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ABSTRACT. This article is devoted to the study of a 2-dimensional
piecewise smooth (but possibly) discontinuous dynamical system, sub-
ject to a non-autonomous perturbation; we assume that the unperturbed
system admits a homoclinic trajectory (t). Our aim is to analyze the
dynamics in a neighborhood of 7(t) as the perturbation is turned on, by
defining a Poincaré map and evaluating fly time and space displacement
of trajectories performing a loop close to §(t).

Besides their intrinsic mathematical interest, these results can be
thought of as a first step in the analysis of several interesting problems,
such as the stability of a homoclinic trajectory of a mon-autonomous
ODE and a possible extension of Melnikov chaos to a discontinuous
setting.
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1. Introduction

This article is devoted to the study of a 2-dimensional piecewise smooth (but
possibly) discontinuous dynamical system, subject to a non-autonomous per-
turbation, namely

—

f:f(f)+€§(t7575)7 (1)
where f and g are bounded together with their derivatives up to the r-th order,
r > 1, and € > 0 is a small parameter.

In particular we assume that the origin 0 = (0,0) is a critical point for (1)
for any e and that there is a trajectory 4(¢) homoclinic to 0 when e = 0.

In this context, classical Melnikov theory allows us to define explicitly a
function M(7), the Melnikov function, see (9), such that the existence of non-
degenerate zeros of M(7) is a sufficient condition for the persistence of the
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homoclinic trajectory, say (¢, ), and the insurgence of chaotic phenomena if
we also assume that ¢ is periodic in ¢t. In fact, after the pioneering work of
Melnikov [28], in the smooth case, the problem of detecting the occurrence of
chaotic solutions for non-autonomous dynamical systems is now well studied,
see e.g. [21,29,31,32]. In this paper we want to deepen our knowledge of the
dynamics close to ¥(t) when the perturbation is turned on. Namely, let L° be
a curve transversal to {¥(¢) | t € R}, our purpose is to define a Poincaré map
from a compact connected subset A9+ (7) of LO back to L° and to evaluate
space displacement and fly time when ¢ # 0.

Our work takes motivation and inspiration from the study of the asymp-
totic stability of periodic and homoclinic trajectories of an ordinary differential
equation (ODE). Borg, Hartman and Leonov (among others), see e.g. [6,23,26],
have given necessary and sufficient conditions for the existence, the uniqueness
and the asymptotic stability of a periodic orbit of an autonomous n > 2 dimen-
sional ODE, and criteria to determine their basin of attraction. More recently
this kind of study has been addressed in a non-autonomous context, extending
Borg’s criterion to almost periodic trajectories of an almost periodic differential
equation, see [18-20]: in all these problems the study of the Poincaré map in a
neighborhood of the periodic solutions plays a key role.

The case of homoclinic trajectories is more tricky. Consider (1) when e = 0:
the problem of the stability of the homoclinic trajectory ¥(¢) has been com-
pletely solved by the so called Dulac sequence, see e.g. [31, §13] and references
therein. That is, if div[f,(0)] < 0, or div[f,(0)] = 0 and Js div[fz]ds <0,

then 7(t) is stable from inside, while if div[f,(0)] > 0, or div[f,(0)] = 0 and
f; div[fg]ds > 0, then ¥(¢) is unstable from inside, see [31, §13] for more details.

Once again the study of the Poincaré map “inside” T' = {§(t) | t € R} U {0}
is crucial for this analysis; as far as the authors are aware there have been no
attempts to extend the theory in a non-autonomous context: with this paper
we try to fill this gap.

The first difficulty one faces in doing so is that we do not have anymore a
proper Poincaré map, but we are forced to consider a map starting from a time
dependent transversal, A™:+ (1), which has as endpoint the intersection Py(7)
between the stable leaf W*(7) and the transversal L°, to end up close to P,(7),
the intersection of the unstable leaf W“(T) and L°. Further we have to split
our argument in the analysis of four different subpaths: firstly from L° to a
transversal to W* (7) close to the origin, denoted by S+, secondly from ST to a
curve Q0 passing through the origin, thirdly from Q° to a transversal to W*(r)
close to the origin, S, finally from S~ back to L°. In the first path we use a
(nontrivial) fixed point argument which reminds the one used in [23] for periodic
trajectories, in the second one we decompose the trajectory as a stable part, a
linear one and a remainder and we use a (tricky) fixed point argument which
combines exponential dichotomy with some ideas borrowed from [31, §13], and
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we estimate fly time space displacement adapting in a nontrivial way [31, §13].
Then we conclude with an inversion of time argument.

