 =F(r)
∂

∂r
− 2λF′(r)

∂

∂λ
+
(
F
′′(r)− νF′(r)

) ∂

∂ν
,

where F(r) is an arbitrary function. To obtain the principal algebra, that is the
maximal Lie algebra that all the possible cases will include, we need to apply
an arbitrary element of the Lie algebra of equivalence transformations found,

c1X̂1 + c2X̂2 + X̂3, to the relations λ = f(r), µ = g(r) and ν = h(r):

c1λ− 2λF′(r)− F(r)f ′(r) =0,

−c1µ(r)− c2λµ− F(r)g′(r) =0,(
F
′′(r)− νF′(r)

)
− F(r)h′(r) =0.

These equations when λ = f(r), µ = g(r) and ν = h(r), for any given function
f, g, h, yield

F(r) = 0, c1 = c2 = 0.

Thus, the principal algebra for equation (6) is spanned by the zero element,
that is, in general equation (6) admits only the identity transformation.

Now, exponentiating the vector X̂3 we get the equivalence transformation

r̄ = ϕ(r), ū = u, λ̄ =
λ

(ϕ′)2
, ν̄ =

ν

ϕ′ +
ϕ′′

(ϕ′)2
.

Hence, by choosing

ϕ(r) =

∫
e−

∫
ν(r) dr dr

ν̄ = 0 and thus the transformation

r̄ =

∫
e−

∫
ν(r) dr dr

turns (6) to
ū′′ + λ̄(r)eµ(r)ū = 0 (10)

where λ̄ =
λ

(ϕ′)2
= e2

∫
ν(r) drλ. Turning to equation (3), where ν(r) =

n− 1

r
,

the transformation found has the form

ϕ(r) =

∫
r1−n dx =


r2−n

2− n
, n ̸= 2

ln r, n = 2
.
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We repeat the same process for (10), after dropping the bars for clarity. A
basis of the Lie algebra of equivalence transformations now is

X̂1 =
∂

∂r
, X̂2 =r

∂

∂r
− 2λ

∂

∂λ
,

X̂3 =
∂

∂u
− λµ

∂

∂λ
, X̂4 =r

∂

∂u
− λµr

∂

∂λ
,

X̂5 =u
∂

∂u
+ λ

∂

∂λ
− µ

∂

∂µ
, X̂6 =r2

∂

∂r
+ ru

∂

∂u
− 3λr

∂

∂λ
− µr

∂

∂µ
.

Again, by exponentiation we get the corresponding equivalence transforma-
tions:

T1(ε) : r̄ = r + ε, ū = u, λ̄ = λ, µ̄ = µ,

T2(ε) : r̄ = εr, ū = u, λ̄ =
1

ε2
λ, µ̄ = µ,

T3(ε) : r̄ = r, ū = u+ ε, λ̄ = e−εµλ, µ̄ = µ,

T4(ε) : r̄ = r, ū = u+ εr, λ̄ = e−εrµλ, µ̄ = µ,

T5(ε) : r̄ = r, ū = εu, λ̄ = ελ, µ̄ =
1

ε
µ,

T6(ε) : r̄ =
r

1− εr
, ū =

u

1− εr
, λ̄ = (1− εr)3λ, µ̄ = (1− εr)µ.

Looking at the structure of the equivalence transformations we can see that the
lack of arbitrary functions will limit their usefulness. Indeed, combining the
last five transformations we get the five-parameter equivalence transformation

T (A,B,Γ,∆,E) : R =
Γr

1− Br
, U = A

u+ Er +∆

1− Br
,

Λ =
A(1− Br)3

Γ2
e−(Er+∆)µλ, M =

1− Br

A
µ,

where A,Γ ̸= 0. Therefore, they are relevant only when µ is of the form
α

1− βr

and/or λ is of the form
α̃e(γ+δr)µ(r)

(1− β̃r)3
, where α, α̃, β, β̃, γ, δ are constants. The

equivalence classification of (10) is presented in the table 1.

