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Abstract. We give a brief and concise guide for the analysis of the
local behavior of the elements of local and nonlocal homogeneous De
Giorgi classes: local boundedness, local Hölder continuity and Harnack-
type inequalities. In the local case, we promote a simplified itinerary
in the classic theory, propaedeutic for the successive part; while in the
nonlocal case, we gather recent new developments into an unitary and
concise framework. Employing a suitable definition of De Giorgi classes,
we show a new proof of the Harnack inequality, way easier than in the
local case, that bypasses any sort of Krylov-Safonov argument or cube
decomposition.
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1. Introduction

Since the work of De Giorgi [8], that answered positively to the 19th Hilbert’s
Problem on the regularity of minima of the calculus of variations, those sets of
weakly differentiable functions in Lp satisfying the energy inequalities

ˆ
Br

|∇(u− k)±|p dx ≤
(

γ

R− r

)p ˆ
BR

|(u− k)±|p dx (1)

have been called De Giorgi classes, see the pioneering book [25], and have been
object of intense study ever since. The most notable advantage of studying the
local properties of elements of the De Giorgi classes relies in the fact that these
same properties are hence shown for functions satisfying an energy inequality,
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instead of minimizing a functional or satisfying an equation. In this respect,
the method is very flexible (see for instance [11] for a relaxed definition and
its links with Moser’s method [35]), and can be used to encompass a theory of
regularity for solutions to equations and minima of functionals.

Issues of Definition

When different growths are into play, a definition of De Giorgi class, and
the subsequent development of a regularity theory encumbers, as soon as the
homogeneity in (1) is lost. For instance, when an equation/functional has
an unbalanced growth, as in the case of parabolic equations (see for instance
[6, 9]), or elliptic non-standard/Orlicz growth functionals (see for instance
[24,31,32,34,37]), the sole energy inequalities parallel to (1) are not sufficient
to give a complete regularity theory, since solutions may be unbounded; see [10]
for the parabolic case with 1 < p < 2, and [19, 33] for the elliptic cases. This
calls for a new definition of De Giorgi class, or energy class (see [5] for the
non-standard case); and this is exactly the case of the nonlocal De Giorgi classes
(see [7] for a complete account). Roughly speaking, a crucial ingredient in the
theory of regularity for functions satisfying (1) is the assumption W 1,p

loc (Ω), that
bestows a fundamental tool called Discrete Isoperimetric Inequality (see (2.8)).
Now, when considering the set of functions u ∈ W s,p

loc (Ω) satisfying the natural
parallel estimate to (1)

[(u− k)±]
p
W s,p(Bτρ)

≤ γ

(1− τ)pρsp
∥(u− k)±∥pLp(Bρ)

+

+
γ

(1− τ)N+sp
∥(u− k)±∥L1(Bρ)

ˆ
RN\Bρ

|(u− k)±|p−1

|x|N+ps
dx , (2)

even when all the quantities on the right-hand side are bounded, the afore-
mentioned Discrete Isoperimetric Inequality isn’t anymore at stake for every
s ∈ (0, 1), p > 1, and functions satisfying (2) are only proved to be bounded
(and Hölder continuous for s close to 1, see [7]). Nevertheless, local weak
solutions and minima of the respective equations/functionals, enjoy stronger
energy estimates than the sole (2), see (34). The presence of an additional term
on the left-hand side (see Section 3) replaces the use of the aforementioned
Discrete Isoperimetric inequality, and allows for a complete theory of regularity.
In this work we start from this new definition, formerly given in [7] (see (6.1) at
page 4792 with R0 = ∞ there) and we describe our itinerary to study the local
behavior of the elements of such a nonlocal De Giorgi class. In particular, we
show that with the tools provided in [29] for the weak Harnack inequality, it is
possible to have a full Harnack inequality for elements of this generalized class.



LOCAL VS NONLOCAL DE GIORGI CLASSES (3 of 50)

What about boundary data?

Roughly speaking, since an inequality as (1) can be given with balls Br in-
tersecting the boundary of a domain Ω ⊂ RN , then it is possible to define
boundary De Giorgi classes. Solutions to Dirichlet/Neumann/Mixed problems
with elliptic PDEs of p-Laplacian type and minima of functionals can then be
embodied in their global fashion into this new formulation (see for instance [10]
chap. X, or [20]), and the regularity of the boundary ∂Ω plays a pivotal role in
the scaling of the estimates, and therefore in the theory of regularity. In this
work we refrain from describing global problems, in order to focus on the essence
of the method of De Giorgi irrespective of any boundary condition. Regarding
the nonlocal case: here the elements of De Giorgi classes need to be elements
defined in all RN , but the class is defined in a way to encompass solutions and
minima of “local” formulations of the respective problems; see subsection 3.1
for more details.

Structure and style of the paper

In Section 2 we study the local properties of elements of local De Giorgi classes,
starting from the local boundedness, then Hölder continuity and finally the
Harnack inequality and its consequences. Along the same track, in Section 3
we carry on an analysis of the local regularity for elements of the nonlocal De
Giorgi classes. Conversely to the usual way, in Section 2 we give less preliminary
details (being a more classical subject) and we construct the various tools
needed inside the proofs themselves; while in Section 3 we stress the details in
the computation of the estimates, in order to clarify the novel method.

Notation

• We say that a constant γ depends only on the data if it depends only on
{N, p, s, γ̂}, where γ̂ are given in the definitions of De Giorgi classes. When a
constant γ depends on a quantity l which is different from the aforementioned,
we will write γ(l). Constants may be different from line to line.

• When considering an open bounded set Ω ⊂ RN , we will denote its Lebesgue
measure by |Ω|. To say that Ω is an open bounded set, we adopt the notation
Ω ⊂⊂ RN . For a, b ∈ R we use the short notation (a− b)p−1 := |a− b|p−2(a− b).

• For a measurable function u, we define the essential infimum and supremum

as inf u and supu respectively, in the set of consideration. Given a function

u : Ω → R, a number a ∈ R, we will omit the domain when considering sub or

super level sets, denoted by [u ≤ a] = {x ∈ Ω : u(x) ≤ a}, and when there is no

risk of misunderstanding. Finally, if u ∈ W 1,p
loc (Ω) for Ω ⊂⊂ RN , we denote the

partial weak derivatives with ∂iu = ∂u/∂xi, and its weak gradient with ∇u.
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2. Local De Giorgi Classes

Definition 2.1. A function u ∈ W 1,p
loc (Ω) is an element of the set DG±

p (γ̂,Ω)
if there exists a positive constant γ̂ such that for any level k ∈ R, the inequalityˆ

Bσρ(x0)

|∇(u− k)±|pdx ≤ γ̂

(1− σ)pρp

ˆ
Bρ(x0)

|(u− k)±|pdx, (3)

is satisfied for all balls Bσρ(x0) ⊂ Bρ(x0) ⊂ Ω. The De Giorgi class DGp(γ̂,Ω)
is the intersection

DGp(γ̂,Ω) = DG+
p (γ̂,Ω) ∩DG−

p (γ̂,Ω).

Remark 2.2. If u ∈ DG−
p (γ̂,Ω), then −u ∈ DG+

p (γ̂,Ω).

Now we prove the set inclusion

DGp(γ̂,Ω) ⊆ L∞
loc(Ω) ,

that is to say, elements of the De Giorgi classes are locally bounded “functions”.
The underlying idea is that the membership u ∈ DGp(γ̂,Ω) provides a reverse-
Poincaré-inequality. Hence, by chaining this reverse-Poincaré-inequality with
the embedding W 1,p ↪→ Lp∗

it is possible to obtain a precise decay on the
Lp-norms of the truncations of u. See diagram in Figure 1 for a sketch of the
idea.

Theorem 2.3. Let u ∈ DG±
p (γ̂,Ω) and σ ∈ (0, 1). Then, there exists a constant

γ, depending only on the data, such that for every pair of balls Bσρ(x0) ⊂ Bρ(x0)
contained in Ω, we have

sup
Bσρ(x0)

u± ≤ γ

(
1

(1− σ)N

ˆ
Bρ(x0)

up
±dx

) 1
p

. (4)

Proof. Without loss of generality we assume x0 is the origin, since estimate (4)
is invariant under translations. Moreover, once (4) is proven for u ∈ DG+

p (γ̂,Ω),
then by Remark 2.2 the statement for u ∈ DG−

p (γ̂,Ω) is recovered from (4)
since sup(−u)+ = supu−.

Let u ∈ DG+
p (γ̂,Ω) and for a number k ∈ R+ to be chosen later, we define

for n = 1, 2, . . . the sequences of nested concentric balls {Bn} and {B̃n}, and
increasing levels {kn} such that

Bn = Bρn where ρn = σρ+
1− σ

2n−1
ρ

B̃n = Bρ̃n
where ρ̃n =

ρn + ρn+1

2

kn = k − 1

2n−1
k .
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We next introduce the Lipschitz cut-off function

ξn(x) =


1 for |x| ≤ ρn+1,
ρ̃n−|x|

ρ̃n−ρn+1
= 2n+1

(1−σ)ρ (ρ̃n − |x|) for ρn+1 ≤ |x| ≤ ρ̃n,

0 for |x| ≥ ρ̃n .

(5)

We observe that

||∇ξn||∞,B̃n
≤ 2n+1

(1− σ)ρ
.

Observe further that (3) for such balls and levels displays as

||∇(u− kn+1)+||pp,B̃n
≤ 2(n+1)pγ

(1− σ)pρp
||(u− kn+1)+||pp,Bn

.

Since [(u− kn)+ξn] ∈ W 1,p
o (B̃n) we can extend this function by zero outside B̃n

and apply the Gagliardo–Nirenberg-Sobolev embedding

||v||p∗,RN ≤ γ||Dv||p,RN , with p∗ =
Np

N − p
, ∀v ∈ W 1,p(RN ) , (6)

in the aforementioned ball. We let A±
k,ρ = [(u − k)± > 0] ∩ Bρ and apply

Hölder’s inequality to get the chain

||(u− kn+1)+||pp,Bn+1
≤ ||(u− kn+1)+ξn||pp,B̃n

≤ ||(u− kn+1)+ξn||p/p
∗

p∗,B̃n
|A+

kn+1,ρ̃n
|p/N

≤ γ ||∇[(u− kn+1)+ξn]||pp,B̃n
|A+

kn+1,ρ̃n
|p/N

≤ γ

(
2np

(1− σ)pρp
||(u− kn+1)+||pp,Bn

)
|A+

kn+1,ρn
|p/N .

Next, on the right-hand side we aim to bound with terms involving again the
Lp-norm of u: hence we estimate

∥(u− kn)+∥pp,Bn
=

ˆ
Bn

(u− kn)
p
+dx

⩾
ˆ
Bn∩[u>kn+1]

(kn − kn+1)
pdx ⩾

kp

2np
|A+

kn+1,ρn
|.

Hence,

||(u− kn+1)+||pp,Bn+1
≤ γ

2np
(

N+p
N

)
(1− σ)pρp

1

k
p2

N

∥∥(u− kn)+
∥∥(1+ p

N )
p,Bn

. (7)
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If we set

Yn :=
1

kp

ˆ
Bn

(u− kn)
p
+dx, b = 2

N+p
N , and α = p/N ,

from (7) we obtain

Yn+1 ≤ γ
bpn

(1− σ)p
Y 1+α
n . (8)

Now, we show that each time we have a recursive relation as (8) above, the
logical implications{

Y0 ≤ 1

γ
1
α b

1
α2

and γb
1
α ⩾ 1

}
⇒ Yn ≤ b−

n
αY0 ⇒ lim

n↑∞
Yn = 0, (9)

hold true. In our case, observe that this will imply (4).
The fact that {Yn} is infinitesimal follows from the first implication in (9),

that we deduce by induction. Case n = 0 being trivially satisfied, we apply (8)
to evaluate

Yn+1 ≤ γbnY 1+α
n ≤ γbn

(
b−

n
αY0

)1+α

≤
(
γb

1
αY α

0

)
b−

(n+1)
α Y0.

Last term in parenthesis is smaller than one if Y0 ≤ γ− 1
α b−

1
α2 .

This concludes the argument. Hence, finally getting back to estimate (8)
with α = p/N , we will have Y∞ = 0 if

Y0 =
1

kp

ˆ
Bρ

up
+dx ≤ b−

N2

p γ−N
p (1− σ)N ,

which is satisfied as soon as we set

k =

(
b

N2

p γ
N
p

(1− σ)N

ˆ
Bρ

up
+dx

)1/p

.

Therefore, limn→∞ Yn = 0 and thus (u− k)+ = 0 in Bσρ, as required from (4).
The scheme of the proof is exemplified in the following diagram.