This contribution will be essential in proving some results concerning the
analogues of the stability from inside of T in a non-autonomous context which
will be addressed in a forthcoming paper.

Further we plan to use these ideas to study the possibility to establish a sub-
harmonic theory for Melnikov, i.e., the possibility that we may get a large
number of homoclinic trajectories for € # 0 even if we have just one nondegen-
erate zero of M(7).

Moreover we believe this result could be used in a system characterized by the
presence of a chaotic pattern to find safe regions, i.e., subsets of initial condi-
tions in a neighborhood of T, which cannot exhibit chaotic behavior. See §6
for more details concerning these three possible developments.

In fact all the results of this paper are obtained in a discontinuous piecewise
smooth setting, i.e., we consider

i = f5Z) +ej(t,Z,e), TeQt, (PS)

where OF = {Z € Q | £G(%) > 0}, Q° = {# € Q | G(F) = 0}, Q C R?
is an open set, G is a C"-function on  with r > 1 such that 0 is a regular
value of G. Next, ¢ € R is a small parameter, and f= € CJ(QF U Q0 R?),
G CI(R x N xRR?) and G € CJ (S, R), ie., the derivatives of fi, g and
G are uniformly continuous and bounded up to the r-th order, respectively,
if r € N, and up to rg if r = rg + 1 with rp € N and 0 < r; < 1 and the
ro-th derivatives are r1 Holder continuous. Further, we assume that both the
systems & = fi(f) admit the origin 0 € R? as a fixed point, and that 0 lies on
the discontinuity level Q°.

Even in this discontinuous framework, the existence of a non-degenerate
zero of the Melnikov function M (7) guarantees the persistence to perturbation
of the homoclinic trajectory, see [8]. Nevertheless, a geometrical obstruction
forbids chaotic phenomena whenever we have sliding close to the origin, see [15]:
this is indeed quite unexpected since this condition, together with periodicity
in t of ¢, are enough to guarantee the existence of a chaotic pattern in a smooth
context, see e.g. [29], and in a piecewise smooth context if 0 ¢ Q°, see e.g. [2-4].
We plan to use Theorems 4.2 and 4.3 in a forthcoming paper to show that the
usual Melnikov conditions guarantees chaos as in the smooth setting if the
geometrical obstruction is removed.

Discontinuous problems are motivated by several physical applications, for
instance mechanical systems with impacts, see e.g. [7], power electronics when
we have state dependent switches [1], walking machines [17], relay feedback
systems [5], biological systems [30]; see also [14,27] and the references therein.
Further they are also a good source of examples since it is somehow easy to
produce piecewise linear systems exhibiting an explicitly known homoclinic
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trajectory, so giving rise to chaos if subject to perturbations, whereas this is
not an easy task in general for the smooth case (especially if the system is not
Hamiltonian).

But why shall one insist on studying the case where the critical point lies
on the discontinuity surface Q°? In many real applications this is what really
happens, e.g. in systems with dry friction.

The paper is divided as follows: in §2 we collect the main assumptions used
in the paper and we define the stable and unstable leaves; in §3 we construct the
Poincaré map made up by trajectories of the perturbed problem performing a
loop close to 4(t); in §4 we state the main results of the paper, i.e., Theorems 4.2
and 4.3, which are proved in §5. In §6 we give some hints concerning future
development of this work which are in preparation. In the Appendix we sketch
the proof of two auxiliary lemmas which are used to construct the Poincaré
map.