Alas, our job is far from over! Our canonical representatives still include
arbitrary functions. For that reason we called this group classification prelimi-
nary: our classification needs further refinement. We shall accomplish that by
studying the determining equations of (10).
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λ(r) µ(r) Canonical representative

=
α̃e(γ+δr)µ(r)

(1− βr)3
, α̃ ̸= 0

=
α

1− βr
, α ̸= 0

u′′ + sign(αα̃)eu = 0

̸= α̃e(γ+δr)µ(r)

(1− βr)3
, 0 u′′ +

λ(r)︷ ︸︸ ︷
α

Γ2
(1− βr)3e

−αEr+∆
1−βr λ(r) eu = 0

=
α̃e(γ+δr)µ(r)

(1− βr)3
, α̃ ̸= 0

̸= α

1− βr
, 0

u′′ + e

µ(r)︷ ︸︸ ︷
α̃

Γ2
(1− βr)µ(r)u

= 0

̸= α̃e(γ+δr)µ(r)

(1− β̃r)3
, 0 u′′ + λ(r)eµ(r)u = 0

= 0 ̸= 0
u′′ = 0̸= 0 = 0

Table 1: Preliminary group classification of (10).

3.2. Group classification

We continue with the complete group classification of (10) by employing the
direct method. That is, by examining the determining equations we shall try
to find special cases of the arbitrary functions that extend the solution space
of the determining equations. The canonical representatives already found will
help to simplify the calculations.

We proceed as follows: using (8) with ν = 0 and the infinitesimal generator
given in (7) we arrive at the determining equations. We solve the ones that
does not involve the two arbitrary functions λ and µ until we arrive at the
classification equations:

(c3 + c4r)µ(r) + (c6 + c5r + c4r
2)µ′(r) = 0, (11a)

(2c5 − c3 + 3c4r + (c1 + c2r)µ(r))λ(r) + (c6 + c5r + c4r
2)λ′(r) = 0. (11b)

On top of that, the infinitesimal generator, up to this point, has the form

X = (c6 + c5r + c4r
2)

∂

∂r
+ (c1 + c2r + (c3 + c4r)u)

∂

∂u
.

Now it is time to use the canonical representatives as promised.
First of all, for the canonical representatives u′′+sign(αα̃)eu = 0 and u′′ = 0

we already know their general solution: they are

u(r) =ln

(
sign(αα̃)

c1
2

(
1− tanh2

√
c1|x+ c2|

2

))
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and

u(r) =c1r + c2,

respectively. So, we shall examine the three central cases of table 1 that remain.

µ̄(r) = 1: First, from (11a) we have that c3 = c4 = 0. Solving (11b) under
these restrictions we obtain

λ̄(r) =


c7e

−
c2r

c6 (c5 + c6r)

c2c5 − c1c6
c26

−2

, c6 ̸= 0

c7e
−
r(2c1 + c2r)

2c5 , c6 = 0 and c5 ̸= 0

.

Tidying the constants up we have that for

λ̄(r) = p1e
p2r(r + p3)

p4 , p22 + p24, p1 ̸= 0,

the Lie algebra of Lie point symmetries is spanned by

(p3 + r)
∂

∂r
− (2 + p2p3 + p4 + p2r)

∂

∂u
,

while for
λ̄(r) = p1e

p2r+p3r
2

, p22 + p23, p1 ̸= 0,

the Lie algebra of Lie point symmetries is spanned by

∂

∂r
− (p2 + 2p3r)

∂

∂u
.

λ̄(r) = 1: Similarly, from (11b) we have that

µ̄(r) =
c3 − 2c5 − 3c4r

c1 + c2r
,

or
c1 = c2 = c4 = 0 and c3 = 2c5.

Substituting each of the two options to the first equation, (11a), we can
easily see that

µ̄(r) =


− c5
c1 + c2r

, c2 ̸= 0,

c7
(c6 + c5r)2

, c5 ̸= 0.

