
Rend. Istit. Mat. Univ. Trieste
Vol. 56 (2024), Art. No. 12, 19 pages

DOI: 10.13137/2464-8728/36927

Duality for a properly efficient solution
of bilevel multiobjective fractional

programming problems with
extremal-value function

Ahmed Rikouane and Mohamed Laghdir

Abstract. In this paper, we establish some results regarding the opti-
mality conditions and duality properties for properly efficient solutions
of a constrained bilevel multiobjective fractional programming problem
(P ) with an extremal-value function. These results are obtained by ap-
plying a parametric approach to reduce the problem (P ) to a paramet-
ric problem (Pµ) with µ ∈ Rp, and we obtain optimality conditions for
properly efficient solutions for these problems. Furthermore, we define
a dual problem of (Pµ) and we establish some results on duality.
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1. Introduction

Bilevel programming is a mathematical optimization framework that involves
two levels of optimization problems, where the feasible set and/or the objec-
tive function of the first (or upper-level) problem is determined implicitly by
the second (or lower-level) problem. In a bilevel programming problem, when
the upper-level problem contains the optimal value function of the lower-level
problem in its objective and/or constraint functions, it is called a bilevel pro-
gramming problem with an extremal-value function.

During the past few years, many studies have been presented on the op-
timality conditions and the duality results for this problem. For example,
Dempe [8] developed necessary and sufficient optimality conditions for bilevel
programming problems by using differential stability results for parametric op-
timization problems. Aboussoror and Adly [1] considered a bilevel nonlinear
optimization problem with an extremal-value function and obtained necessary
and sufficient optimality conditions under constraint qualifications and via the
Fenchel-Lagrange duality approach. Wang et al. [24] considered a bilevel multi-
objective program with extremal-value function, and obtained optimality con-



(2 of 19) A. RIKOUANE AND M. LAGHDIR

ditions and duality results under a generalized Slater-type constraint qualifi-
cation. For many applications of such a problem, one can see, for example,
Ahmad et al. [2], Dempe [9], and Yin [28].

Multiobjective programming problems (also called vector programming)
which are optimization problems involving several objectives functions have
been the subject of extensive study in the recent literature. Multiobjective frac-
tional programming problems refers to vector optimization problems where the
objective functions are quotients. The multiobjective Fractional programming
problems play a crucial role in various fields such as transportation, produc-
tion, information theory, and numerical analysis. The study of multiobjective
fractional programming problems has received a great deal of attention in the
recent past, one can consult [3, 4, 5, 17, 21] and the references therein. Bec-
tor et al. [3] studied duality for multiobjective programming problems having
nonlinear constraints through a linearization approach. Bhatnagar [4] estab-
lished necessary and sufficient optimality conditions for efficient and properly
efficient solutions, and proved some duality results for multiobjective Schaible
type dual. Bot et al. [5] extended the work of Wanka and Bot [26] A new
duality approach for multiobjective convex optimization problems to a Duality
for multiobjective fractional programming problems, they have used the trans-
formation proposed by Dinkelbach [10] to reduce the problem considered to
a more conventional form, and obtained a necessary and sufficient optimality
conditions and some duality results for these problems. Recently, Moustaid
et al. [17] established sequential approximate weak optimality conditions for
multiobjective fractional programming problems via sequential subdifferential
calculus. In multiobjective (fractional) programming, an optimization prob-
lem may have no optimal solutions. To address this issue, some researchers
introduced the concept of efficient solutions. Pareto [18] was the first one to
introduce the idea of Pareto efficiency to study some problems in economics.
Based on Pareto’s idea, Koopmans [15] introduced the notion of efficient so-
lution of multiobjective optimization problems. Usually, the set of efficient
solutions is so big that it may contain anomalous or undesirable points. To
eliminate certain efficient points with unwanted properties, Geoffrion [12] in-
troduced the notion of properly efficient solution.

In this present work, we have combined these two important problems, the
multiobjective fractional programming problem and the bilevel programming
problem to develop optimality conditions and prove some duality results for
bilevel multiobjective fractional programming problem with an extremal-value
function

(P ) v−min
x∈C

{
f1(x, υ(x))

g1(x, υ(x))
, . . . ,

fp(x, υ(x))

gp(x, υ(x))

}
,

where C := {x ∈ X, G(x, υ(x)) ≤Rq
+
0} and v(x) is the optimal value of the
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following problem parametrized by x

(Px) min
y∈A

f(x, y).

Hence the symbol ”v-min” stands for vector minimization and minimality is
taken in terms of efficient solutions and properly efficient solutions as defined in
the next section. The study of multiobjective fractional programming problems
has received a great deal of attention in the recent past. Some of the authors
like Kohli [14], Rikouane [19], Bouibed et al. [7] and others. These types
of problems have applications in several fields and the modeling of certain
real-life situations (see [25]) leads to bilevel multiobjective fractional bilevel
optimization problems, further motivating us to study this class of problems.