2. Preliminary constructions and notation

First we give a notion of solution and we collect the basic assumptions which we
assume through the whole paper. By a solution of (PS) we mean a continuous,
piecewise C" function Z(t) that satisfies

—

Z(t) = fH(Z(t)) +ed(t, £(t),e), whenever Z(t) € QF, (PS+)
Z(t) = f(Z(t)) +ed(t, Z(t),e), whenever Z(t) € Q. (PS—)

Moreover, if #(tg) belongs to Q° for some ¢, then we assume either Z(t) € 2~ or
Z(t) € QF for ¢ in some left neighborhood of t, say |to—7, to[ with 7 > 0. In the
first case, the left derivative of Z(t) at t = to has to satisfy Z(t5) = F (@) +
eg(to, Z(to), €); while in the second case, Z(ty) = FH(E(to)) + d(to, E(to), €).
A similar condition is required for the right derivative Z(t7). We stress that,
in this paper, we do not consider solutions of equation (PS) that belong to Q°
for ¢ in some nontrivial interval, i.e., sliding solutions.

Notation

Throughout the paper we will use the following notation. We denote scalars by
small letters, e.g. a, vectors in R? with an arrow, e.g. @, and n x n matrices by
bold letters, e.g. A. By @* and A™ we mean the transpose of the vector @ and
of the matrix A, resp., so that @*b denotes the scalar product of the vectors a,

b. We denote by || - || the Euclidean norm in R2, while for matrices we use the
functional norm [|A[| = sup g <1 [|A@[. We will use the shorthand notation
af B

fz = B unless this may cause confusion.
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In the whole paper we denote by Z(t, T; 13) the trajectory of (PS) passing
through P at t = 7 (evaluated at t). If D is a set and 6 > 0, we define

B(D,6):={@ €R*|3P e D: || - P| <8} =U{B(P,s) | P € D}.
We list here some hypotheses which we assume through the whole paper.

FO We have 0 € Q°, f£(0) = 0, and the eigenvalues AE,AE of ££(0) are such
that AT <0 < AL

Denote by oF, ¥ the normalized eigenvectors of f;t (0) corresponding to
AE, AL Let us set
et = [VGO)'TE, co* = [VG(0)"vE. (2)

u

We assume that the eigenvectors vF, ¥ are not orthogonal to ﬁG((_)')7 i.e., the

constants c.-F and ¢2F are nonzero. To fix the ideas we require

Flch  <0<eht, b <0<cb™.

Moreover we require a further condition on the mutual positions of the
directions spanned by 7%, 7.

More precisely, set 7,= := {ctif | ¢ > 0}, and denote by I} and II2 the
disjoint open sets in which R? is divided by the polyline 7% := T.F UT,~. We
require that o7 and o lie on “opposite sides” with respect to 7“. Hence, to
fix the ideas, we assume:

F2 ¢f €11} and ¥, € I12.

We emphasize that if F2 holds, there is no sliding on ° close to 0. On

the other hand, sliding might occur when both 1735 lie in II., or they both lie
in T2, see [15, §3].
REMARK 2.1. We point out that it is the mutual position of the eigenvectors
that plays a role in the argument. In the paper we fix a particular situation for
definiteness; however, by reversing all the directions, one may obtain equivalent
results. Moreover, in the continuous case, i.e., for equation (1), then 7“ is a
line and II., IT2 are halfplanes. In fact, all smooth systems satisfy F2. On
the other hand, if assumption F2 is replaced with the opposite condition, that
is ¥ and ¥ lie “on the same side” with respect to 7%, then it was shown
in [15] that generically chaos cannot occur, while new bifurcation phenomena,
involving continua of sliding homoclinic trajectories, may arise.

K For ¢ = 0 there is a unique solution ¥(¢) of (PS) homoclinic to the origin
such that
Q-, t<0,
() e < Q% t=0,
Qr, t>0.
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“o”

Figure 1: Stable and unstable leaves (the superscript “°“®” is denoted as
for short).

Furthermore, (VG(7(0)))* f£(5(0)) > 0.
Recalling the orientation of 7, #F chosen in F1, we assume w.l.o.g. that
Y(t Y(t
T _ 5 and  tim IO g (3)

im — im —
eIy (@)ll el @)l

Concerning the perturbation term ¢, we assume the following:
G §(t, 0, g) = 0 for any t,e € R.

Hence, the origin is a critical point for the perturbed problem too.

We recall that T' := {§(t) | t € R} U {0}; let us denote by E™ the open set
enclosed by T', and by E°" the open set complementary to E™ UT.