The next Lemma transforms a certain information in measure into a precise
bound (almost everywhere). Roughly speaking it asserts that, in a ball Bρ,
if the relative measure of the set where u is greater than a certain level k is
sufficiently small, then u is smaller than k/2 in half ball. It is usually referred
to as Critical Mass Lemma (see [3]) or De-Giorgi type Lemma (see [10]). We
begin by fixing a ball B2ρ(x0) ⊂ Ω and numbers

µ+ = sup
B2ρ(x0)

u, µ− = inf
B2ρ(x0)

u, ω = µ+ − µ− = ess osc
B2ρ(x0)

u .
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The Chain to L∞ bounds

∥(u − kn+1)+∥p,Bn+1

Embedding

Energy Estimates

Recurrence relation for ∥(u − kn)+∥p,Bn
:

Yn+1 ≤ CbnY 1+α
n

limn↑∞ ∥(u − kn)+∥pp,Bn
= 0

Figure 1: A general scheme for L∞ estimates.

Lemma 2.4 (Critical mass lemma). Let u ∈ DG+
p (γ̂,Ω), and B2ρ(x0) ⊂ Ω.

For every a ∈ (0, 1), there exists ν(a) ∈ (0, 1) depending only on the data and
a, specified in (14), such that if for some number M ∈ (0, ω) the measure
information ∣∣[u > µ+ −M

]
∩Bρ(x0)

∣∣ ≤ ν(a) |Bρ| (10)

is at stake, then

u ≤ µ+ − aM a.e. in B ρ
2
(x0). (11)

Similarly, if u ∈ DG−
p (γ̂,Ω) and the measure information∣∣[u < µ− +M

]
∩Bρ(x0)

∣∣ ≤ ν(a) |Bρ| (12)

is valid, then

u ≥ µ− + aM a.e. in B ρ
2
(x0). (13)

Proof. We start by proving (10)-(11), as usual assuming x0 is the origin. Let
us consider the sequence of balls {Bn}, {B̃n} and the cut-off function ξn with
σ = 1

2 , as introduced in (5). We define the increasing levels {kn} and the nested
sets {An} along with their relative measures Yn as follows

kn = µ+ − aM − (1− a)M

2n
, An = [u > kn] ∩Bn, Yn =

|An|
|Bn|

.
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The membership u ∈ DG+
p (γ̂,Ω) implies, since Bn ⊂ Ω,∀n ∈ N,

||∇(u− kn)+||pp,B̃n
≤ 2npγ

ρp
||(u− kn)+||pp,Bn

.

Similarly to the proof of Theorem 2.3 we chain estimates (3)with the embed-
ding (6), but this time we look for a recurrence relation for the super-level
sets An: [

(1− a)M

2n+1

]p
|An+1| = (kn+1 − kn)

p|An+1|

≤ ||(u− kn)+ξn||pp,B̃n

≤ ||(u− kn)+ξn||pp∗,B̃n
|An|p/N

≤ ||∇[(u− kn)+ξn]||pp,B̃n
|An|p/N

≤
(
γ2np

ρp
||(u− kn)+ξn||pp,Bn

)
|An|p/N

≤ γ2np

ρp

(
M

2n

)p

|An|1+p/N

The previous estimate provides, in relative measure,

Yn+1 =
|An+1|
|Bn+1|

≤ γ2np

ρp
Mp|An|1+p/N

|BN+1|
2(n+1)p

[(1− a)M ]p

≤ γ2np

ρp(1− a)p
|An|1+p/N

|Bn|1+p/N
|Bn|p/N =

γ4npY
1+p/N
n

(1− a)p
.

Hence, as in (8) the limit {Yn} → 0 is valid as

Y0 =
|[u > µ+ −M ] ∩Bρ|

|Bρ|
≤ (1− a)N/p

γN/p4p
(

N
p

)2 =: ν ∈ (0, 1) (14)

thanks to the assumption (10). This shows (11). Finally, in order to show (13)
we denote by µ−(−u) = inf(−u) and we observe that

|[u > µ+ −M ]| = |[−u < −µ+ +M ]| = |[−u < µ−(−u) +M ]| .

Now, we consider Remark 2.2 and the first part of the Lemma ((10)⇒(11)) to
obtain

−u ≤ µ+(−u)− aM a.e. in Bρ/2(y),

which in turn implies (13).



LOCAL VS NONLOCAL DE GIORGI CLASSES (9 of 50)

Lemma 2.4 furnishes an information almost everywhere. Here below we show,
using the method of [28], that we can select a representative of u ∈ DGp(γ̂,Ω)
that is lower semi-continuous.

Definition 2.5. For Ω ⊂ RN open, let u : Ω → RN be measurable and
essentially bounded below. The lower semi-continuous regularization of u is

u∗(x) = ess lim
y→x

inf u(y) = lim
r↓0

inf
y∈Br(x0)

u

where x ∈ Ω.

As usual, for u ∈ L1
loc(Ω) we can denote the set of Lebesgue points of u by

L :=
{
x ∈ Ω : |u(x)| < ∞, lim

r↓0

ˆ
Br(x)

|u(x)− u(y)|dy = 0
}
,

and apply the Lebesgue Differentiation Theorem (see [17]) to state that |L| = |Ω|.

Theorem 2.6. Let u ∈ DG−
p (γ̂,Ω). Then u(x) = u∗(x) for almost every x ∈ Ω.

In particular, u∗ is a lower semi-continuous representative of u.

Proof. It is simple to see that for each point x ∈ L the inequality u∗(x) ≤ u(x)
is valid, as

u∗(x) = lim
r↓0

ess inf
Br(x0)

u ≤ lim
r↓0

ˆ
Br(x0)

u(y)dy = u(x).

Now, to show the reversed inequality, let us pick x0 ∈ L, let us define the value

u(x0) = lim
r↓0

 
Br(xo)

u(x) dx,

and let suppose by contradiction that u∗(x0) < u(x0). Fix R > 0 such that
Br(x0) ⊂ Ω and let µ− and M be two numbers satisfying

ess inf
Br(x0)

u := µ− ≤ u∗(x0) < µ− +M < u(x0).

Next, referring to Lemma 2.4, we choose a ∈ (0, 1) such that

µ− + aM > u∗(x0).

Since a is fixed, Lemma 2.4 determines the number ν depending only on a,M, µ−

and other geometric data such as N , but independently of ρ. We claim that
there exists a radius ρ ∈ (0, r) such that

0 <
∣∣[u ≤ µ− +M

]
∩Bρ(x0)

∣∣ ≤ ν |Bρ| ,
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because otherwise for all 0 < ρ < r we have

ˆ
Bρ(x0)

|u(x0)− u(y)|dy ⩾
ˆ
[u<µ−+M ]∩Bρ(x0)

u(x0)− (µ− +M)dy

⩾ ν|[u(x0)− (µ− +M)]||Bρ| > 0,

contradicting the membership x0 ∈ L. Finally, our choice of a and (12) results
in the point-wise bound u ⩾ µ− + aM > u∗(x0) for almost every x ∈ Bcρ(x0).
This implies

u∗(x0) < lim
r↓0

ess inf
Br(x0)

u = u∗(x0).

Remark 2.7. Similarly, if u ∈ DG+
p (γ̂,Ω) then there exists an upper semi-

continuous representative of u. It is enough to observe that Lemma 2.4 implies
a property (10)-(11), and by defining the upper semi-continuous regularization
of u ∈ DGp(γ̂,Ω), it is possible to run the same machinery of Theorem 2.6.
In general, for a u ∈ DGp(γ̂,Ω), it is not given for granted that the lower
semi-continuous representative of u coincides with the upper semi-continuous
representative of u. This will be the aim of the next Theorem. We will
show indeed much more: elements of DGp(γ̂,Ω) have an Hölder continuous
representative. We denote this property by the arrow

DGp(γ̂,Ω) ↪→ C0,α
loc (Ω) .

Our first main tool to show the announced inclusion is a crucial inequality,
that is called in literature the De Giorgi Discrete Isoperimetric Inequality
(see [10] chap X for a simple proof, and [8] for the original). Differently from [20]
and [10], here we use the approach of [25]- that is-, to derive this inequality
from the Poincaré inequalityˆ

Bρ

|v−(v)Bρ | dx ≤ γρ

ˆ
Bρ

|∇v| dx, ∀v ∈ W 1,1(Bρ), with γ=γ(N)> 0 . (15)

This approach is more flexible than the one in [10], in those metric contexts
where one postulates the validity of a Poincaré inequality as (15); see for
instance [1] for the general theory and [2] for an application in the context of
mixed boundary conditions.

Lemma 2.8 (Discrete Isoperimetric Inequality). Let Ω ⊂ RN be an open set,
and Bρ ⊂ Ω. Let u ∈ W 1,1

loc (Ω) and 0 ≤ k < h two real numbers. Then, there
exists a constant γ > 0 depending only on N , such that

(h− k) |Ah,ρ| ≤
γρN+1

|Ak,ρ|

ˆ
Ak,ρ/Ah,ρ

|∇u| dx,

where Ah,ρ = Bρ ∩ [u(x) > h].
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Proof. We consider the truncation

w =


0 u < k,

u− k k < u < h,

h− k u > h,

w ∈ W 1,1(Bρ) .

We observe that

(w)Bρ
=

1

|Bρ|

ˆ
Bρ

w dx ≤ (h− k)|Ak,ρ|
|Bρ|

,

so that we can estimate from belowˆ
Bρ

|w − (w)Bρ
| dx ⩾

ˆ
Ah,ρ

|w − (w)Bρ
| dx

=

ˆ
Ah,ρ

|(h− k)− (w)Bρ
| dx.

⩾
ˆ
Ah,ρ

∣∣∣∣(h− k)− (h− k)|Ak,ρ|
|Bρ|

∣∣∣∣ dx,
= (h− k)

[
1− |Ak,ρ|

|Bρ|

]
|Ah,ρ|.

Applying Poincaré’s inequality (15) to w, we obtain

γρ

ˆ
Ak,ρ/Ah,ρ

|∇w| dx ⩾ γρ

ˆ
Bρ

|∇w| dx ≥ (h− k)|Ah,ρ|
[
|Bρ| − |Ak,ρ|

|Bρ|

]
,

and since ∇w = ∇u in the set [k < u < l] we obtain the desired result

(h− k)|Ah,ρ| ≤ γρ

[
|Bρ|

|Bρ| − |Ak,ρ|

] ˆ
Ak,ρ/Ah,ρ

|∇u| dx.

The aforementioned discrete isoperimetric inequality is an essential tool, for
functions in DGp(γ̂,Ω), to prove the Growth Lemma (see [3], [26]) or Shrinking
Lemma (see [10]). This Lemma roughly states that if the relative measure of
the set where u is smaller than a level k is greater than some given constant
θ ∈ (0, 1), then, by shrinking k to ϵk, the relative measure where u is greater
than ϵk can be reduced as much as we wish.

Lemma 2.9 (Shrinking lemma). Let u ∈ DG+
p (γ̂,Ω), B2ρ(x0) ⊂ Ω and assume

that, for some θ ∈ (0, 1)

|[u ≤ µ+ − ω

2
] ∩Bρ(x0)| ⩾ θ|Bρ|, (16)
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Then, for all ν ∈ (0, 1), there exists ϵ ∈ (0, 1) that can be determined a priori in
terms of the data and θ, independently of ω and ρ, such that∣∣[u > µ+ − ϵω

]
∩Bρ(x0)

∣∣ < ν |Bρ| . (17)

Similarly, if u ∈ DG−
p (γ̂,Ω) and

|[u ⩾ µ− +
ω

2
] ∩Bρ(x0)| ⩾ θ̃|Bρ|, (18)

for some θ̃ ∈ (0, 1), then for all ν̃ > 0 there exists ϵ̃ ∈ (0, 1) such that∣∣[u < µ− + ϵ̃ω
]
∩Bρ(x0)

∣∣ ≤ ν̃ |Bρ| . (19)

Proof. As before, we assume x0 is the origin and we address first the case
(16)-(17). Set

ks = µ+ − ω

2s
, As = [u > ks] ∩Bρ for s ∈ {1, . . . , s∗}

with s∗ to be chosen later. We start by applying the Discrete Isoperimetric
Inequalities 2.8 for the levels k = ks < l = ks+1, using (16) we have for every
s > 1

|[u ≤ ks] ∩Bρ| ⩾ |[u ≤ µ+ − ω

2
] ∩Bρ| ⩾ θ|Bρ|,

as k1 = µ+ − ω
2 . Hence the Discrete Isoperimetric Inequalities 2.8 gives and

then Hölder inequality we get

ω

2s+1
· |As+1| ≤

γρ

θ

ˆ
As\As+1

|∇u|dx

≤ γρ

θ

(ˆ
Bρ

|∇(u− ks)+|p dx

) 1
p

· |As −As+1|
p−1
p .

Now, by taking the p-power of both sides and using (3)+ with (1− σ) = 1
2 , we

obtain

ωp

2sp
· |As+1|p ≤ γpρp

θp

( ||(u− ks)+||pp,B2ρ

ρp

)
|As −As+1|p−1

≤ γpρNωp

θp2sp
|As −As+1|p−1.