In this paper, motivated by the works mentioned above, our main goal is
to establish necessary and sufficient optimality conditions and prove some du-
ality results of the above problem in terms of properly efficient solutions. To
do this, we often use a parametric approach proposed by Dinkelbach [10] to
transform the problem (P ) into the nonfractional multiobjective bilevel convex
optimization problem (Pµ) with a parameter µ ∈ Rp. Subsequently, we employ
linearization and scalarization approaches to transform the problem (Pµ) to a
more conventional form. Under this case, we derive necessary and sufficient
optimality conditions for efficient properly solutions. So we use the previous
results to define a dual problem of (Pµ). Under some convexity and mono-
tonicity assumptions, the weak and strong duality theorems are established.

The rest of the presented paper have the following structure: Section 2
is devoted to present some basic definitions, notations and auxiliary results
describing important properties of conjugate functions that be used later in the
paper. In Section 3, some necessary and sufficient conditions for a feasible point
to be properly efficient are established. In Section 4, we apply the previous
results to obtain some duality results. In Section 5, we present an example
illustrating the main result obtained. Finally, in Section 6, we submite the
conclusion and discussions of the paper.

2. Preliminaries and definitions

In this section, we recall some basic definitions, notations and preliminary
results from convex analysis which will be used throughout this paper.

Let X be nonempty subset of Rn. We denote by ri(X) the relative interior
of the set X, and by Rp

+ the non-negative orthant of Rp defined by

Rp
+ := {u = (u1, . . . , up) ∈ Rp, ui ≥ 0, i = 1, . . . , p},

For x, y ∈ Rp, we define x ≤Rp
+

y ( or y ≥Rp
+

x) if y − x ∈ Rp
+. To Rp,

we attach an abstract maximal element with respect to ≤Rp
+
, denoted by
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+∞Rp , verifying the following operations and conventions: y ≤Rp
+

+∞Rp ,

y + (+∞Rp) = (+∞Rp) + y := +∞Rp and α · (+∞Rp) = +∞Rp , for all
y ∈ Rp ∪ {+∞Rp} and all α ≥ 0.

For a nonempty subset X of Rn, we denote by δX and σX the indicator and
the support functions of X, respectively, defined on Rn by

δX(x) :=

{
0 if x ∈ X

+∞ otherwise
, σX(p∗) = sup

x∈X
p∗Tx, ∀p∗ ∈ Rn.

where xT y denotes the inner product of the vectors x = (x1, . . . , xp), y =
(y1, . . . , yp) ∈ Rp.

For a given function f : Rn −→ R := R ∪ {±∞}, we consider its effective
domain

dom(f) := {x ∈ Rn, f(x) < +∞}
and call the function f proper if dom(f) ̸= ∅ and f(x) > −∞ for all x ∈ Rn.

A function f : Rn −→ R is said to be Rn
+-increasing if for each x, y ∈ Rn,

we have
x ≤Rn

+
y =⇒ f(x) ≤ f(y).

The function defined by

f∗ : Rn −→ R, f∗(x∗) := sup
x∈Rn

{x∗Tx− f(x)}.

is called the conjugate function of f . We have the so-called Young-Fenchel
inequality

f∗(x∗) + f(x) ≥ x∗Tx, ∀x, x∗ ∈ Rn. (1)

It is well known that for a non-negative real number λ,

(λf)∗(x∗) :=

{
λf∗(x

∗

λ ), if λ > 0,

δ{0}(x
∗), if λ = 0.

Let g : Rq −→ Rp∪{+∞Rp} be a given vector valued function. The function
g is called Rp

+-convex if for all x, y ∈ Rq and all t ∈ [0, 1] we have

g(tx+ (1− t)y) ≤Rp
+
tg(x) + (1− t)g(y).

Furthermore, g is called (Rq
+,R

p
+)-increasing if for each x, y ∈ Rq we have

x ≤Rq
+
y =⇒ g(x) ≤Rp

+
g(y).

Given a vector valued mapping h : Rn −→ Rq ∪{+∞Rq}, the composed vector
valued mapping g ◦ h : Rn −→ Rp ∪ {+∞Rp} is defined by

(g ◦ h)(x) :=

{
g(h(x)), if x ∈ dom(h),

+∞Rp , otherwise.
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The following lemma provide some conditions that guarantee the convexity
of composed vector valued mappings.

Lemma 2.1 ([16]). Let h : Rn −→ Rq ∪ {+∞Rq} and g : Rq −→ Rp ∪ {+∞Rp}
be two vector valued mappings. If g is Rp

+-convex and (Rq
+,R

p
+)-increasing on

dom(g), and h is Rq
+-convex with h(dom(h)) ⊆ dom(g), then the composed

vector mapping g ◦ h is Rp
+-convex.

Let us recall the following lemmas can be found in [20, 27] which are used
in our later results.

Lemma 2.2 ([20, Theorem 16.4]). Let gi : Rn −→ R (i = 1, . . . ,m) be proper
convex functions. If ∩m

i=1ri(dom(gi)) ̸= ∅, then
(i) (

∑m
i=1 gi)

∗
(x∗) = inf {

∑m
i=1 g

∗
i (x

∗
i ) : x∗ =

∑m
i=1 x

∗
i };

(ii) for all x∗ ∈ Rn, the infimum in (i) is attained.