Further, for any fixed 6 > 0, we set (see Figure 1):

=19
= L™

(6) :={Q@ €| |@—F(0)] < 5},

(
L—,out L—,out((s

(

) =

):={Q e Q" nE™) ||Q| <4},

) :={Q =d(¥, +¥;)|0<d<6},
) :={Q =d(&} +¥)|0<d <}

(4)

L+,0ut L+ out 5

Now, we define the stable and the unstable leaves W?*(7) and W"(r) of
(PS).

Assume first for simplicity that the system is smooth; that is consider (1)
and suppose that F0O holds true. Then, following [16, Appendix], which is based
on [24, Theorem 2.16], we can define local and global stable and unstable leaves
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as follows:

W (r) == {P € B(0,8) | Z(t,m; P) € B(0,0) for t <,
limy_, oo (t, 73 P) = 0},
Wi (7)== {P € B(0,8) | Z(t,r; P) € B(0,0) for t >,
limy_, 4 oo Z(t, 7; P) = 0},
Wu(r) := {P € R? | limy_, _ooZ(t, 7; P) = 0},
We(r) = {P € R? | limy_, ;oo (t, 73 P) = 0}.

From [24, Theorem 2.16] it follows that W} (1) and W} (1) are C" embedded
1-dimensional manifolds if § > 0 is small enough, while W*(7) and W*(r) are
C" immersed 1-dimensional manifolds, i.e., they are the image of C" curves.
Note that they also depend on € but we leave this dependence unsaid. The
manifolds W*(7) and W?*(7) are the sets of all the initial conditions of the
trajectories converging to the origin in the past and in the future, respectively,
and they are not invariant for the flow of (1). However, if P € W*(r) then
Z(t,7; P) € W(t) for any t,7 € R. Analogously for W (7).

We emphasize that, choosing > 0 small enough, we can assume that
W (1) and W _(7) are graphs on the respective tangent spaces; further W*(7)
and W?*(7) are constructed from W} (7) and W} (7) using the flow of (1) as
follows

—

)| @ eWr.(T)},
)| Q€ Wi (T)}.
Denote by W“’i(T) = W (1) N (QF U Q°) and by Ws’i(T) = Wi (1) N

loc loc

(Q* U QY. Assume further F1, K and follow W¥(7) (respectively W*(7))
from the origin towards LY(/2): then it intersects L°(y/2) transversely in a
point denoted by P,(7) (respectively by Py(7)). In fact, P,(7) and P,(7) are
C" functions of & and 7; hence P, (7) = Py(r) = 7(0) if ¢ = 0 for any 7 € R.

We denote by W*(r) the branch of W*(7) between the origin and P, ()
(a path), and by W#(r) the branch of W*(r) between the origin and P,(7),
in both the cases including the endpoints. Since W“(T) and WS(T) coincide
with TN (2~ U QY and T'N (QF UNO) if ¢ = 0, respectively, and vary in a C”
way, see [24, Theorem 2.16] or [16, Appendix], we find W*(7) C (2~ UQ°) and
W(r) C (@t UQO), for any 7 € R and any 0 < & < g. Further

WU(T) = UT§T {Z‘
WS(T) =Ur>r {:E

(r.T;Q
- 6
(7.0 (6)

Qu € WH(r) = Z(t,7:Qy) € Wh(t) C (- UQ®) for any t < T,
Q. e Wo(r) = Z(t,7:Q,) e W*(t) C (QTUQ%) for any t > .
Now, we go back to the general case where (PS) is piecewise smooth but

discontinuous. Using the previous construction, we can define also in this case
W= (), WeE(r), W*(r) and W*(r), and they are all C".
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Scenario 2

Figure 2: Scenarios 1 and 2. In these two settings there is no sliding close to
the origin. Further Melnikov theory guarantees persistence of the homoclinic
trajectories [8], and we conjecture that we may have chaotic phenomena.

REMARK 2.2. Consider (PS) and assume FO, F1, F2. Then the manifolds
W (1) and Wg, () defined as in (5) are such that W (1) = W (r) U

loc

W (1), Wi (r) = WaE(r) U W (). Hence, W () and Wi (1) are
piecewise C" manifolds (they might lose smoothness in the origin). Further

W (1) and W (1) are again smooth and have the property (7).