Dividing by ωp

2sp and taking the 1
p−1 -power of both sides to get

|As+1|
p

p−1 ≤
(γ
θ

) p
p−1

ρ
N

p−1 |As −As+1|, ∀s ∈ {1, . . . , s∗}.
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Next, we sum over s. We observe that the right-hand side can be controlled by
a telescoping series, which in turn is controlled by |Bρ|.

s∗ |As∗+1|
p

p−1 ≤
s∗∑
s=1

|As+1|
p

p−1 ≤
(γ
θ

) p
p−1

ρ
N

p−1

s∗∑
s=1

|As −As+1|

≤
(γ
θ

) p
p−1 |Bρ| · ρ

N
p−1 ≤

(γ
θ
|Bρ|

) p
p−1

.

From this, we have

|As∗+1| =
∣∣∣[u > µ+ − ω

2s∗+1
] ∩Bρ

∣∣∣ ≤ (s∗)
1−p
p

(γ
θ

)
|Bρ| ≤ ν|Bρ|

for s∗ small enough and ϵ = 2−(s∗+1). Finally, if u ∈ DG−
p (γ̂,Ω) and we

assume (18) using Remark 2.2 we can directly see that −u ∈ DG+
p (γ̂,Ω)

satisfies (16) and thus∣∣[−u > µ+(−u)− ϵω
]
∩Bρ

∣∣ < ν |Bρ| .

which is (19) as µ+(−u) = sup(−u) = − inf u.

Now we have all the necessary tools to prove that elements of DGp(γ̂,Ω)
“are” Hölder continuous.

Theorem 2.10. Let u ∈ DGp(γ̂,Ω). Then there exist constants γ > 1 and
α ∈ (0, 1) depending only on the data such that for every pair of balls Bρ(x0) ⊂
BR(x0) ⊂ Ω,

ess osc
Bρ(x0)

u ≤ γ
( ρ

R

)α
ess osc
BR(x0)

u. (20)

Proof. We center x0 at the origin as usual, and we have the following dichotomy:
either

|[u ≤ µ+ − ω

2
] ∩Bρ| >

1

2
|Bρ| (21)

or

|[u ⩾ µ− +
ω

2
] ∩Bρ| >

1

2
|Bρ|,

because µ+ − ω
2 = µ− + ω

2 . Assuming the validity of (21), Critical Mass
Lemma 2.4 determines ν > 0 depending only on the data. By the Shrinking
Lemma 2.9 there exists a number ϵ > 0 depending on the data such that (21)
implies

|[u > µ+ − 2−(ϵ+1)ω] ∩Bρ| < ν|Bρ|.

Now, Lemma 2.4 provides the measure-to-point information

u < µ+ − 2−(ϵ+2)ω, almost everywhere in Bρ/2.
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Hence,

sup
Bρ/2

u ≤ sup
B2ρ(x0)

u− 2−(ε+2)ω(2ρ)

and as − infBρ/2
u ≤ − infB2ρ u we have

ω(ρ/2) ≤ (1− 2−(ε+2))ω(2ρ) := δω(2ρ), being δ ∈ (0, 1),

which is, in turn, equivalent to

ω(ρ/4) ≤ δω(ρ). (22)

In general, if ω : R+ → R+ is a nondecreasing function satisfying for
τ, δ ∈ (0, 1) the relation

ω(τρ) ≤ δω(ρ), ∀ρ > 0, (23)

then there exists a number α ∈ (0, 1) depending only on δ such that for any
0 < ρ < R the inequality

ω(ρ) ≤ 1

δ

(
ρ

R

)α

ω(R) (24)

holds true. We prove this last assertion, since (24) with ω = ess oscu will imply
the claim within the assumption (22). Let us choose n ∈ N such that

τn+1R ≤ ρ < Rτn ,

and let us remark that the right-hand inequality implies that

τn <
1

τ

( ρ
R

)
.

Now, since ω is nondecreasing, iterating through (23) we obtain

ω(ρ) ≤ ω(τnR) ≤ δnω(R).

Setting α = ln(γ)
ln(τ) we have δ = τα and thus,

δnω(R) = ταnω(R) ≤ 1

δ

(
ρ

R

)α

ω(R),

from the previous remark on τn. This implies our claim. For an illustration of
the main steps, see the “Shrinking Machine” in Figure 2 here below.
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The Shrinking Machine

Choose ν ∈ (0, 1)
universal from Lemma 2.4

|[u ≤ µ+ − ω
2 ] ∩ Bρ| ≥ 1

2 |Bρ| |[u > µ+ − ω
2 ] ∩ Bρ| > 1

2 |Bρ|

u ∈ DG+
p (γ̂,Ω) and

Lemma 2.9 with θ = 1
2

|[u > µ+ − εω] ∩ Bρ| < ν|Bρ|

u ∈ DG−
p (γ̂,Ω) and Lemma 2.4

sup
Bρ/2

u ≤ µ+ − εω

2

|[u ⩾ µ− + ω
2 ] ∩ Bρ| ≥ 1

2 |Bρ|

u ∈ DG−
p (γ̂,Ω) and

Lemma 2.9 with θ = 1
2

|[u < µ− + εω] ∩ Bρ| < ν|Bρ|

u ∈ DG−
p (γ̂,Ω) and Lemma 2.4

inf
Bρ/2

u ≥ µ+ +
εω

2

Figure 2: The working principle of the proof of Theorem 2.10.

2.1. Selecting a continuous representative.

Theorem 2.10 is, usually, the end of the story. However, it does not imply
that every element u ∈ DGp(γ̂,Ω) is locally Hölder continuous, but rather
than it is possible to select locally (in the equivalence class of u) a continuous
representative. In order to clarify this point, we can simply consider the function

v(x) =

{
1, x ∈ (−1, 0) ∪ (0, 1),

0, x = 0 .

Function v is a local weak solution to −∆v = 0 in (−1, 1), and therefore it
is a member of DG2(1, (−1, 1)). It is clear that, up to redefinition on the
zero-measure set {x = 0}, we can define a continuous representative ṽ, that is
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also C∞, as claimed by the classical theory.
Here below we show how the estimates of Theorem 2.10 can be used to

construct, for each u ∈ DGp(γ̂,Ω), its continuous representative. We will follow
the strategy of [18] in the context of Campanato spaces.

Let x0 ∈ Ω be an arbitrary point, let Bρ(xo) ⊂ BR(x0) ⊂ BR̃(x0) ⊂ Ω be
such that R ≤ d(∂BR̃(x0), ∂Ω)/4 and let us fix

u∞ = ∥u∥L∞(BR̃(x0)) .

Now, the estimate (20) provides (for each x0 ∈ Ω and) for each 0 < r < ρ the
bound∣∣∣∣ 

Bρ(x0)

u(y) dy −
 
Br(x0)

u(y) dy

∣∣∣∣ ≤ ess osc
Bρ(x0)

u ≤ γ(u∞) (ρ/R)α . (25)

Let us set, for k < h natural numbers,

ρ = R 2−k, r = R 2−h, fk(x0) =

 
B

R2−k (x0)

u(y) dy .

First we observe that the functions fk : BR̃(x0) → R+ are continuous, since the
integral is absolutely continuous w.r.t. to the domain of integration. Now, (25)
implies

|fk(x0)− fh(x0)| ≤ γ(u∞)2−kα ,

that is, for each assigned x0 ∈ Ω, the sequence {fk(x0)} is Cauchy. Hence, by
pointwise convergence, we can define a function ũ : Ω → R with

ũ(x0) = lim
k↑∞

 
B

2−k R
(x0)

u(y) dy = lim
k↑∞

fk(x0) .

It is not hard to show that this definition is purely local, and it does not depend
on the number R chosen. Indeed, if R2 < R is another radius and i ∈ N, there
exists k ∈ N, k ⩾ i such that 2−(k+1)R ≤ R2 ≤ 2−kR and∣∣∣∣ 

B2−iR(x0)

u(y) dy −
 
B2−iR2

(x0)

u(y) dy

∣∣∣∣
≤ |fi(x0)− fk(x0)|+

∣∣∣∣fk(x0)−
 
B2−iR2

(x0)

u(y) dy

∣∣∣∣ ≤ γ(u∞)2−iα ,

using again (25). Actually, the convergence of {fk} is uniform, and therefore
the limit ũ is a continuous function. Indeed, it is enough now to let r tend to
zero in (25), in order to get∣∣∣∣ 

Bρ(x)

u(y) dy − ũ(x)

∣∣∣∣ ≤ γ(u∞, R̃) ρα .
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Recalling the relation of k with ρ, besides passing to the supremum over x on
the left-hand side, we infer that the convergence of {fk} is uniform. Finally,
we invoke Lebesgue’s Theorem, the uniqueness of the limit, and conclude that
the constructed continuous function ũ coincides almost everywhere u in Ω.
The results of Lemmata 2.4-2.9, and therefore Theorem 2.10 hold true locally
for ũ without the prefix “essential”, and (20) describes, for ũ the decay of its
oscillation.

In this final part of Section 2 we take advantage of the oscillation esti-
mates and the phenomenon of expansion of positivity to show that elements of
DGp(γ̂,Ω) satisfy a Harnack inequality. This inequality was first proved in [13],
see [16] for a survey on the topic. The version we report here is the one of [10].
See also the pioneering papers [35] and [38], in case of solutions to divergent
form equations.

Theorem 2.11. Let u ∈ DGp(γ̂,Ω) be nonnegative. Then, there exists a
constant γ > 1 depending only on the data, such that for every ball B4ρ(x0) ⊂ Ω,
we have

u(y) ≤ γ inf
Bρ(x0)

u. (26)

Proof. Let x0 ∈ Ω such that u(x0) > 0. Consider the following change of
variables

v =
u

u(x0)
, x → x− x0

ρ
,

so that v(0) = 1 and v ∈ DGp(γ̂, B4). In particular, the following estimate
holds true for all Br(x

∗) ⊂ B4,

∥∇(v − k)±∥pp,Bσr(x∗) ≤
γ

(1− σ)prp
∥(v − k)±∥pp,Br(x∗) .

Thanks to this transformation, in order to prove (26), we just need to find a
constant γ > 1 such that v ⩾ γ in B1.

The Trick of Krylov-Safonov [23]

We perform a stratagem that will allow us to find a (small) ball around an
unknown point, where the supremum of v is bounded above by a power of the
radius of the ball itself.

Let s ∈ [0, 1) and let us consider the increasing families of numbers

Ms = sup
Bs

v, Ns = (1− s)−β

where, β > 0 is chosen later. Since v is bounded over B2, then the set {Ms} is
also bounded and satisfies

M0 = sup
B0

v = 1 = N0, lim
s→1

Ms < ∞, lim
s→1

Ns = ∞.
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Therefore, the equation Ms = Ns has roots, and we denote the largest root by
s∗. Now, since v is lower-semicontinuous in B2 we can find a point x∗ ∈ Bs∗

such that

Ms∗ = v(x∗) = (1− s∗)−β

Also, as s∗ is the largest root, we can notice that for R = 1−s∗

2 we have

Ms∗ ≤ sup
B 1+s∗

2

(x∗)

v ≤ N 1+s∗
2

= 2β(1− s∗)−β . (27)

A lower bound, somewhere

Now we use the oscillation estimates 2.10 to find a lower bound for the function
v somewhere inside B1.

Using Theorem 2.10 for all 0 < r < R and for all x ∈ Br(x
∗) we have

v(x)− v(x∗) ≤ c

[
osc v
BR(x∗)

(
r

R

)α]
≤ c

[
2β(1− s∗)−β

(
r

R

)α]
, using (27)

We choose r = ϵ∗R with ϵ∗ independent of s∗ and small enough such that
c2β(1− s∗)−βϵ∗α ≤ 1

2 (1− s∗)−β to obtain, from the previous inequality,

v(x) ⩾ −v(x) ⩾
1

2
(1−s∗)−β−v(x∗) =

1

2
(1−s∗)−β := M, ∀x ∈ Br(x

∗) . (28)

Ω

OO

x∗



LOCAL VS NONLOCAL DE GIORGI CLASSES (19 of 50)

Propagation of Positivity

Now that we have a lower bound in a small ball centered in x∗, our interest
is to propagate this lower bound (at the price of a suitable decay) until we
cover completely B1. The strategy goes through Lemma 2.9: first we recover
from (28) a measure-theoretical information in Br(x

∗), that is

|Br(x
∗)| = |[v ⩾ M ] ∩Br(x

∗)| ⩾ 1

2
|Br|.

Then we observe that (29) implies for a ball of four times that radius

|[v ⩾ M ] ∩B4r(x
∗)| ⩾ |[v ⩾ M ] ∩Br(x

∗)| ⩾ 1

2
|Br| = 2−(2N+1)|B4r|. (29)

As number θ in Lemma 2.9 is arbitrary, we apply it with ρ = 4r and θ̃ = 1
24N

to (29), then there exists ϵ̃ ∈ (0, 1) such that

|[v < 2ϵ̃M ] ∩B4r(x
∗)| ≤ ν̃|B4r| .

In order to get a point-wise estimate, we apply the Critical Mass Lemma 2.4 to
obtain

v(x) ⩾ ϵ̃M, ∀x ∈ B2r(x
∗) .

Repeating this process on the balls from B2jr(x
∗) to B2j+1r(x

∗) we get

v > ϵ̃jM a.e. in B2j+1r(x
∗).