Lemma 2.3 ([27, Theorem 2]). Let h = (h1, . . . , hn) with hi : Rm −→ R (i =
1, . . . , n) be convex functions, and g : Rn −→ R be proper convex and Rn

+-
increasing function. If h(∩n

i=1dom(hi)) ∩ int(dom(g)) ̸= ∅, then

(g ◦ h)∗(x∗) = inf
r∈Rn

+

{
g∗(r) +

(
n∑

i=1

rihi

)∗

(x∗)

}
,

where for any x∗ ∈ Rm the infimum is attained.

Let x be a feasible point of (P ) i.e., x ∈ C and v(x) is the optimal value
of the lower level problem (Px). The set of feasible solutions of (P ) will be
represented by Ω in what follows, that is

Ω := {x ∈ X, G(x, υ(x)) ≤Rq
+
0 and v(x) is the optimal value of (Px)}.

Definition 2.4. An element x ∈ Ω is said to be efficient solution for (P ) if
there is no x ∈ Ω such that

fi(x, υ(x))

gi(x, υ(x))
≤ fi(x, υ(x))

gi(x, υ(x))
, for each i ∈ {1, . . . , p},

fj(x, υ(x))

gj(x, υ(x))
<

fj(x, υ(x))

gj(x, υ(x))
, for some one j ∈ {1, . . . , p};

Definition 2.5 ([12]). An element x ∈ Ω is said to be properly efficient solution
for (P ), in the sense of Geoffrion, if and only if (a) x is efficient solution
for (P ); (b) there exists a scalar M > 0 such that for each i, we have

fi(x, υ(x))

gi(x, υ(x))
− fi(x, υ(x))

gi(x, υ(x))
≤ M

(
fj(x, υ(x))

gj(x, υ(x))
− fj(x, υ(x))

gj(x, υ(x))

)
,

for some j such that
fj(x,υ(x))
gj(x,υ(x))

<
fj(x,υ(x))
gj(x,υ(x))

, whenever x ∈ Ω and fi(x,υ(x))
gi(x,υ(x))

<
fi(x,υ(x))
gi(x,υ(x))

.
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3. Problem formulation

In this section, we consider the following bilevel multiobjective fractional pro-
gramming problem with an extremal-value function

(P ) v−min
x∈C

{
f1(x, υ(x))

g1(x, υ(x))
, . . . ,

fp(x, υ(x))

gp(x, υ(x))

}
,

where C := {x ∈ X, G(x, υ(x)) ≤Rq
+
0} ̸= ∅ and v(x) is the optimal value of

the lower level problem
(Px) min

y∈A
f(x, y),

Here, X is a nonempty convex subset of Rn, A is a nonempty subset of Rm

compact and convex, fi,−gi : Rn × R −→ R, i = 1, . . . , p, Gj : Rn × R −→
R, j = 1, . . . , q are convex functions and Rn+1

+ -increasing, f : Rn × Rm −→ R
is a convex function. Moreover, we assume that for any x ∈ C, fi(x, v(x)) ≥
0, i = 1, . . . , p and the following additional hypothesis

∃a > 0, b > 0, such that a ≤ gi(x, v(x)) ≤ b for all i = 1, . . . , p and x ∈ C. (2)

We mention that the functions fi, gi, i = 1, . . . , p and Gj , j = 1, . . . , q are
all continuous since int(dom(fi)) = int(dom(gi)) = Rn+1, i = 1, . . . , p and
int(dom(Gj)) = Rn+1, j = 1, . . . , q. Moreover, we can conclude that f is
a continuous function since it is convex [20, Corollary 10.1.1], and so the
function v : Rn −→ R is finite, convex, continuous and for each x ∈ Rn there
exists y ∈ A such that v(x) = f(x, y).

We now associate with (P ) the following parametric nonfractional bilevel
multiobjective programming problem (Pµ) for some µ ∈ Rp

+, following the
parametric approach of Dinkelbach [10].

(Pµ) v−min
x∈C

{f1(x, υ(x))− µ1g1(x, υ(x)), . . . , fp(x, υ(x))− µpgp(x, υ(x))} .

where

µi :=
fi(x, υ(x))

gi(x, υ(x))
, i = 1, . . . , p and x ∈ Ω.

By introducing the following auxiliary mappings

F : Rn × R −→ Rp

(x, y) −→ F (x, y) := (f1(x, y)− µ1g1(x, y), . . . , fp(x, y)− µpgp(x, y)),

h : Rn −→ Rn+1 , x −→ h(x) := (x, v(x)).

It is clear that the function h is Rn+1-convex, continuous and h(domh) ⊆ Rn+1,
since the function v : Rn −→ R is finite, convex and continuous. The form of
the problem (Pµ

λ ) will be as follows:

(Pµ) v−min
x∈C

F (h(x)).
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Remark 3.1. With the assumptions listed above on fi, gi, i = 1, . . . , p and
h and by Lemma 2.1, we see easily that the composed vector valued mapping
F ◦ h : Rn+1 −→ Rp is Rn+1-convex.