Moreover, if K holds then ﬁu(T) and P, (1) are again C" in € and 7, and
ﬁu(7—> :ﬁs(T) =#(0) if e = 0 for any 7 € R.

We set

W(r) :== W (1) UW*(7). (8)
We will see that W (7) C B(T', &%) for a suitable & > 0, see Remark 3.2 below.

Let us define the Melnikov function M : R — R which, for planar piecewise
smooth systems as (PS), takes the following form, see e.g. [8]:
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0 P —
M(a) = / e I3 U T s F~(3(1)) A Gt + ,7(2), 0)dt
- (9)
+ / o~ Jo r FLGENs Fr(3(8)) A Gt + o, 7(E), 0)dt,
0

where “A” is the wedge product in R? defined by @ A b = a1by — asb; for any
vectors @ = (a1, az), b = (b1, by). In fact, also in the piecewise smooth case the
function M is C".

At this point, we need to distinguish between four possible scenarios, see
Figures 2 and 3.

Scenario 1 Assume K and that there is p > 0 such that do;b € E°U, dF; €
E°" for any 0 < d < p.

Scenario 2 Assume K and that there is p > 0 such that dv € E™, dv; € E™
for any 0 < d < p.

Scenario 3 Assume K and that there is p > 0 such that do;f € E™, dv; €
E°" for any 0 < d < p, so F2 does not hold.

Scenario 4 Assume K and that there is p > 0 such that dv;} € E°", dv; €
E™ for any 0 < d < p, so F2 does not hold.

Notice that F2 holds in both Scenarios 1 and 2, and our results apply to both
the cases. Further, in Scenario 1 W2 () and W;>7 (1) both lie in E°"* for
any 7 € R, while in Scenario 2 W, () and W7 (7) both lie in E'® for any
TeR.

In Scenarios 3 and 4 sliding generically occurs in 0 close to the origin and
F2 does not hold. Notice that Scenarios 1 and 2 have a smooth counterpart
while Scenarios 3 and 4 may take place just if the system is discontinuous. We
recall once again that in all the four scenarios the existence of a non-degenerate
zero of the Melnikov function guarantees the persistence of the homoclinic
trajectory, cf. [8], but chaos is generically not possible in Scenarios 3 and 4.
We conjecture that chaos is still possible in Scenarios 1 and 2: this will be the
object of a future investigation in which the result of this article will be crucial.

In this paper we will just consider Scenario 1 to fix the ideas, even
though Scenario 2 can be handled in a similar way.

We collect here for convenience of the reader and future reference, the main
constants which will play a role in our argument:

fwd _ AT fwd _ A AL fwd _ _fwd _fwd
I+ TXapI - T T 0 7 T+ 90—
bwd _ 1 bwd _ 1 bwd __ _bwd -bwd
0'+W = Siwd> o2V = SEwd ) fomdil —U+W o2V, (10)

o
o = min{cl¥4, oPVd}, 7 = max{of¥d, oPvd},
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Figure 3: Scenarios 3 and 4: in these settings we have persistence of the homo-
clinic trajectories but sliding might occur close to the origin. Here our analysis
does not apply directly. Further Melnikov theory guarantees persistence of the
homoclinic trajectories [8], but chaos is forbidden [15] in general.

fwd __ 1 bwd __ 1
ye= ALHAT] ne = Au+IAS |
Efwd — )‘;Jr‘)\:r‘ wad — A;+|As+|
Ax (AF+AT])? = AT +IXT D)
Y= min{Ede, Ebwd}’ 72 — HlaX{Ede, wad}’
A =min{Ag ;A5 N[ AT A =max{A;; A5 AT [ AT

REMARK 2.3. Notice that in the smooth setting we have A} = A\, and A\l =

A, so we have the following simplifications

fwd _ [As] bwd _ Ay . fwd _ 1 bwd _ _1
oVt =5", o = B W=+ X = (11)
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3. Construction of the Poincaré map