Tidying the constants up we have that for

µ̄(r) =
p1

p2 + r
, p1 ̸= 0,
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the Lie algebra of Lie point symmetries is spanned by

p1(p2 + r)
∂

∂r
+ (p1u− p2 − r)

∂

∂u
,

while for
µ̄(r) =

p1
(p2 + r)2

, p1 ̸= 0,

the Lie algebra of Lie point symmetries is spanned by

(p2 + r)
∂

∂r
+ 2u

∂

∂u
.

λ(r) ̸=
α̃e(γ+δr)µ(r)(

1 − β̃r
)3 and µ(r) ̸=

α

1 − βr
: Accordingly, in the Tables 2, 3

and 4 we give all the possible pairs of solutions of (11) that have a non
empty Lie algebra.

4. Comments and concluding remarks

Thirty years ago, Professor Enzo Mitidieri introduced Yuri Bozhkov to the
Liouville-Bratu-Gelfand Problem, highlighting its fundamental concepts and
significance for both mathematics and physics. This is one of the primary
reasons to choose this topic for a research paper dedicated to him.

In this work we have initiated the study of the generalized radial Liouville
type equation (6), classifying its equivalence and Lie point symmetry groups.
In order to reduce (6) to a quadrature we need a two-dimensional Lie algebra
of Lie point symmetries. Unfortunately, our group classification showed that
at most we shall get an one-dimensional Lie algebra. That is, by using the Lie
point symmetries it is possible to reduce (6) to a first order ode — which in
fact will be an Abel ode of the first, or second, kind. For these type of odes
we have at disposal numerous ad hoc and algorithmic methods for obtaining
their general solution, see for instance [19]. Obtaining all the possible general
solutions for the subcases of (6) that our group classification highlighted, using
the available methods or by looking for other kinds of symmetries, shall be the
main focus of the second part of the current work.
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.
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Subcase span{·}

I (1 + 2p3r + (k2 + p23)r
2)

∂

∂r
+ (p3 − p2k + (k2 + p23)r)u

∂

∂u

II
p1(1 + 2p3r + (k2 + p23)r

2)
∂

∂r
+

(p3p5 − p6 + ((k2 + p23)p5 − p3p6)r + p1(p3 + (k2 + p23)r)u)
∂

∂u

III
p1(1 + 2p3r + (p23 − k2)r2)

∂

∂r
+

(
(k − p3)

p2/2((p2k + p3)p5 − p6)

+(k − p3)
p2/2(p6(p2k − p3) + p5(p

2
3 − k2))r+

(p1(p2k + p3) + p1(p
2
3 − k2)r)u

) ∂

∂u

IV
(p3 + r)2

∂

∂r
+

(
(p2 + p3)p6 − p5p

2
3

+((p2 − p3)p5 + p6)r + (p2 + p3 + r)u
) ∂

∂u

V
∂

∂r
− (p5 + p2p4 + p2p5r + p2u)

∂

∂u

VI (1 + p3r)r
∂

∂r
− (p2p5 + (p6(1 + p2)− p3p5)r + (p2 − p3r)u)

∂

∂u

VII (1 + p5r)r
∂

∂r
+ (p3 + (p3p5 − p4)r + (1 + p5r)u)

∂

∂u

VIII r2
∂

∂r
+ (p2p4 + (p2p5 + p4)r + (p2 + r)u)

∂

∂u

IX r2
∂

∂r
+ (2p4 + p3r + ru)

∂

∂u

Table 4: The Lie algebra of Lie point symmetries that corresponds to each
subcase.

Furthermore, we intent to extend the methods used in the present work for
two generalizations of the Liouville-Bratu-Gelfand Problem that have not yet
been thoroughly examined using symmetry methods:

a) The problem {
∆u+ λ(x)eµ(x)u = 0, x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

where λ(x), µ(x) are continuous functions and Ω is a bounded domain
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in Rn. There are a few intriguing scenarios that emerge when λ, µ are
constants and Ω is a cube [0, 1]n ⊂ Rn — especially for n = 2 — where
one cannot apply the Gidas-Ni-Nirenberg result!

b) The Liouville type pde

∆mu+ λ(x)eµ(x)u = 0

involving the polyharmonic operator ∆m.
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