Definition 3.2. An element x ∈ Ω is said to be
- efficient solution for (Pµ) if there is no x ∈ Ω such that

Fi(h(x)) ≤ Fi(h(x)), for each i ∈ {1, . . . , p},
Fj(h(x)) < Fj(h(x)), for some one j ∈ {1, . . . , p};

- properly efficient solution for (Pµ) (in the sense of Geoffrion) if and only if
(a) x is efficient solution for (Pµ); (b) there exists a scalar M > 0 such that
for each i, we have

Fi(h(x))− Fi(h(x)) ≤ M(Fj(h(x))− Fj(h(x))),

for some j such that Fj(h(x)) < Fj(h(x)), whenever x ∈ Ω and Fi(h(x)) <
Fi(h(x)).

It is well known that the set of properly efficient solutions of (Pµ) is related
to the optimal solutions of the following scalar problem ( see [12]).

(Pµ
λ )

{
minλTF (h(x)),

x ∈ C,

where

λ ∈ Λ+ :=

{
(λ1, . . . , λp) ∈ Rp : all λi > 0 and

p∑
i=1

λi = 1

}
.

A point x ∈ Ω is called an optimal solution of the scalar problem (Pµ
λ ) if

λTF (h(x)) ≤ λTF (h(x)), ∀x ∈ Ω.

We will need the following lemma.

Lemma 3.3. ([21, Theorem 2]) The point x ∈ Ω is an efficient solution of (P )
if and only if x is an efficient solution of (Pµ) where µ = (µ1, . . . , µp) and

µi =
fi(x,v(x))
gi(x,v(x))

, i = 1, . . . , p.

The following lemma gives the relationship linking (P ), (Pµ) and (Pµ
λ )

which will be useful for our purposes.

Lemma 3.4. Suppose that x ∈ Ω. Then the following statements are equivalent

(i) x is a properly efficient solution for problem (P ) ;
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(ii) x is a properly efficient solution for problem (Pµ) where µi =
fi(x,v(x))
gi(x,v(x))

,
i = 1, . . . , p;

(iii) x is an optimal solution for problem (Pµ
λ ) for some λ ∈ Λ+ and µi =

fi(x,v(x))
gi(x,v(x))

, i = 1, . . . , p.

Proof. (i) =⇒ (ii) Assume that x ∈ Ω is a properly efficient solution of (P ),
then by Definition 2.5, it follows that (a) x is efficient solution for (P ); (b) there
exists a scalar M > 0 such that for each i, we have

fi(x, υ(x))

gi(x, υ(x))
− fi(x, υ(x))

gi(x, υ(x))
≤ M

(
fj(x, υ(x))

gj(x, υ(x))
− fj(x, υ(x))

gj(x, υ(x))

)
,

for some j such that
fj(x,υ(x))
gj(x,υ(x))

<
fj(x,υ(x))
gj(x,υ(x))

, whenever x ∈ Ω and fi(x,υ(x))
gi(x,υ(x))

<
fi(x,υ(x))
gi(x,υ(x))

. Then by Lemma 3.3, and the assumption (a), we obtain that x is an

efficient solution of (Pµ). By utilizing the fact that fi(x, v(x))−µigi(x, v(x)) =
0 and gi(x, v(x)) > 0, for any x ∈ Ω and i = 1, . . . , p the condition (b) can
be rewritten equivalently as: there exists a scalar M > 0 such that for each
i ∈ {1, . . . , p}, we have

(fi − µigi)(x, v(x))− (fi − µigi)(x, v(x))

≤ M
gi(x, v(x))

gj(x, v(x))
((fj − µigj)(x, v(x))− (fj − µjgj)(x, v(x))).

Since the functions gi for any i ∈ {1, . . . , p} satisfy the condition (2) i.e. there
exist a > 0, b > 0 such that a ≤ gi(x, v(x)) ≤ b for all i ∈ {1, . . . , p}, x ∈ Ω
and by setting M1 := Mb

a , we have

(fi − µigi)(x, v(x))− (fi − µigi)(x, v(x))

≤ M1((fj − µjgj)(x, v(x))− (fj − µjgj)(x, v(x))),

i.e.
Fi(h(x))− Fi(h(x)) ≤ M1(Fj(h(x))− Fj(h(x))).

Thus, by Definition 3.2, it follows that x is a properly efficient solution for
problem (Pµ). (ii) =⇒ (i) The proof can be proven in the same way as (i) =⇒
(ii), so that (i) is equivalent to (ii). (ii) ⇐⇒ (iii) The proof deduces directly
from [13, Theorem 3.4]. Hence, the proof is complete.

Given that the problem (Pµ
λ ) is evidently a composite convex optimiza-

tion problem, we can proceed to formulate its Lagrangian dual problem in the
following manner (for more details see [1, 6, 26, 20]).