After n iterations, the balls B2n+1r(x
∗) expand to cover B1 for n large enough

such that

2 ≤ 2n+1r = 2n+1ϵ∗
1− s∗

2
≤ 4

for which,

2ϵ̃nM = 2ϵ̃n
[
1

2
(1− s∗)−β − v(x∗)

]
= ϵ̃n(1− s∗)−β

≤ (2β ϵ̃)nϵ∗β ≤ 2β ϵ̃n (1− s∗)
−β

= 2β+1ϵ̃nM.

The remainder of the proof consists in freeing up the lower bound ϵ̃jM from
the qualitative parameter s∗, that originated in the Krylov-Safonov argument.
The constant ϵ∗ is independent of s∗ but, in fact, dependent on β. We select β
to be big enough that ϵ̃n(1− s∗)

−β = 1 and

ϵ̃nM = ϵ̃n
1

2
(1− s∗)

−β
= γ

Therefore, v ⩾ ϵ̃nM ⩾ γ in B1, which leads to the desired result.
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Remark 2.12. It is possible to prove the Harnack inequality (26) without using
the fact that elements u ∈ DGp(γ̂,Ω) admit an Hölder continuous representative
satisfying the oscillation estimates of Theorem 2.10, see [10] Chap X. The Hölder
continuity is used only to ensure the lower bound (28), that can be achieved with
the help of the combined use of a suitable Local Clustering Lemma (see [12])
and the measure-to estimate Lemma 2.4.

Here we have preferred to use Theorem 2.10 for the sake of its simplicity,
and to show more approaches: in the next Section 3, we will derive a Harnack
inequality for the fractional counterpart of DGp(γ̂; Ω) without the use of the
oscillation estimates.

Finally, for the purpose of applications, inequality (26) contains all the
information needed. The usual formula indeed, can be recovered easily from
the right-hand side inequality (26) and lower-semicontinuity. An attentive read
might reveal that these two ingredients are actually all we need, disregarding
the membership to the De Giorgi class.

Corollary 2.13. Let u ∈ DGp(γ̂,Ω) be a non-negative function. Then, there
exists a constant γ > 1 depending only on the data, such that

1

γ
sup

Bρ(x0)

u ≤ u(x0) ≤ γ inf
Bρ(x0)

u

Proof. By contradiction, assume that

sup
Bρ(x0)

u > γu(x0) > 0.

Now, by lower- semicontinuity of u (2.10), there exists x∗ ∈ Bρ(x0) such that

u(x∗) > γu(x0).

We apply the Harnack Inequality (26) on u(x∗) and obtain

u(x0) <
1

γ
u(x∗) ≤ inf

Bρ(x∗)
u ≤ u(x0)

as x0 ∈ Bρ(x∗).

Corollary 2.14. Let u ∈ DGp(γ̂,RN ) be bounded below. Then, u is constant.

Proof. If we consider the function v = u − infRN u ≥ 0, then v ∈ DG(γ̂,RN ).
Let x0 ∈ RN be such that v(x0) > 0 and an application of (26) leads us to

v(x0) ≤ γ inf
Bρ(x0)

v.

Now, we can take ρ → ∞ and obtain

u(x0)− inf
RN

u ≤ γ inf
RN

[
u− inf

RN
u

]
= 0.
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2.2. How big is the class DGp(γ̂,Ω)?

In this brief subsection we show that our treatment embodies homogeneous local
weak solutions to p-Laplacian type equations with measurable and bounded
coefficients, and quasi-minima of the Calculus of Variations whose prototype
functional is

F(u,Ω) =

ˆ
Ω

|∇u|p dx .

To prove the first assertion, let us consider equations as

−div
(
A(x, u,∇u)

)
= 0, in Ω ⊂ Rn, (30)

where, Ω ⊂⊂ RN and for u ∈ W 1,p
loc (Ω), the functions A(·, u,∇u(·)) are measur-

able and satisfy the structure conditions{
A(x, u,∇u) · ∇u ≥ λ|∇u|p,
|A(x, u,∇u)| ≤ Λ|∇u|p−1

(31)

with the ellipticity constants 0 < λ ≤ Λ. We are interested in the local
behavior of solutions to (30)-(31), irrespectively of possibly prescribed data.
This motivates the following definition.

Definition 2.15. A function u ∈ W 1,p
loc (Ω) is a local weak sub(super)-solution

of (30)-(31), if ˆ
Ω

A(x, u,∇u)∇ϕdx ≤ (≥)0

for all non-negative test functions ϕ ∈ W 1,p
o (K), for every open set K such that

K ⊂⊂ Ω.

Lemma 2.16. Let u be a local weak sub(super) solution of (30)-(31). Then
there exists a constant γ̂ > 0 depending only on the data {N, p, λ,Λ} such that
u ∈ DG±

p (γ̂,Ω).

Now we turn our attention to the quasi-minima of functionals. Let us
consider the functional

F(u,Ω) =

ˆ
Ω

F (x, u,∇u) dx , (32)

where F (x, u, z) ia s Carathéodory function satisfying

λ|z|p ≤ F (x, u,∇u) ≤ Λ|z|p , 0 < λ ≤ Λ . (33)
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Definition 2.17. A function u ∈ W 1,p
loc (Ω) is a sub-quasiminimum for the

functional F if for every function 0 ⩾ φ ∈ W 1,p(Ω) with support supp(φ) =
K ⊂ Ω, we have

F(u,K) ≤ QF(u+ φ,K), Q ⩾ 1 .

Similarly u is a super-quasiminimum for F is the previous relation holds true
for every 0 ≤ φ ∈ W 1,p(Ω). A quasi minimum is at the same time a sub-
quasiminimum and a super-quasiminimum.

Lemma 2.18. Let u ∈ W 1,p
loc (Ω) be a sub(super)-quasiminimum for the functional

F above. Then there exists γ̂ > 0 depending only on the data {N, p, λ,Λ} such
that u ∈ DG±

p (γ̂,Ω).

Remark 2.19. Finally, local weak solutions to equations as (30)-(31) are quasi
minima of suitable functionals, as (32)-(33), see [20] Chap VI; while, when the
functional F is differentiable in a suitable sense, the equation satisfied by the
minima, called Euler-Lagrange equation, is of the same kind of (30) (see for
instance [20]).

3. Fractional De Giorgi classes

In this section, we consider nonlocal De Giorgi classes: a particular subset of
the fractional Sobolev space, whose elements satisfy a fractional Caccioppoli
inequality. We will show that the elements of these classes are locally bounded
and have an Hölder continuous representive which satisfies an Harnack inequality.

Let Ω ⊂ RN be an open bounded set, p ≥ 1 and s ∈ (0, 1) such that sp < N .
In order to consider fractional De Giorgi classes, the candidate members have to
belong to a suitable space of functions (similarly as in Section 2 for the Sobolev
spaces), called the fractional Sobolev space and denoted as

W s,p(Ω) =

{
u ∈ Lp(Ω) and

|u(x)− u(y)|
|x− y|

N
p +s

∈ Lp(Ω× Ω)

}
.

For u ∈ W s,p(Ω), the term

[u]W s,p(Ω) =

(ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|N+ps
dxdy

) 1
p

is called the Gagliardo semi norm of u. Similarly to the local case, we can define
W s,p

o (Ω) as the closure of C∞
o (Ω) in W s,p(Ω). One can prove that C∞

0 (RN ) is
dense in W s,p(RN ), but it is not true for a general open subset Ω. For the proof
and more information about fractional Sobolev spaces, we refer to [15] and [27].
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Many estimates derived for the Section 2 have a similar analogue in the
fractional case, the main difference being the presence of a new term, called the
“tail” of the operator, which takes into account the long-distance behavior of
the function. For a point x0 ∈ RN , a radius R > 0 and a measurable function
u : RN → R, its tail is defined as

Tail(u, x0, R)p−1 = Rps

ˆ
RN\BR(x0)

|u(x)|p−1

|x− x0|N+ps
dx .

The quantity at the right hand side can be infinite, in general. As we aim at
precise quantitative estimates, we introduce the space

Lp−1
s (RN ) =

{
u : RN → R measurable :

ˆ
RN

|u(x)|p−1

(1 + |x|)N+ps
dx < ∞

}
,

so that every such tail as above is a finite number.

Definition 3.1 (Fractional De Giorgi classes). A function u ∈ Lp−1
s (RN ) ∩

W s,p(Ω) is a member of DG±
s,p(γ̂,Ω) if there exists a constant γ̂ = γ̂(N, p, s) > 0

such that for every k ∈ R, τ ∈ (0, 1) and ball Bρ(x0) ⊂ Ω the estimate

[(u− k)±]
p
W s,p(Bτρ(x0))

+

ˆ
Bτρ(x0)

ˆ
RN

(u(x)− k)±(u(y)− k)p−1
∓

|x− y|N+ps
dxdy

≤ γ̂

(1− τ)pρsp
∥(u− k)±∥pLp(Bρ(x0))

+
γ̂

(1− τ)N+spρsp
∥(u− k)±∥L1(Bρ(x0)

Tail((u− k)±, x0, ρ)
p−1 (34)

is satisfied. Finally,

DGs,p(γ̂,Ω) := DG+
s,p(γ̂,Ω) ∩DG−

s,p(γ̂,Ω) .

Remark 3.2. Roughly speaking, what diversifies our definition of De Giorgi
class DGs,p(γ̂,Ω) from the one of [7] is the fact that integral of the second
term on the left hand side is taken in the unbounded set RN . However, this
minor adjustment allows us to use a new method, adapted from [30], which
is far simpler and more readable: in particular, it does not employ the usual
clustering lemmas nor Krylov-Safonov covering arguments.

Remark 3.3. As in the local framework, if u ∈ DG+
s,p(γ̂,Ω) then −u ∈

DG−
s,p(γ̂,Ω). This is because again by taking −k we get (−u+ k)+ = (u− k)−.

As in the local framework, the first property that we aim to show, in order
to construct a complete regularity theory, is

DGs,p(γ̂,Ω) ⊆ L∞
loc(Ω) .

To this aim, we recall a classical fractional embedding.
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Lemma 3.4 (Fractional embedding). Let σ ∈ (0, 1). Then there exists a constant
γ > 1, depending only on the data, such that for every u ∈ W s,p(Bρ), compactly
supported in B(1−σ)ρ, there holds

(ˆ
Bρ

|u|
Np

N−sp dx

)N−sp
N

≤ γ

{¨
B2

ρ

|u(x)− u(y)|p

|x− y|N+sp
dxdy +

σ−(sp)

ρps

ˆ
Bρ

|u(x)|p dx

}
. (35)

Now, we can prove the local boundness.

Theorem 3.5 (Local Boundness). If u ∈ DG±
s,p(γ̂,Ω), then for all Bρ(x0) ⊂ Ω,

σ ∈ (0, 1) we have

sup
Bσρ(x0)

u± ≤ γ(σ)

{(̂
Bρ(x0)

up
± dx

) 1
p

+Tail(u±, x0, σρ)

}
(36)

where γ(σ) > 1 depends only on the data {N, p, s}, and σ.

Proof. Let us define, for some k ∈ R to be determined later and n ∈ N, the
sequence of decreasing balls

ρn = ρ(σ + (1−σ)
2n )

ρ̂n = 3ρn+ρn+1

4

ρ̃n = ρn+ρn+1

2

ρ̄n = ρn+3ρn+1

4

and


Bn = Bρn

(x0)

B̂n = Bρ̂n
(x0)

B̃n = Bρ̃n
(x0)

B̄n = Bρ̄n
(x0),

where Bn+1 ⊂ B̄n ⊂ B̃n ⊂ B̂n ⊂ Bn, and the sequence of increasing levels
kn = k(1− 2−n).

Let ξn be a cut-off function such that 1Bn+1
≤ ξn ≤ 1B̄n

and such that

|∇ξn| ≤ γ2n+1

(1−σ)ρ . Now we estimate (34), with positive truncation (u− kn+1)+,

between B̃n and B̂n.
To apply precisely Definition 3.1, first observe that

ρ̃ = ρ̂

(
2n+3σ + 6(1− σ)

2n+3σ + 7(1− σ)

)
so that, with the notation of Definition 3.1,

1− τ ≥ (1− σ)

2n+3
.
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Using this remark, we get

[(u− kn+1)+]
p

W s,p(B̃n)
≤ 2n(N+ps)γ

ρsp(1− σ)N+ps
×

×
{(

1 +
γ2n(p−1)

kp−1
Tail((u− kn+1)+, x0, ρ̂n)

p−1

)
∥(u− kn)+∥pLp(B̂n)

}
, (37)

where we have used the fact that ρ̂n ≥ ρ
2n+3 and

∥(u− kn+1)+∥L1(B̂n)
≤ γ2n(p−1)

kp−1
∥(u− kn)+∥pLp(B̂n)

.