(Dµ
λ) sup

r∈Rq
+

inf
x∈Rn

{
(λTF + rTG)(h(x)) + δX(x)

}
, where λ ∈ Λ+.
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It is easy to check that hi is a finite convex function for every i ∈ {1, . . . , n+1},
and since λ ∈ Λ+ and r ∈ Rq

+, thus, the function λTF + rTG is finite valued

convex and Rn+1
+ -increasing. The dual problem (Dµ

λ) can be deduced from
Lemmas 2.2 and 2.3, which implies that its form will be as follows:

sup
(r,s,w,t)∈Y

{
−

p∑
i=1

λiF
∗
i (wi)− (rTG)∗

(
s−

p∑
i=1

λiwi

)
− (sTh)∗(t)− σX(−t)

}
where

Y =
{
(r, s, w, t), r ∈ Rq

+, s ∈ Rn+1
+ , t ∈ Rn, w = (w1, . . . , wp),

wi ∈ Rn+1, i = 1, . . . , p
}
.

Since the functions fi, (−µigi), i = 1, . . . , p satisfy all the assumptions of
Lemma 2.2, then for each i ∈ {1, . . . , p}, we have

F ∗
i (wi) = (fi + (−µigi))

∗(wi)

= inf{f∗
i (ui) + (−µigi)

∗(vi), ui + vi = wi}
= − sup{−f∗

i (ui)− (−µigi)
∗(vi), ui + vi = wi}.

Hence, the problem (Dµ
λ) can be rewritten as

sup
(r,s,u,v,t)∈Y λ

{
−

p∑
i=1

λi[f
∗
i (ui) + (−µigi)

∗(vi)]

− (rTG)∗
(
s−

p∑
i=1

λi(ui + vi)
)
− (sTh)∗(t)− σX(−t)

}
where

Y λ :=
{
(r, s, u, v, t), r ∈ Rq

+, s ∈ Rn+1
+ , t ∈ Rn, u = (u1, . . . , up),

v = (v1, . . . , vp), ui, vi ∈ Rn+1, i = 1, . . . , p
}
.

We denote by val(Pµ
λ ) and val (Dµ

λ) the optimal values of the problem (Pµ
λ )

and (Dµ
λ) , respectively. The weak duality always holds, i.e.

val(Pµ
λ ) ≥ val(Dµ

λ). (3)

To prove strong duality and establish optimality conditions in the following,
a constraint qualification is necessary:

(CQ) ∃x ∈ ri(X) such that

{
Gi(h(x)) ≤ 0, if i ∈ L

Gi(h(x)) < 0, if i ∈ N,
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where L = {i ∈ {1, . . . , q} : Gi◦h is an affine function} andN = {1, . . . , q}\L.
In what follows, we will need the following strong duality theorem (see [6,

Theorem 3.2]).

Theorem 3.5 (Strong duality for (Pµ
λ )). If (CQ) is fulfilled and val(Pµ

λ ) is
finite, then the problem (Dµ

λ) has an optimal solution and it holds

val(Pµ
λ ) = val(Dµ

λ).

Now, we derive a necessary and sufficient optimality conditions for the prob-
lem (Pµ

λ ) and its dual (Dµ
λ) under a constraint qualification.

Theorem 3.6. (1) Let x ∈ C, λ ∈ Λ+ and µ = (µ1, . . . , µp) ∈ Rp
+ with

µi =
fi(x,v(x))
gi(x,v(x))

, i = 1, . . . p. Suppose that the constraint qualification (CQ) is

satisfied at x. If x is an optimal solution of (Pµ
λ ), then there exists an optimal

solution (r, u, v, s, t) ∈ Y λ to the dual problem (Dµ
λ), such that the following

optimality conditions hold

(i) fi(h(x)) + f∗
i (ui) = uT

i h(x), ∀i ∈ {1, . . . , p},

(ii) (−µigi)(h(x)) + (−µigi)
∗(vi) = vTi h(x), ∀i ∈ {1, . . . , p},

(iii) rTG(h(x)) + (rTG)∗
(
s−

p∑
i=1

λi(ui + vi)
)
=
(
s−

p∑
i=1

λi(ui + vi)
)T

h(x),

(iv) sTh(x) + (sTh)∗(t) = t
T
x,

(v) σX(−t) = −t
T
x,

(vi) rTG(h(x)) = 0.

(2) Let x ∈ C, µ = (µ1, . . . , µp) ∈ Rp
+ with µi =

fi(x,v(x))
gi(x,v(x))

, i = 1, . . . p and for

a given λ ∈ Λ+, assume that x ∈ Ω and (r, s, u, v, t) ∈ Y λ satisfy the condition
(i) − (vi). Then x is an optimal solution to (Pµ

λ ), (r, s, u, v, t) is an optimal
solution to (Dµ

λ) and val(Pµ
λ ) = val(Dµ

λ).