Now, we choose the level k such that

k > σ− sp
p−1Tail(u+, x0, σρ) ≥

(
ρ̂n
σρ

) sp
p−1

Tail(u+, x0, σρ)

≥ Tail((u− kn+1)+, x0, ρ̂n) (38)

so from (37) we recover

[(u− kn+1)+]
p

W s,p(B̃n)
≤ 2n(N+ps)γ

ρsp(1− σ)N+ps
∥(u− kn)+∥pLp(B̂n)

. (39)

Now we consider the cut-off function ξn, use the Hölder inequality and the
embedding (35) over the balls B̄n and B̃n,

1

ρ̃n − ρ̄n
≤ γ 2n

(1− σ)ρ
,

to obtainˆ
Bn+1

|(u− kn+1)+|p dx =

ˆ
Bn+1

|(u− kn+1)+ξn|p dx

≤
(ˆ

Bn+1

|(u− kn+1)+ξn|
Np

N−ps dx

)N−ps
N

|Bn+1 ∩ {u ≥ kn+1}|
ps
N

≤ γ

{¨
B̃2

n

|(u− kn)+ξn(x)− (u− kn)+ξn(y)|p

|x− y|N+ps
dxdy

+
1

ρps
1

[(1−σ)ρ]ps

ˆ
B̃n

|(u(x)−kn+1)+|pξpn(x) dx
}
|Bn ∩ {u≥kn+1}|

ps
N .

(40)

On the first term of the right hand side in (40) we estimate, adding and
subtracting (u(y)− kn)+ξn(x)

|(u− kn)+ξn(x)− (u− kn)+ξn(y)|p

≤ γ|(u(x)− kn)+ − (u(y)− kn)+|pξpn(x) + γ(u(y)− kn)
p
+|ξn(x)− ξn(y)|p .
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So that it becomes, using the Lagrange theorem on ξn¨
B̃2

n

|(u− kn)+ξn(x)− (u− kn)+ξn(y)|p

|x− y|N+ps
dxdy

≤ γ

[¨
B̃2

n

|(u(x)− kn)+ − (u(y)− kn)+|pξpn(x)
|x− y|N+ps

dxdy

+

¨
B̃2

n

(u(y)− kn)
p
+|ξn(x)− ξn(y)|p

|x− y|N+ps
dxdy

]
≤ γ

[¨
B̃2

n

|(u(x)− kn)+ − (u(y)− kn)+|p

|x− y|N+ps
dxdy

+
2np

ρp

¨
B̃2

n

(u(y)− kn)
p
+

|x− y|N+(s−1)p
dxdy

]
≤ γ

[
[(u− kn)+]

p
s,p +

2np

ρp

ˆ
B̃n

(u(y)− kn)
p
+ dy sup

y∈B̃n

ˆ
B̃n

dx

|x− y|N+(s−1)p

]
≤ γ

[
[(u− kn)+]

p
s,p +

2np

ρp

(ˆ
B̃n

(u(y)− kn)
p
+ dy

)
1

ρ̃
(s−1)p
n

]
≤ γ

[
[(u− kn)+]

p
s,p +

2np

ρsp
∥(u− kn)+∥pLp(B̃n)

]
. (41)

Combining (41) and (40) we get
ˆ
Bn+1

|(u− kn+1)+|p dx ≤ γ

{[
[(u− kn)+]

p
s,p +

2np

ρsp
∥(u− kn)+∥pLp(B̃n)

]
+

2n(sp)

ρsp(1− σ)sp

ˆ
B̃n

|(u(x)− kn+1)+|p dx
}
|Bn ∩ {u ≥ kn+1}|

ps
N

≤ γ

{[
[(u− kn)+]

p
s,p +

2np

ρsp
∥(u− kn)+∥pLp(Bn)

]
+

2n(sp)

ρsp(1− σ)sp
∥(u− kn)+∥pLp(Bn)

}
|Bn ∩ {u ≥ kn+1}|

ps
N ,

and using (39) we arrive at

∥(u− kn+1)+∥pLp(Bn+1)

≤
(

γ 2n(N+ps)

(1− σ)N+spρps

){
∥(u− kn)+∥pLp(Bn)

}(
γ2np

kp

) sp
N

(∥(u− kn)+∥pLp(Bn)
)

sp
N

≤ γ2n(N+p)(1+ sp
N )

(1− σ)N+spρpsk
sp2

N

∥(u− kn)+∥
p(1+ sp

N )

Lp(Bn)
, (42)
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having used

∥(u−kn)+∥pLp(Bn)
≥
ˆ
Bn∩{u≥kn+1}

(u−kn)
p dx ≥

(
k

2n+1

)p

|Bn ∩ {u ≥ kn+1}| .

Now we call β = sp
N > 0, b = 2(N+p)(1+β) > 1 and

Yn =

ˆ
Bn

(u− kn)
p
+ dx =

∥(u− kn)+∥pLp(Bn)

|Bn|
,

so that we get in (42), multiplying and dividing in the right hand side by |Bn|
and remembering that 2N |Bn+1| ≥ |Bn|,

Yn+1 ≤ γbn

(1− σ)N+psk
sp2

N

Y 1+β
n .

We now want to use the same argument of (8): to this end we choose k so that
the condition

Y0 =

ˆ
Bρ

up
+ dx ≤

(
γ

(1− σ)N+ps

)− 1
β

b
− 1

β2 kp

is satisfied. This means that k has to be chosen so that

k >

(
γ

(1− σ)N+ps

) 1
pβ

b
1

pβ2

(̂
Bρ

up
+ dx

) 1
p

=: γ(σ)

(̂
Bρ

up
+ dx

) 1
p

.

Recalling (38) our final choice of k is

k := γ(σ)

(̂
Bρ

up
+ dx

) 1
p

+σ− sp
p−1Tail(u+, x0, σρ) ,

then, we have Yn → 0 as n → ∞, which means u+ ≤ k∞ = k in Bσρ or
equivalently (36).

Remark 3.6. Constant γ(σ) deteriorates as soon as σ ↓ 0 or σ ↑ 1.

To Continuity and Beyond

In this subsection we show the arrow

DGs,p(γ̂,Ω) ↪→ C0,α
loc (Ω),



(28 of 50) F. CASSANELLO ET AL.

for some α ∈ (0, 1), meaning with this that elements of DGs,p(γ̂,Ω) admit
an Hölder continuous representative. From now on we consider u ∈ L∞

loc(Ω),
Blρ(x0) ⊂ Ω, for some radius ρ > 0 and l > 2 to be defined. Let

µ+ ≥ sup
Blρ(x0)

u , µ− ≤ inf
Blρ(x0)

u , ω ≥ µ+ − µ− . (43)

The choice of this constant l is of great importance in the fractional framework.
In fact, all of our results present a dichotomy, in the sense that either the tail is
big, or we can have our result. In the last part of the work we will choose l so
that we can negate the possibility of a big tail and have a guarantee that the
result holds.

We show here a measure-to-point property, analogous to Lemma 2.4, for the
nonlocal case.

Lemma 3.7 (Nonlocal Critical Mass Lemma). Suppose that u ∈ DG+
s,p(γ̂,Ω),

and for any a ∈ (0, 1) there exists a constant ν ∈ (0, 1), depending only on the
data, such that∣∣[u > µ+ − ϵω] ∩Bρ(x0)

∣∣ ≤ ν|Bρ| for some ϵ ∈ (0, 1) (44)

and
l−

sp
p−1Tail(u− µ+)+, x0, lρ) ≤ ϵω . (45)

Then
u ≤ µ+ − aϵω a.e. in Bρ/2(x0) . (46)

On the other hand if u ∈ DG−
s,p(γ̂,Ω), for any a ∈ (0, 1) there exists a constant

ν, depending only on the data, such that if∣∣[u < µ− + ϵω] ∩Bρ(x0)
∣∣ ≤ ν|Bρ| for some ϵ ∈ (0, 1)

and
l−

sp
p−1Tail(u− µ−)−, x0, lρ) ≤ ϵω .

Then
u ≥ µ− + aϵω a.e. in Bρ/2(x0) . (47)

Proof. We will prove (44)-(45)-(46), the other case being the same, thanks to
remark 3.3. Define the sequence of decreasing balls as in Theorem 3.5 with
σ = 1/2 and the sequence of increasing levels

kn = µ+ − aϵω − (1− a)ϵω

2n
.

For n ∈ N let ξn be a cut-off function such that 1Bn+1
≤ ξn ≤ 1B̃n

and

|∇ξn| ≤ 2n

ρ . Finally we define the set An = [u > kn] ∩Bn.
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Now we estimate[
(1− a)ϵω

2n+1

]p
|An+1| = (kn+1 − kn)

p|An+1| ≤ ∥(u− kn)+ξn∥pLp(B̃n)

≤ ∥(u− kn)+ξn∥pLp∗ (B̃n)
|An|

ps
N by Hölder’s inequality

≤ |An|
ps
N γ

[¨
B̃2

n

|(u−kn)+ξn(x)− (u−kn)+ξn(y)|p

|x− y|N+ps
dxdy

+
2(N+sp)n

ρsp

ˆ
B̃n

(u− kn)
p
+ξ

p
n(x) dx

]
(48)

where in the last passage, we used the fractional embedding (35). We now work
exactly as in (41) to arrive, from (48), at[

(1− a)ϵω

2n+1

]p
|An+1| ≤ |An|

ps
N γ

[
[(u− kn)+]

p
s,p +

2np

ρsp
∥(u− kn)+∥pLp(B̃n)

+
2(N+sp)n

ρsp

ˆ
B̃n

(u− kn)
pξpn(x) dx

]
(49)

Now for the first term in the right hand side we consider (34) and estimate it

as in (37), the only difference being that now kn+1 − kn = (1−a)ϵω
2n+1 , to have

[(u− kn)+]
p
s,p (50)

≤ 2nγ

ρsp

{(
1+

γ2n(p−1)

[(1−a)ϵω]p−1
Tail((u−kn+1)+, x0, ρ̂n)

p−1

)
∥(u−kn)+∥pLp(B̂n)

}
.

We estimate the tail, considering ρ/2 ≤ ρ̂n ≤ ρ, ∀n ∈ N, so we have

Tail((u− kn+1)+, x0, ρ̂n)
p−1 = ρ̂spn

ˆ
RN\B̂n

(u(x)− kn+1)
p−1
+

|x− x0|N+ps
dx

= ρ̂spn

ˆ
RN\Blρ(x0)

(u(x)− kn+1)
p−1
+

|x− x0|N+ps
dx+ ρ̂spn

ˆ
Blρ(x0)\B̂n

(u(x)− kn+1)
p−1
+

|x− x0|N+ps
dx

≤ ρ̂spn c(p)

ˆ
RN\Blρ(x0)

(u(x)−µ+)p−1
+

|x− x0|N+ps
dx+ ρ̂spn c(p)

ˆ
RN\Blρ(x0)

(ϵω)p−1

|x−x0|N+ps
dx

+ ρ̂spn

ˆ
Blρ(x0)\B̂n

(u(x)− kn+1)
p−1
+

|x− x0|N+ps
dx

≤ γl−spTail((u− µ+)+, x0, lρ)
p−1 + γl−sp(ϵω)p−1 + γ(ϵω)p−1 ≤ γ(ϵω)p−1

where we also used (45), that (u− kn+1)+ ≤ ϵω in Blρ(x0), and l > 2 so that γ
is independent of l. Inserting this result in (50) delivers

[(u− kn)+]
p
s,p ≤

(
γ2np

ρsp(1− a)p−1

)
∥(u− kn)+∥pLp(B̂n)
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and again putting this in (49) provides[
(1− a)ϵω

2n+1

]p
|An+1| ≤ |An|

ps
N

γ 2(N+sp)n

ρsp

(
1

(1− a)p−1

)
∥(u− kn)+∥pLp(B̂n)

.

Now, let us just consider that

∥(u− kn)+∥pLp(B̃n)
≤ (ϵω)p|{u > kn} ∩Bn| = (ϵω)p|An|

to finally have[
(1− a)ϵω

2n+1

]p
|An+1| ≤

2n(N+sp)γ (ϵω)p

ρsp(1− a)p−1
|An|1+

sp
N .

Putting all together, dividing both sides for |Bn|, remembering that 2n|Bn+1| ≥
|Bn| and calling b = 2N+p(s+1) and β = sp

N , we arrive at

Yn+1 :=
|An+1|
|Bn+1|

≤ γbn

(1− a)2p−1
Y 1+β
n

and again we are in a recursive situation as in (8): this time, to estimate the
first step Y0, we recall that assumption (44) gives us

Y0 =
|[u > µ+ − ϵω] ∩Bρ(x0)|

|Bρ|
≤ ν := b

− 1
β2

(
γ

(1− a)2p−1

)− 1
β

observe that γ > 1 so that ν ∈ (0, 1). Hence, Yn → 0 when n → ∞ and (46) is
proved.

Remark 3.8. The previous lemma can be reformulated in a more general way
for a nonnegative function u ∈ DG−

s,p(γ̂,Ω), in fact, in this case we can rescale
u to (u− µ−) and assume µ− = 0. Then, for any k > 0 we can always choose ϵ
so that k = ϵω, finally take h ∈ (0, 1) so our statement take the form of:
if

|[u < k] ∩Bhρ(x0)| ≤ ν|Bhρ| and h
sp

p−1Tail(u−, x0, ρ) ≤ k

then

u ≥ ak a.e. in Bhρ/2(x0) for a ∈ (0, 1) .