Proof. (1) Let x be an optimal solution of (Pµ
λ ). According to Theorem 3.5,

there exists (r, s, u, v, t) ∈ Y λ optimal solution to (Dµ
λ), such that

λTF (h(x)) = −
p∑

i=1

λi[f
∗
i (ui) + (−µigi)

∗(vi)]

− (rTG)∗
(
s−

p∑
i=1

λi(ui + vi)
)
− (sTh)∗(t)− σX(−t) (4)
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The last equality is equivalent to

0 =

{
p∑

i=1

λi[fi(h(x)) + f∗
i (ui)− uT

i h(x)]

}

+

{
p∑

i=1

λi[(−µigi)(h(x)) + (−µigi)
∗(vi)− vTi h(x)]

}

+

{
rTG(h(x))+(rTG)∗

(
s−

p∑
i=1

λi(ui+vi)
)
−
(
s−

p∑
i=1

λi(ui+vi)
)T

h(x)

}
+
{
sTh(x) + (sTh)∗(t)− t

T
x
}
+
{
σX(−t) + t

T
x
}
− rTG(h(x). (5)

It follows from the Young-Fenchel inequality (1), the following inequalities hold:

fi(h(x)) + f∗
i (ui)− uT

i h(x) ≥ 0, ∀i ∈ {1, . . . , p};
(−µigi)(h(x)) + (−µigi)

∗(vi)− vTi h(x) ≥ 0, ∀i ∈ {1, . . . , p};

rTG(h(x))+(rTG)∗
(
s−

p∑
i=1

λi(ui+vi)
)
−
(
s−

p∑
i=1

λi(ui+vi)
)T

h(x) ≥ 0;

sTh(x) + (sTh)∗(t)− t
T
x ≥ 0;

σX(−t) + t
T
x ≥ 0.

(6)
Since r ∈ Rq

+ and x ∈ C, there is −rTG(h(x)) ≥ 0. By the inequalities (6),
it follows that all the terms of the sum in (5) must be equal to 0. Then, we
can conclude the relations (i)− (vi).
(2) Assume that x ∈ Ω and (r, s, u, v, t) ∈ Y λ satisfy the condition (i) − (vi).
Then, we get

−
p∑

i=1

λi[f
∗
i (ui) + (−µigi)

∗(vi)]− (rTG)∗
(
s−

p∑
i=1

λi(ui + vi)
)

− (sTh)∗(t)− σX(−t) = λTF (h(x)),

since val(Pµ
λ ) = inf(Pµ

λ ) and val(Dµ
λ) = max(Dµ

λ), we obtain

val(Dµ
λ) ≥−

p∑
i=1

λi[f
∗
i (ui) + (−µigi)

∗(vi)]− (rTG)∗
(
s−

p∑
i=1

λi(ui + vi)
)

− (sTh)∗(t)− σX(−t)

= λTF (h(x)) ≥ val(Pµ
λ ).

It follows from (3) that
val(Pµ

λ ) = val(Dµ
λ).
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Then, this proves that the equality (4) results and shows that x is a solution
to (Pµ

λ ) and (r, s, u, v, t) is a solution to (Dµ
λ).

4. The multiobjective dual problem

In this section, we aim to establish the weak and strong duality theorems for the
problem (Pµ) and its corresponding dual multiobjective optimization problem
(Dµ) defined by

(Dµ)

{
v−maxH(r, s, u, v, t, λ, α),

s.t (r, s, u, v, t, λ, α) ∈ B

where

H(r, s, u, v, t, λ, α) =

H1(r, s, u, v, t, λ, α)
...

Hp(r, s, u, v, t, λ, α)


with for all i ∈ {1, . . . , p}

Hi(r, s, u, v, t, λ, α) = −f∗
i (ui)− (−µigi)

∗(vi)

− 1

pλi

[
(rTG)∗

(
s−

p∑
i=1

λi(ui + vi)
)
+ (sTh)∗(t) + σX(−t)

]
+ αi,

and the set of constraints

B :=

{
(r, s, u, v, t, λ, α) : r ∈ Rq

+, s ∈ Rn+1
+ , t ∈ Rn, u = (u1, . . . , up),

v = (v1, . . . , vp), ui, vi ∈ Rn+1, i = 1, . . . , p, λ ∈ Λ+,

α = (α1, . . . , αp) ∈ Rp,

p∑
i=1

λiαi = 0

}
.

Definition 4.1. An element (r, s, u, v, t, λ, α) ∈ B is said to be an efficient
solution of the problem (Dµ), if there is no (r, s, u, v, t, λ, α) ∈ B such that
H(r, s, u, v, t, λ, α) ≥Rp

+
H(r, s, u, v, t, λ, α) with

Hi(r, s, u, v, t, λ, α) > Hi(r, s, u, v, t, λ, α), for some i ∈ {1, . . . , p}.

The following theorem states the weak duality assertion between the bilevel
multiobjective problem (Pµ) and its dual (Dµ).

Theorem 4.2 (Weak duality for (Pµ)). There is no (r, s, u, v, t, λ, α) ∈ B
and no x ∈ Ω such that F (h(x)) ≤Rp

+
H(r, s, u, v, t, λ, α) and Fi(h(x)) <

Hi(r, s, u, v, t, λ, α) for some i ∈ {1, . . . , p}.
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Proof. Assume that there exist x ∈ Ω and (r, s, u, v, t, λ, α) ∈ B satisfying that
F (h(x)) ≤Rp

+
H(r, s, u, v, t, λ, α) and Fi(h(x)) < Hi(r, s, u, v, t, λ, α) for some

i ∈ {1, . . . , p}. This means that

λTF (h(x)) < λTH(r, s, u, v, t, λ, α), ∀λ ∈ Λ+. (7)

On the other hand,

λTH(r, s, u, v, t, λ, α) =

p∑
i=1

λT
i Hi(r, s, u, v, t, λ, α)

=−
p∑

i=1

λi[f
∗
i (ui) + (−µigi)

∗(vi)]

− (rTG)∗(s−
p∑

i=1

λi(ui + vi))− (sTh)∗(t)− σX(−t)

≤ λTF (h(x)).

Then, the inequality λTF (h(x)) ≥ λTH(r, s, u, v, t, λ, α) contradicts the rela-
tion (7). Thus, the weak duality between (Pµ) and (Dµ) holds.

The following theorem provides the strong duality between the problem
(Pµ) and its dual (Dµ).

Theorem 4.3 (Strong duality for (Pµ)). Let (CQ) be fulfilled and x ∈ Ω be a
properly efficient solution to (Pµ). Then an efficient solution (r, s, u, v, t, λ, α)∈
B to the dual problem (Dµ) exists and the strong duality is true, i.e.

F (h(x)) = H(r, s, u, v, t, λ, α).

Proof. According to Lemma 3.4, a point x ∈ Ω is a properly efficient solution
for (Pµ) if and only if there exists λ = (λ1, . . . , λp) ∈ Λ+ such that x solves the
scalar problem (Pµ

λ
). Since the constraint qualification (CQ) is fulfilled and, so,

the Theorem 3.6 assures the existence of an optimal solution (r, s, u, v, t) ∈ Y λ

to the dual problem (Dµ

λ
) such that the optimality conditions (i) − (vi) are

fulfilled. Let us define for i = 1, . . . , p

αi =
1

pλi

(
(rTG)∗

(
s−

p∑
i=1

λi(ui + vi)
)
+ (sTh)∗(t) + σX(−t)

)
+(ui+vi)

Th(x).
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By using the optimality conditions established in Theorem 3.6, we obtain

p∑
i=1

λiαi = (rTG)∗(s−
p∑

i=1

λi(ui + vi)) + (sTh)∗(t) + σX(−t)

+

p∑
i=1

λi(ui + vi)
Th(x)

= (rTG)∗(s−
p∑

i=1

λi(ui + vi)) + xT t− sTh(x)− xT t

+

p∑
i=1

λi(ui + vi)
Th(x)

= rTG(h(x)) + (rTG)∗(s−
p∑

i=1

λi(ui + vi))− (s−
p∑

i=1

λi(ui + vi))
Th(x)

= 0.

Then, we proved that the element (r, s, u, v, t, λ, α) is feasible to (Dµ). Now,
we show that F (h(x)) = H(r, s, u, v, t, λ, α). Applying Theorem 3.6, we have
for i = 1, . . . , p,

Hi(r, s, u, v, t, λ, α) = −f∗
i (ui)− (−µigi)

∗(vi)

− 1

pλi

[
(rTG)∗

(
s−

p∑
i=1

λi(ui + vi)
)
+ (sTh)∗(t) + σX(−t)

]
+ αi

= −f∗
i (ui)− (−µigi)

∗(vi) + (ui + vi)
Th(x)

= Fi(h(x)).

According to Theorem 4.2 (weak duality), it follows that (r, s, u, v, t, λ, α) is an
efficient solution of (Dµ) and

H(r, s, u, v, t, λ, α) = F (h(x)).

Now, we give an example illustrating Theorem 4.3.

5. An example

Let us consider the following bilevel multiobjective fractional problem

(P ) v−min
x∈C

{
f1(x, υ(x))

g1(x, υ(x))
,
f2(x, υ(x))

g2(x, υ(x))

}
, C := {x ∈ X, G(x, υ(x)) ≤ 0},
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where fi, gi : R × R −→ R, (i = 1, 2), G : R × R −→ R and f : R × R −→ R
are defined as follows

f1(x, t) = x− t+ 3, g1(x, t) = −x− t+ 1

f2(x, t) = 2x+ t+ 3, g2(x, t) = −2x− t+ 1

f(x, y) = −x+ y2 − 1, G(x, t) = 2x+ t.

Let X = R+, A = [0, 1]. For any x ∈ R, we have

υ(x) := inf
y∈A

f(x, y) = −x− 1 and h(x) := (x, v(x)) = (x,−x− 1).

Herein, the set Ω of the feasible solutions of (P ) is given by

Ω := {x ∈ X, x− 1 ≤ 0} = [0, 1].

Subsequently, we can to formulate our problem (P ) as follows

(P ) v−min
x∈Ω

(
x+ 2,

x+ 2

−x+ 2

)
,

The corresponding parametric problem (Pµ) will be

(Pµ) v−min
x∈Ω

(2x+ 4− 2µ1, (1 + µ2)x+ 2− 2µ2) ,

Clearly, fi,−gi, i = 1, 2 and G are convex functions and R2
+-increasing. More-

over, one can see that fi(x, v(x)) ≥ 0 and 0 < a = 1 ≤ gi(x, v(x)) ≤ 2 = b for
all x ∈ C, i = 1, 2.
To formulate the dual problem (Dµ), we need to determine the conjugate func-
tions as presented below.

f∗
1 (x

∗, t∗) =

{
−3, x∗ = 1, t∗ = −1,

+∞, otherwise.