Next, we prove a Shrinking Lemma,

Lemma 3.9 (Nonlocal Shrinking Lemma). Let u ∈ DG+
s,p(γ̂,Ω) and let us

assume that for some ϵ ∈ (0, 1/2) it holds∣∣[u ≤ µ+ − ϵω] ∩Bρ(x0)
∣∣ ≥ α|Bρ| for some α ∈ (0, 1) .
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Then, there exist γ(l), depending only on the data and l, such that, for any
σ ∈ (0, 1/2) chosen, either

l−
sp

p−1Tail((u− µ+)+, x0, lρ) ≤ σϵω ,

or ∣∣[u ≥ µ+ − σϵω] ∩Bρ(x0)
∣∣ ≤ γ(l)σp−1

α
|Bρ| .

On the other hand if u ∈ DG−
s,p(γ̂,Ω) let us assume that for some ϵ ∈ (0, 1/2)

it holds ∣∣[u ≥ µ− + ϵω] ∩Bρ(x0)
∣∣ ≥ α|Bρ| for some α ∈ (0, 1) . (51)

Then, there exist γ(l), depending only on the data and l, such that, for any
σ ∈ (0, 1/2) chosen, either

l−
sp

p−1Tail((u− µ−)−, x0, lρ) ≤ σϵω , (52)

or ∣∣[u ≤ µ− + σϵω] ∩Bρ(x0)
∣∣ ≤ γ(l)σp−1

α
|Bρ| .

Proof. This time, we show the proof for u ∈ DG−
s,p(γ̂,Ω), the other case can

be done again using remark 3.3. We use (34) over balls Bρ(x0) ⊂ B2ρ(x0)
for (u − k)− with k = µ− + σϵω. Observing that in B2ρ ⊂ Blρ(x0) we have
(u− k)− ≤ σϵω and we get

¨
B2

ρ(x0)

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dxdy

≤ γ

ρps

[
(σϵω)p|B2ρ|+ (σϵω)|B2ρ|Tail((u− k)−, x0, 2ρ)

p−1

]
≤ γ

ρps
(σϵω)p|B2ρ| (53)

where we enforced the tail condition (52) to compute

Tail((u− k)−, x0, 2ρ)
p−1

≤ γρps
ˆ
RN\B2ρ(x0)

(u− µ−)
p−1
−

|x− x0|N+ps
dx + γρps

ˆ
RN\B2ρ(x0)

(σϵω)p−1

|x− x0|N+ps
dx

≤ γρps
ˆ
RN\Blρ(x0)

(u− µ−)
p−1
−

|x− x0|N+ps
dx

+ γρps
ˆ
Blρ(x0)\B2ρ(x0)

(u− µ−)
p−1
−

|x− x0|N+ps
dx+ γ(σϵω)p−1

≤ γl−psTail((u− µ−)−, x0, lρ)
p−1 + γ(σϵω)p−1 ≤ γ(σϵω)p−1 .
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Now, on (53), we estimate the left hand side from below as

¨
B2

ρ(x0)

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dxdy

≥
[ˆ

Bρ(x0)∩[u(x)≤µ−+σϵω/2]

(k − u(x))

(ˆ
Bρ(x0)∩{u(y)≥µ−+ϵω}

(u(y)− k)p−1

|x− y|N+ps
dy

)
dx

]

≥
(
σϵω

2

)∣∣Bρ(x0) ∩ [u(x) ≤ µ− + σϵω/2]
∣∣

· sup
x∈Bρ(x0)

ˆ
Bρ(x0)∩{u(y)≥µ−+ϵω}

((1− σ)ϵω)p−1

|x− y|N+ps
dy

≥
(
σϵω

2

)∣∣Bρ(x0) ∩ [u(x) ≤ µ− + σϵω/2]
∣∣

· ((1− σ)ϵω)p−1

(2ρ)N+ps

∣∣Bρ(x0) ∩ [u(y) ≥ µ− + ϵω]
∣∣

≥
(
σϵω

2

)∣∣Bρ(x0) ∩ [u(x) ≤ µ− + σϵω/2]
∣∣

· ((1− σ)ϵω)p−1

(2ρ)N+ps

∣∣Bρ(x0) ∩ [u(y) ≥ µ− + ϵω]
∣∣

≥ 1

γ

ασ(ϵω)p

ρsp
(1− σ)p−1

∣∣Bρ(x0) ∩ [u(x) ≤ µ− + σϵω/2]
∣∣ (54)

where we used (51) and the fact that for x, y ∈ Bρ(x0) |x− y| ≤ 2ρ at the third
inequality. Using (54) in (53) gives us (as 1− σ ≥ 1

2 )∣∣Bρ(x0) ∩ [u(x) ≤ µ− + σϵω/2]
∣∣ ≤ γσp

α
|Bρ| ,

which is the thesis.

Remark 3.10. Let number ν be determined, by the only data {N, p, s, γ̂}, from
Lemma 3.7. Now, if we choose

σ =

(
αν

2p−1γ

) 1
p−1

≤
(

1

2p−1

) 1
p−1

≤ 1

2

then the assumption in (44) is verified. Hence Lemma 3.7 implies that either (45)
is valid or the reduction

sup
Bρ/2(x0)

u ≤ µ− + aσϵω

holds true. A similar reasoning applies with (51) and (52).
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Remark 3.11. Similarly as in Theorem 2.6, it is possible to prove that u ∈
DG±

s,p(γ̂,Ω) has a lower(upper) semi-continuous representative (see for instance
Thm 9 in [22], or more in general [36]). Being the reasoning similar to the one
Theorem 2.6, we prefer to show directly that elements of DG±

sp(γ̂,Ω) have an
Hölder continuous representative. A proof of this result can be found in [7]; see
also [4], [21] (here p = 2), [30] for a different proof.

Theorem 3.12 (Oscillation estimates). Let u ∈ DGs,p(γ̂,Ω). There exist l > 2
and δ ∈ (0, 1) depending only on the data {N, p, s} such that, if Bρ(x0) ⊂
Blρ(x0) ⊂ BR̃(x0) ⊂ Ω, then

osc
Bρi

(x0)
u ≤ ωδi ρi = ρ(2l)−il ∀ i ∈ N ,

where
ω = 2∥u∥L∞(BR̃(x0))

+ Tail(u, x0, R̃).

Proof. We can consider x0 = 0 without loss of generality. We are first going to
prove that

osc
Bρ/2

u ≤ δω, for some δ ∈ (0, 1). (55)

Let us recall (43) and assume µ+ − µ− ≥ 1
2ω; as indeed otherwise (55) holds

true with δ = 1/2.
Thanks to our assumption, we have the following dichotomy

|[u < µ+ − ω

4
] ∩Bρ| ≥

1

2
|Bρ| , (56)

or

|[u > µ− +
ω

4
] ∩Bρ| ≥

1

2
|Bρ| . (57)

If (56) holds true, then using both the Shrinking Lemma 3.9 and the Critical

Mass Lemma 3.7, as in Remark 3.10 with a = 1/2, taking σ =
(

ν
4p−1γ

) 1
p−1 , that

depends only on the data, we have that either

l−
ps

p−1Tail((u− µ+)+, 0, lρ) > σ
ω

4
, (58)

or
sup
Bρ/2

u ≤ µ+ − σω

8
. (59)

We see that from (59) follows (55), in fact

osc
Bρ/2

u ≤ sup
Bρ/2

−µ− ≤ µ+ − σω

8
− µ− ≤

(
1− σ

8

)
ω ≤ δω ,

for δ = max
{

1
4 , 1−

σ
8

}
.
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The trick now is to give a condition on l such that (58) does not happen.
Indeed

Tail((u− µ+)+, 0, lρ)
p−1

≤ (lρ)ps
[ˆ

RN\Blρ

|u|p−1

|x|N+ps
dx+

ˆ
RN\Blρ

ωp−1

|x|N+ps
dx

]
≤ (lρ)ps

[ˆ
RN\BR̃

|u|p−1

|x|N+ps
dx+

ˆ
BR̃\Blρ

|u|p−1

|x|N+ps
dx+ γ ωp−1(lρ)−sp

]
≤ (lρ)ps

[
R̃−psTail(u, 0, R̃)p−1 + γ ωp−1(lρ)−ps

]
≤
(
lρ

R̃

)ps

ωp−1 + γωp−1 ≤ γωp−1 .

So we just need to take l so that

l−
ps

p−1 γω ≤ σω

4
⇐⇒ l >

(
4γ

σ

) p−1
ps

. (60)

If, on the other hand, (57) is valid, then we can repeat the procedure by
using Lemma 3.7, in particular (47), and, taking again l so that (60) holds
true, observe that in this case Tail((u− µ−)−, 0, lρ)

p−1 ≤ γωp−1 by a similar
argument, we obtain

inf
Bρ/2

u ≥ µ− +
σω

8

so that
osc
Bρ/2

u ≤ µ+ − inf
Bρ/2

u ≤ µ+ − µ− − σω

8
≤ δω .

In this way, (55) is proven.
Now, we want to iterate this result. We denote by

ρi =
ρ

li
, Bi = Bρi , µ+

i = sup
Bi

u , µ−
i = inf

Bi

u ,

and we want to prove that

osc
Bi

u ≤ δiω =: ωi ∀ i ∈ N, , (61)

by induction. The case i = 1 being done in (55), suppose this is true for all
n ∈ {1, . . . , i}: we prove it for i+1. We assume again µ+

i −µ−
i ≥ ωi/2, because

otherwise (61) is valid, as

osc
Bi+1

u ≤ osc
Bi

u ≤ δi

2
ω =:

ωi

2
≤ δωi =: ωi+1 .
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We have again the following dichotomy

|[u < µ+
i − ωi

4
] ∩Bi| ≥

1

2
|Bi| , (62)

or

|[u > µ−
i +

ωi

4
] ∩Bi| ≥

1

2
|Bi| . (63)

Suppose (62) is true, then again using the Shrinking Lemma 3.9 and the Critical
Mass lemma 3.7, now on balls Bi := Bρi

(x0) ⊂ Ω we either allow

l−
sp

p−1Tail((u− µ+
i )+, 0, ρi+1) > σ

ωi

4
, (64)

or
sup
Bi+1

u ≤ sup
Bρ/(2i+1li−1)

u ≤ µ+
i − aσωi

4
. (65)

From (65) follows (61) because

osc
Bi+1

u ≤ sup
Bi+1

u− µ−
i ≤ µ+

i − aσωi

4
− µ−

i ≤ (1− σa)ωi

4
=: ωi+1 .

To make sure (64) does not happen consider that

Tail((u− µ+
i )+, 0, lρi)

p−1

≤ (lρi)
sp

[ˆ
RN\Blρ

(u− µ+
i )

p−1

|x|N+ps
dx+

i∑
j=1

ˆ
Bj−1\Bj

(u− µ+
i )

p−1

|x|N+ps
dx

]
.

The first term is estimated exactly as the previous case, while for the second
term we use the inductive hypothesis (61) to deduce

(u− µ+
i )+ ≤ µ+

j−1 − µ+
i ≤ µ+

j−1 − µ−
j−1 ≤ ωj−1 , for x ∈ Bj−1\Bj

so that ˆ
Bj−1\Bj

(u− µ+
i )

p−1

|x|N+ps
dx ≤ γ

ωp−1
j−1

ρspj
.

Combining these estimates gives us

Tail((u− µ+
i )+, 0, lρi)

p−1 ≤ (lρi)
psγ

ωp−1
i

(lρ)ps
+ γ(lρi)

ps
i∑

j=1

ωp−1
j−1

ρspj

= γ ωp−1
i

δi(1−p)

li(ps)
+ γωp−1

i

i∑
j=1

δ(i+1−j)(1−p)

l(i−j)ps

≤ γωp−1
i∑

j=0

δ(i−j)(1−p)

l(i−j)ps
.



(36 of 50) F. CASSANELLO ET AL.

The summation of this last inequality is bounded if we choose l so that

δ1−p

lps
≤ 1

2
⇐⇒ l ≥

(
2

δp−1

) 1
ps

.

Setting

l =

(
4γ

σ

) p−1
ps

+

(
2

δp−1

) 1
ps

satisfies (60) again.

The case when (63) is true is similar. This finally proves (61).

Theorem 3.13 (Hölder continuity). Let u ∈ DGs,p(γ̂,Ω). Then, u has a Hölder

continuous representative. Moreover, for x0 ∈ Ω, R̃ > 0, such that BR̃(x0) ⊂ Ω
there exists a constant γ, depending only on the data, such that

osc
Bρ(x0)

u := sup
Bρ(x0)

u− inf
Bρ(x0)

u ≤ γω

(
ρl

R̃

)α

(66)

where ω = 2∥u∥L∞(BR̃(x0))
+ Tail(u, x0, R̃) and ρ ∈ (0, R̃/l), for some l > 2.

Proof. Consider again x0 = O. Fix a ball BR̃ ⊂ Ω, and l by the conditions in
Theorem 3.12. Then by Theorem 3.12 for the ball BR := BR̃/l ⊂ BR̃ ⊂ Ω we
have

osc
BR/(2l)i

u ≤ ωδi

for δ ∈ (0, 1), which corresponds to (23) for suitable parameters. The procedure
can be repeated now using the general principle offered by (23)-(24).

Remark 3.14. Observe that up until now we have used (34) without the need
for the second integral of the second term in the LHS to be over RN . In the
following section, we will use the definition in its full strength.

Fractional Harnack-type Inequalities

We prove now that elements of the De Giorgi classes satisfy a nonlocal version
of the Harnack inequality. Our idea is reminiscent of the method of Moser and
Trudinger, for we combine the estimates of the supremum with a weak-Harnack
inequality (see [14], for boundary-value problems). We begin with the latter,
following the steps of [29] .
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Proposition 3.15 (Weak Harnack inequality). Let u ∈ DG−
s,p(γ̂,Ω) be non-

negative in Bρ(x0) ⊂ Ω. Then , there exists a constant η ∈ (0, 1), depending
only on the data, such that, ∀σ ∈ (0, 1

2 ), we have

inf
Bσρ/2(x0)

u+ (σ)
sp

p−1Tail(u−, x0, ρ)

≥ η

{(̂
Bσρ(x0)

up−1(x) dx

) 1
p−1

+Tail(u+, x0, σρ)

}
. (67)

In order to prove this Proposition, we first require some preliminary lemmata.
These are, in fact, measure shrinking lemmata, really similar to Lemma 3.9, in
that it involves the RHS of (34). It is here that the difference of our definition
with [7] plays its role: see the proof of Lemma 3.16. The first lemma measures
he level set of u with its local average.

Lemma 3.16. Let u ∈ DG−
s,p(γ̂,Ω)) be non-negative in BR(x0) ⊂ Ω. Let k > 0,

σ ∈ (0, 1/2) and ρ > 0 such that Bρ(x0) ⊂ Ω. Then there exists a constant
γ > 1, depending only on the data, such that either

(σ)
sp

p−1Tail(u−, x0, ρ) > k

or

|[u ≤ k] ∩Bσρ(x0)| ≤
γkp−1

avg(up−1)Bσρ(x0)
|Bσρ|

where avg(up−1)Bσρ(x0) is the integral average on Bσρ(x0).

Proof. Using the definition (34) on Bσρ(x0) and B2σρ(x0) and operating as in
(53), with the fact that now (u− k)− ≤ k and the hypothesis on the tail, we
have

ˆ
Bσρ(x0)

ˆ
Bσρ(x0)

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dydx ≤ γ kp

(σ)N+2spρsp
|Bσρ| . (68)

We bound (68) from below: let us consider the fact that up−1
+ ≤ γ(u− k)p−1

+ +
γkp−1 and hence

¨
B2

σρ(x0)

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dxdy

≥
¨

B2
σρ(x0)

(u(x)− k)−[
1
γ (u+)

p−1 − kp−1]

(2σρ)N+ps
dxdy

≥ γ−1

(σρ)ps

(ˆ
Bσρ(x0)

(u(x)− k)− dx

)(̂
Bσρ(x0)

u(y)p−1 dy

)
− γ kp

(σρ)ps
|Bσρ| .
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So now from (68) we get

γ

(σρ)ps

(ˆ
Bσρ(x0)

(u(x)− k)− dx

)
(avg(up−1)Bσρ(x0)) ≤

γ kp

(σρ)ps
|Bσρ| . (69)

Now, just observe that

ˆ
Bσρ(x0)

(u(x)− k)− dx =

ˆ
Bσρ(x0)∩[u≤k]

k − u(x) dx

≥
ˆ
Bσρ(x0)∩[u≤ 1

2k]

k − u(x) dx ≥
ˆ
Bσρ(x0)∩[u≤ 1

2k]

k − k

2
dx

≥
∣∣∣∣Bσρ(x0) ∩ [u ≤ 1

2
k]

∣∣∣∣k2 ,

so (69) becomes

∣∣∣∣Bσρ(x0) ∩ [u ≤ 1

2
k]

∣∣∣∣ ≤ γ kp−1

avg(up−1)Bσρ(x0)
|Bσρ| .

Next lemma is similar to the previous one, however the measure of the set
is estimated by a nonlocal integral.

Lemma 3.17. Let u ∈ DG−
s,p(γ̂,Ω)) be non-negative in BR(x0) ⊂ Ω. Let k > 0,

σ ∈ (0, 1/2) and ρ > 0 such that Bρ(x0) ⊂ Ω. Then, there exists a constant
γ > 1, depending only on the data, such that either

(σ)
sp

p−1Tail(u−, x0, ρ) > k ,

or

|{u ≤ k} ∩Bσρ(x0)| ≤
γkp−1

Tail(u+, x0, σρ)
|Bσρ| .

Proof. Again, the proof starts the same as Lemma 3.16, so that we recover
again (68). The difference lies in the estimate from below. Again we employ
that up−1

+ ≤ γ(u− k)p−1
+ + γkp−1, but we also consider that when |y − x0| ≥ σρ

and |x− x0| ≤ σρ, one has

|x− y| ≤ |x− x0|+ |y − x0| ≤ σρ+ |y − x0| ≤ 2|y − x0|
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so that we get

ˆ
Bσρ(x0)

ˆ
RN

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dxdy

≥
ˆ
Bσρ(x0)

ˆ
RN\Bσρ

(u(x)− k)−(u(y)− k)p−1
+

|x− y|N+ps
dxdy

≥
ˆ
Bσρ(x0)

ˆ
RN\Bσρ

(u(x)− k)−[
1
γ (u+)

p−1 − kp−1]

(2|y − x0|)N+ps
dxdy

≥ γ

(σρ)ps
[Tail(u+, x0, σρ)

p−1]

ˆ
Bσρ(x0)

(u(x)− k)− dx

− γkp
(ˆ

RN\Bσρ

dy

|y − x0|N+ps

)
|Bσρ|

≥ γ

(σρ)ps
[Tail(u+, x0, σρ)

p−1]

ˆ
Bσρ(x0)

(u(x)− k)− dx− γkp

(σρ)ps
|Bσρ| .

This gives us

[Tail(u+, x0, σρ)
p−1]

ˆ
Bσρ(x0)

(u(x)− k)− dx ≤ γkp|Bσρ| ,

the right hand side is estimated as in 3.16 so that we arrive at∣∣∣∣Bσρ(x0) ∩ {u ≤ 1

2
k}
∣∣∣∣ ≤ γ kp−1

[Tail(u+, x0, σρ)p−1]
|Bσρ| .

Proof of proposition 3.15. Consider ν be the constant fixed in the Critical Mass
lemma and choose a = 1/2, in the formulation of Remark 3.8. Let us choose k1
and k2 as

k1 :=

(
(avg(up−1)Bσρ(x0))ν

2γ1

) 1
p−1

and k2 :=

(
[Tail(u+, x0, σρ)

p−1]ν

2γ2

) 1
p−1

.

Then, taking γ1 and γ2 as determined in Lemma 3.16 and Lemma 3.17 respec-
tively, we observe that k1 and k2 satisfy

γ1k
p−1
1

(avg(up−1)Bσρ(x0))
≤ ν and

γ2k
p−1
2

[Tail(u+, x0, σρ)p−1]
≤ ν .

So, by the critical mass lemma, we have that in both cases either

σ
sp

p−1Tail(u−, x0, ρ) > ki i = 1, 2 (70)
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or

u ≥ ki
2

in Bσρ/2(x0). (71)

Summing on (70)-(71) for i = 1, 2

inf
Bσρ/2(x0)

u+σ
sp

p−1Tail(u−, x0, ρ) ≥
k1 + k2

2
,

inf
Bσρ/2(x0)

u+σ
sp

p−1Tail(u−, x0, ρ) ≥ η

[(̂
Bσρ(x0)

up−1
+ dx

) 1
p−1

+Tail(u+, x0, σρ)

]
.

Having chosen η the biggest between the two constant ν
4γ1

and ν
4γ2

that depend
only on the data.

With the aid of Lemmata 3.16-3.17, we can prove the following nonlocal
version of the Harnack inequality. A first proof, for solutions to equations, can
be found in [14].

Theorem 3.18 (Harnack inequality). Let u ∈ DGs,p(γ̂,Ω) be non-negative in
BR(x0) ⊂ Ω. Then, there exists a constant γ > 1, depending only on the data,
such that, for all ρ ≤ R

2 , we have

inf
Bρ/2(x0)

u+

(
ρ

R

) ps
p−1

Tail(u−, x0, R) ≥ 1

γ
sup

Bρ/2(x0)

u . (72)

Proof. We employ the estimate (36), for the restricted range σ ∈ (1/3, 2/3), so
that γ depends only on the data.

sup
Bσρ(x0)

u ≤ γ

{(̂
Bρ(x0)

up(x) dx

) 1
p

+Tail(u+, x0, Bσρ)

}

≤ γ

{(̂
Bρ(x0)

up(x) dx

) 1
p

+(σρ)
ps

p−1

[ˆ
Bρ(x0)\Bσρ(x0)

up−1(x)

|x− x0|N+ps
dx

+

ˆ
RN\Bρ(x0)

up−1
+ (x)

|x− x0|N+ps
dx

] 1
p−1
}

≤ γ

{(̂
Bρ(x0)

up(x) dx

) 1
p

+

[
1

(σρ)N

ˆ
Bρ(x0)\Bσρ(x0)

up−1(x) dx+Tail(u+, x0, ρ)
p−1

] 1
p−1
}

≤ γ

{(̂
Bρ(x0)

up(x) dx

) 1
p

+

[
1

σN

ˆ
Bρ(x0)

up−1(x) dx+Tail(u+, x0, ρ)
p−1

] 1
p−1
}
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≤ γ

{(̂
Bρ(x0)

up(x) dx

) 1
p

+

(
1

σN

ˆ
Bρ(x0)

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρ)

}

≤ γ

{(
sup

Bρ(x0)

u

) 1
p
(̂

Bρ(x0)

up−1(x) dx

) 1
p

+

(
1

σN

ˆ
Bρ(x0)

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρ)

}
, (73)

where we have used that u ∈ L∞
loc(Ω), |x− x0| ≥ (σρ)N+ps in Bρ\Bσρ and that

(a+ b)q ≤ γ(aq + bq) for a, b, q > 0. Now, we define the following increasing
sequence of balls

ρ0 = τρ

ρn = ρ
(
τ +

∑n
j=1

(1−τ)
2j

)
ρ∞ = ρ

and


B0 = Bρ0

(x0) = Bτρ(x0)

Bn = Bρn
(x0)

B∞ = Bρ∞(x0) = Bρ(x0).

If we denote by Sn = supBn
u, apply the inequality (73) to the radius ρn and

ρn+1, along with the Young inequality, we obtain

Sn ≤ γϵSn+1 + γ

{
γ

ϵp−1

(̂
Bn+1

up−1(x) dx

) 1
p−1

+

(
1

(τN

ˆ
Bn+1

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρn+1)

}

≤ γϵSn+1 + γ

{
γ

ϵp−1τN

(̂
Bn+1

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρn+1)

}
. (74)

For the tail of u, we use this estimate:

Tail(u+, x0, ρn+1)

=

(
ρpsn+1

ˆ
RN\Bn+1

up−1
+

|x− x0|N+ps
dx

) 1
p−1

=

(
ρpsn+1

ˆ
RN\B∞

up−1
+

|x− x0|N+ps
dx+ ρpsn+1

ˆ
B∞\Bn+1

up−1

|x− x0|N+ps
dx

) 1
p−1

≤
(
ρps

ˆ
RN\B∞

up−1
+

|x− x0|N+ps
dx+

1

ρNn+1

ˆ
B∞\Bn+1

up−1 dx

) 1
p−1

≤ γTail(u+, x0, ρ) +
γ

τN

(̂
B∞

up−1 dx

) 1
p−1

.
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Hence, inequality (74) becomes

Sn ≤ γϵSn+1 + γ

{
γ

ϵp−1τN

(̂
B∞

up−1(x) dx

) 1
p−1

+γTail(u+, x0, ρ)

}
.

Choosing ϵ, τ = 1
2 and iterating backwards from n to 0, delivers

S0 ≤ γ

(
1

2

)n

Sn + γ

( n∑
j=1

2−j

){(̂
B∞

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρ)

}
.

Now we just let n → ∞ and obtain

sup
Bρ/2(x0)

u ≤ γ

{(̂
Bρ(x0)

up−1(x) dx

) 1
p−1

+Tail(u+, x0, ρ)

}
.

Finally, we just use (67) to have

sup
Bρ/2(x0)

u ≤ γ

η

{
inf

Bρ/2(x0)

u+

(
ρ

R

) sp
p−1

Tail(u−, x0, R)

}
which is our thesis.

Remark 3.19. We recovered Harnack’s estimate (72) and the oscillation esti-
mates (66) independently. However, The Harnack’s estimate can be used to
derive the oscillation estimates and vice versa.