(−µ1g1)
∗(x∗, t∗) =

{
µ1, x∗ = µ1, t

∗ = µ1,

+∞, otherwise.

f∗
2 (x

∗, t∗) =

{
−3, x∗ = 2, t∗ = 1,

+∞, otherwise.

(−µ2g2)
∗(x∗, t∗) =

{
µ2, x∗ = 2µ2, t

∗ = µ2,

+∞, otherwise.

(sTh)∗(x∗) =

{
s2, x∗ = s1 − s2,

+∞, otherwise.
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(rG)∗(x∗, t∗) =

{
0, x∗ = 2r, t∗ = r,

+∞, otherwise.

σX(x∗) =

{
0, x∗ ≤ 0,

+∞, otherwise.

Consequently, the dual problem (Dµ) takes on the following form

(Dµ) v− max
(r,s,u,v,t,λ,α)∈B

H(r, s, u, v, t, λ, α) =

(
H1(r, s, u, v, t, λ, α)
H2(r, s, u, v, t, λ, α)

)
,

where

Hi(r, s, u, v, t, λ, α) = −f∗
i (ui)− (−µigi)

∗(vi)

− 1

2λi

[
(rG)∗

(
s−

2∑
i=1

λi(ui + vi)
)
+ (sTh)∗(t) + σX(−t)

]
+ αi, (i = 1, 2).

It is evident that the two objective functions of the dual problem are greater
than −∞ if and only if u1 = (1,−1), u2 = (2, 1), v1 = (µ1, µ1), v2 =

(2µ2, µ2), s −
∑2

j=1 λj(uj + vj) = (2r, r), t = s1 − s2 ≥ 0. Then, the dual
problem (Dµ) becomes

(D) v− max
(r,s,u,v,t,λ,α)∈B

(
H1(r, s, u, v, t, λ, α)
H2(r, s, u, v, t, λ, α)

)
,

where

H1(r, s, u, v, t, λ, α) = 3− µ1 −
s2
2λ1

+ α1,

H2(r, s, u, v, t, λ, α) = 3− µ2 −
s2
2λ2

+ α2,

and

B :=

{
(r, s, u, v, t, λ, α) : r ≥ 0, s = (s1, s2) ∈ R2

+, t = s1 − s2 ≥ 0,

u = (u1, u2), v = (v1, v2), u1 = (1,−1), u2 = (2, 1), v1 = (µ1, µ1),

v2 = (2µ2, µ2), s−
2∑

j=1

λj(uj + vj) = (2r, r), α = (α1, α2) ∈ R2,

λ = (λ1, λ2) ∈ Λ+,

2∑
j=1

λjαj = 0

}
.
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It is easy to check that the feasible point x = 0 is a properly efficient solution to
the problem (Pµ) and that (CQ) is fulfilled ( since G(h(x)) = G(0,−1) = −1 ≤
0 ). By the Theorem 4.3, there exists an efficient solution (r, s, u, v, t, λ, α) ∈ B
to the dual problem (Dµ) such that

F (h(x)) = H(r, s, u, v, t, λ, α),

where

µ = (µ1, µ2) =

(
f1(x, v(x))

g1(x, v(x))
,
f2(x, v(x))

g2(x, v(x))

)
= (2, 1).

An efficient solution for (Dµ) can be found through simple calculations as
follows.

r = 0, s = (s1, s2) = (72 ,
3
2 ), t = s1 − s2 = 2, u = (u1, u2) = ((1,−1), (2, 1)),

v = (v1, v2) = ((2, 2), (2, 1)), λ = (λ1, λ2) = (12 ,
1
2 ) and α = (0, 0) .

6. Conclusion and Discussions

In this paper, we established necessary and sufficient optimality conditions
and duality results for constrained bilevel multiobjective fractional program-
ming problems with extremal-value function characterizing a properly effi-
cient solution in terms of the conjugate duality approach of the data func-
tions. These results are obtained by introducing a second multiobjective (con-
vex/nonfractional) programming problem (Pµ) that is, in some sense, equiva-
lent to the previous problem under consideration. Afterwards, we introduced a
scalar optimization problem (Pµ

λ ), with λ ∈ Λ+, by use of a scalarization tech-
nique. Following this, the necessary and sufficient optimality conditions are
established under a constraint qualification. Thanks to the previous results,
the dual problem of (Pµ) is constructed, and weak and strong duality results
between (Pµ) and its dual are proved.
For future research, we will try to study the same problem (P ) where all the
data functions g1, . . . , gm are supposed convex. In this case, by using a paramet-
ric approach we transform the problem (P ) equivalently as a DC programming
problem. Also, we will attempt to examine the robustness of the problem (P )
from optimality conditions and duality point of view.
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