3.1. How big is DGs,p(γ̂,Ω)?

Also in this case De Giorgi classes DGs,p(γ̂,Ω) encompass weak solutions to a
group of partial differential equations modeled after the fractional p-Laplacian
and minima of suitable functionals of the Calculus of Variations. We are going
to give just a quick glance at this topic: our presentation here is far from being
complete. In order to give a “nonlocal” formulation, the introduction of the
following space is necessary:

Ws,p(Ω) =

{
u : RN → R meas. , u|Ω ∈ Lp(Ω),

(x, y) → |u(x)− u(y)|p

|x− y|N+sp
∈ L1(R2N \ (RN \ Ω)2)

}
.

Let us denote CΩ = R2N \ (RN \ Ω)2 for ease of notation.



LOCAL VS NONLOCAL DE GIORGI CLASSES (43 of 50)

Definition 3.20. Let Ω ⊂ RN be a bounded open set. A function u ∈ Ws,p(Ω)
is said to be a sub (super) minimizer of the functional

E(u; Ω) =
¨

CΩ

|u(x)− u(y)|pK(x, y) dxdy,

in Ω, where the kernel K : R2N → [0,+∞) is a measurable function satisfying
for some Λ > 0

1

Λ|x− y|N+ps
≤ K(x, y) = K(y, x) ≤ Λ

|x− y|N+ps
, (75)

if E(u; Ω) ≤ E(u+φ; Ω), for any non-positive (non-negative) measurable function
φ : RN → R supported inside Ω.

With a little bit of extra care in the manipulation of the second term at the
left-hand side of (34), the membership of minima of E to the class DGs,p(γ̂,Ω)
can be ensured.

Lemma 3.21 (See [7], Proposition 7.5). Let u ∈ Ws,p(Ω) be a sub(super) min-
imizer for E(u; Ω). Then, there exists a constant γ̂ > 0 depending only on
{N, s, p,Λ} such that u ∈ DG±

s,p(γ̂,Ω).

Similarly, (nonlocal) weak solutions to fractional p-Laplacian equations are
defined. Here, the definition is local, because the testing procedure allows
functions compactly supported in Ω, but the solutions must be defined in the
whole RN .

Definition 3.22. Let Ω ⊂ RN be an open bounded set. A function u ∈ Ws,p(Ω)
is a weak sub (super)-solution to equation L(u) = 0 locally weakly in Ω, if for
any nonnegative (non-positive) function φ ∈ W s,p(RN ) such that supp(φ) ⊂ Ω,

ˆ
RN

ˆ
RN

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)− φ(y))K(x, y) dxdy ≤ 0 . (76)

Again, the membership to DG±
s,p of weak solutions to L(·) = 0 in Ω can be

ensured.

Lemma 3.23 (See [7], Proposition 8.5, [30] Corollary 3.2). Let u ∈ Ws,p(Ω) be a
weak sub(super) solution to L(u) = 0 locally weakly in Ω. Then, there exists a
constant γ̂ > 0 depending only on {N, s, p,Λ} such that u ∈ DG±

s,p(γ̂,Ω).

Proof. Let u be a weak sub-solution to L(u) = 0 and let us suppose as usual that
x0 = O. We consider two radii 0 < r < R and a cut off function ξ ∈ C∞

0 (BR+r
2

),

such that 0 ≤ ξ ≤ 1, ξ = 1 in Br, |∇ξ| ≤ 4/(R − r). Here we observe that by
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Lagrange’s Theorem and the convexity of BR, the increment of ξ between two
points x, y ∈ BR can be evaluated by

|ξ(x)− ξ(y)|p ≤
(

sup
z∈BR

|∇ξ(z)|p
)
|x− y|p ≤ γ

(
|x− y|

R

)p

.

Now, let us fix a level k ∈ R, write w+ = (u− k)+ and A+(k, ρ) = [u > k]∩Bρ.
By testing (76) with the function φ := ξpw+ and using the symmetry of the
integrand we obtain

0 ≥
ˆ
RN

ˆ
RN

|u(x)− u(y)|p−2(u(x)− u(y))(ξpw+(x)− ξpw+(y))K(x, y) dxdy

=

ˆ
BR

ˆ
BR

|u(x)− u(y)|p−2(u(x)− u(y))(ξpw+(x)− ξpw+(y))K(x, y) dxdy

+

¨
CBR

\B2
R

|u(x)−u(y)|p−2(u(x)−u(y))(ξpw+(x)−ξpw+(y))K(x, y) dxdy

= 2

ˆ
BR

ˆ
BR∩[u(x)>u(y)]

|u(x)−u(y)|p−2(u(x)−u(y))(ξpw+(x)−ξpw+(y))K(x, y) dxdy

+ 2

ˆ
BR

ˆ
RN\BR

|u(x)− u(y)|p−2(u(x)− u(y))ξpw+(x)K(x, y) dxdy

= I1 + I2 , (77)

First, we consider the contributions from I1. If x, y /∈ A+(k,R) then w+(x) =
w+(y) = 0. If otherwise x ∈ A+(k,R) and y ∈ BR\A+(k,R) then

|u(x)− u(y)|p−2(u(x)− u(y))(ξpw+(x)− ξpw+(y))

= ξp(x)|w+(x) + w−(y)|p−1
w+(x)

≥ γ−1ξp(x)wp
+(x) + γ−1 ξp(x)wp−1

− (y)w+(x) .

The case where the role of x and y is switched, which is y ∈ A+(k,R) and
x ∈ BR\A+(k,R), cannot happen since we are restricting the evaluation on the
set [u(x) > u(y)].

Finally, when x, y ∈ A+(k,R), we can reformulate the expression as

|u(x)− u(y)|p−2(u(x)− u(y))(ξpw+(x)− ξpw+(y))

= (w+(x)− w+(y))
p−1(w+ξ

p(x)− w+ξ
p(y)) . (78)
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Here we have to consider the two cases ξ(x) ≥ ξ(y) and ξ(x) ≤ ξ(y) separately.
Assuming the former, we easily estimate (78) by

(w+(x)− w+(y))
p−1(w+ξ

p(x)− w+ξ
p(y)) ≥ ξp(x)|w+(x)− w+(y)|p . (79)

Vice versa if ξ(y) > ξ(x) we write (78) by summing and subtracting w+(x)ξ
p(y)

we obtain

(w+(x)− w+(y))
p−1(w+ξ

p(x)− w+ξ
p(y))

= |w+(x)− w+(y)|pξp(y) + (w+(x)− w+(y))
p−1w+(x)(ξ

p(x)− ξp(y))

= A+B .

The use the Young’s inequality

ap − bp ≤ ϵap +
γ

ϵp−1
(a− b)p for a ≥ b ≥ 0, ϵ > 0 ,

with a = ξ(y), b = ξ(x) and ϵ = (w+(x)− w+(y))/2w+(x), allows us to arrive
again at a similar expression

|w+(x)− w+(y)|pξp(y)− (w+(x)− w+(y))
p−1w+(x)(ξ

p(y)− ξp(x))

≥ 1

2
ξp(y)|w+(x)−w+(y)|p−γ−1 max{w+(x)

p, w+(y)
p}|ξ(x)−ξ(y)|p . (80)

Hence, since both expressions in the estimates (80) and (79) are larger than

1

2
max{ξp(x), ξp(y)}|w+(x)−w+(y)|p−γ−1 max{w+(x)

p, w+(y)
p}|ξ(x)−ξ(y)|p,

we estimate the piece of I1 taken on A+(k,R)× A+(k,R) with this quantity,
irrespectively of the values of ξ. By virtue of these inequalities and (75) we
estimate I1 with

γI1 ⩾
¨

A+(k,R)×BR\A+(k,R)

[
ξp wp

+(x) + ξp(x)wp−1
− (y)w+(x)

]
dxdy

|x− y|N+ps

+

¨
A+(k,R)×A+(k,R)

max{ξp(x), ξp(y)}|w+(x)− w+(y)|p
dxdy

|x− y|N+ps

−
¨

A+(k,R)×A+(k,R)

max{wp
+(x), w

p
+(y)}|ξ(x)− ξ(y)|p dxdy

|x− y|N+ps

≥
¨

BR×BR

|w+(x)− w+(y)|p min{ξ(x)p, ξ(y)p} dxdy

|x− y|N+ps

+

ˆ
Br

w+(x)

(ˆ
BR

wp−1
− (y)

|x− y|N+ps
dy

)
dx

−
¨

BR×BR

max{wp
+(x), w

p
+(y)}

|ξ(x)− ξ(y)|p

|x− y|N+ps
dxdy , (81)
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where the first integral of the right-hand side has been reconstructed in the
whole set from the sum of the first and the third term of the left-hand side.
The properties of ξ allow to estimate from below the positive integrals on the
right-hand side on the smaller set Br ×Br and from above the negative one,

¨
BR×BR∩[u(x)>u(y)]

max{wp
+(x), w

p
+(y)}

|ξ(x)− ξ(y)|p

|x− y|N+ps
dxdy

≤
ˆ
BR

wp
+(x)

ˆ
BR

|ξ(x)− ξ(y)|p

|x− y|N+ps
dy dx

≤ γ

(R− r)p

ˆ
BR

wp
+(x)

ˆ
BR

dy

|x− y|N+p(s−1)
dx

= γ
R(1−s)p

(R− r)p
∥w+∥pLp(BR) .

In conclusion, (81) becomes

γI1 ≥ [w+]
p
W s,p(Br)

+

ˆ
Br

w+(x)

ˆ
BR

wp−1
− (y)

|x− y|N+ps
dy dx

− R(1−s)p

(R− r)p
∥w+∥pLp(BR) . (82)

Now we consider the contribution from I2 in (77). It is here that the energy
estimates diversify from the ones of [7]. We divide the cases

γI2 =

¨
BR×{RN\BR}

|u(x)− u(y)|p−2(u(x)− u(y))ξpw+(x)K(x, y) dxdy

≥
ˆ
Br

w+(x)

[ˆ
[RN\BR]∩[u(x)≥u(y)]

(u(x)− u(y))p−1

|x− y|N+ps
dy

]
dx

−
ˆ
Br

w+(x)

[ˆ
[RN\BR]∩[u(y)>u(x)]

(u(y)− u(x))p−1

|x− y|N+ps
dy

]
dx .

On the one hand,

ˆ
Br

w+(x)

[ˆ
[RN\BR]∩[u(x)≥u(y)]

(u(x)− u(y))p−1

|x− y|N+ps
dy

]
dx

=

ˆ
Br

w+(x)

[ˆ
RN\BR

(u(x)− u(y))p−1
+

|x− y|N+ps
dy

]
dx

≥ γ−1

ˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
− (y)

|x− y|N+ps
dy

]
dx ,
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since we are necessarily considering x ∈ A+(k,R). On the other hand, for the
same reason,

ˆ
Br

w+(x)

[ˆ
[RN\BR]∩[u(y)>u(x)]

(u(y)− u(x))p−1

|x− y|N+ps
dy

]
dx

≤
ˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
+ (y)

|x− y|N+ps
dy

]
dx

≤ γ

(
R

R− r

)N+psˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
+ (y)

|y|N+ps
dy

]
dx ,

using that for x ∈ Br and y ∈ RN\BR we have |y|
|x−y| ≤

R
R−r . So, on both hands

we have the estimate

γI2 ≥
ˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
− (y)

|x− y|N+ps
dy

]
dx

−
(

R

R− r

)N+psˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
+ (y)

|y|N+ps
dy

]
dx .

In conclusion, this estimate and (82) lead inequality (77) to

γ̂
R(1−s)p

(R− r)p
∥w+∥pLp(BR) + γ̂

(
R

R− r

)N+psˆ
Br

w+(x) dx

[ˆ
RN\BR

wp−1
+ (y)

|y|N+ps
dy

]
≥ [w+]

p
W s,p(Br)

+

ˆ
Br

w+(x)

ˆ
BR

wp−1
− (y)

|x− y|N+ps
dydx

+

ˆ
Br

w+(x)

[ˆ
RN\BR

wp−1
− (y)

|x− y|N+ps
dy

]
dx

= [w+]
p
W s,p(Br)

+

ˆ
Br

w+(x)

ˆ
RN

wp−1
− (y)

|x− y|N+ps
dydx .

Estimates (34) are proven once we take r = τρ and R = ρ, for some τ ∈ (0, 1)
and ρ > 0, and we rewrite the second term on the left-hand side in terms of the
tail. Remark (3.3) finishes the job in the case of super-solutions.
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[11] E. Di Benedetto and U. Gianazza, Some properties of De Giorgi classes,

Rend. Istit. Mat. Univ. Trieste 48 (2016), 245–260.
[12] E. Di Benedetto, U. Gianazza, and V. Vespri, Local clustering of the non-

zero set of functions in w1,1(e), Atti Acc. Naz. Lincei. Matematica e Applicazioni
17 (2006), 223–225.

[13] E. Di Benedetto and N.S. Trudinger, Harnack inequalities for quasi-minima
of variational integrals, Ann. Inst. Henri Poincaré 1 (1984), 295–308.
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