Fix 7 € R and consider L°(4) given by (4), where § > 0 will be chosen below.
The point P,(7) splits L in two parts, say A™9+(7) and B+ (7), re-
spectively “inside” and “outside”, see Figure 4. The purpose of this section
is to construct a Poincaré map using the flow of (PS) from L° back to it-
self remaining close to T; i.e. 2™Wd(. 7). AW+ (7) - [0 and a time map
T 1) 0 AW (7)) 5 R such that for any P € A™d+ (1) the trajectory
Z(t,7; P) will stay in a neighborhood of T' (in fact in a neighborhood of W (t))
for any t € [r, 7™4(P,7)] and it will cross transversely L° for the first time at
t = 7™4(P 1) > 7 in the point Z™I(P, 7). Further, we want to show that
both the maps are C".
Moreover, if P € B4+ (7) then there is some Z°% = Z°(P ) > 7 such
that the trajectory will leave a neighborhood of T' at t > .Z7°ut,

Similarly, the point P, (1) splits the curve L° in two parts, say APWE=(7)
and BP9~ (7), respectively “inside” and “outside”, see Figure 5. Using the
flow of (PS) (but now going backward in time) we can construct a C” Poincaré
map ZPV4(. 1) : AP~ (7) = L0 and a C" time map TPV4(., 1) : APV (1) —
R such that for any P € AP~ (7) the trajectory Z(t,7; P) will stay in a neigh-
borhood of T' (in fact in a neighborhood of W (t)) for any t € [ZP¥4(P, 1), 7]
and it will cross transversely L0 for the first time at ¢t = ZP%4(P,7) < 7 in the
point 2P¥d(P, 7).

Moreover if P € B®4~(7) then there is some 7°%(P,7) < 7 such that the
trajectory will leave a neighborhood of T at t < 7°ut,

Hereafter it is convenient to denote 7~ (t) := 7(¢) when ¢ < 0 and ¥ (¢) :=
~(t) when t > 0.

REMARK 3.1. Assume FO, K, then there is a constant ¢ > 0 such that
157 (1)) < S Xt for any ¢ < 0 and |7 ()] < D &X't for any ¢ > 0.

We state now a classical result concerning the possibility to estimate the
position of the trajectories of the unstable manifold W*(7) and of the stable
manifold W#(7) using the homoclinic trajectory ¥(¢t). The proof is omitted,
see, e.g., the nice introduction of [25], or [21, §4.5].

REMARK 3.2. Assume K and F1, then there is ¢y > 0 such that for any
0 < e < ¢p we have the following. There is ¢* > 0 such that

|Z(t,7; Pu(7)) =4~ (t —7)|| < c’e for any t < 7,

(12)
|Z(t,7; Ps(7)) — 7T (t —7)|| < &%e for any t > 7.

By a slight modification of [15, Lemmas 6.4, 6.7] and the argument of [15,
§6.2.2] we can construct two auxiliary curves ZWdin zfwd.out with the following
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Figure 4: Construction of the set K™ (the superscripts “fwd» = «in» “wout» ap0

denoted as “f”, “i”  «” regpectively, for short). This picture enables us to
control the trajectories of (PS) in a neighborhood of T' in forward time.

properties, see Figure 4, and also Figures 8, 9. These curves are useful to build
up our Poincaré map in forward time.

The curve Z™W9in i a continuous, piecewise-C” path starting from a point
piwdin ¢ (10 Bin) pagsing through a point @™4n ¢ L and ending in a
point R"4in ¢ (L0 0 Ein), see (4) and the beginning of Section 2.

The branch from PMin to @devi“ is in O, while the branch from Qdevi“
to R™4in isin O~ and they are both C”.

Analogously, the curve Zfd:°ut ig a continuous, piecewise-C” path starting
from a point O™d-out ¢ [,=out pagsing through a point Pwdout ¢ (L0 n gout)
and ending in a point Gfd:eut € L +out The branch from Ofvdout 4o pfwd.out
is in 0, while the branch from P™d-eut to Gfwdout ig in OF and they are both
C". Further ZWdin ¢ Bin while zfwdout - pout,

We denote by K f‘”d the compact set enclosed by Ztwdsout - 4out -~ out
ZWdin and the path of Q° between Piwdin anq Rfwdin e denote by K fwd, & —
K™ Q*F. Notice that by construction Z™W%in and Zde °ut do not intersect
each other or themselves and that I' ¢ K4,

In order to construct the auxiliary curves Z™Wdin and ZWdout  we need to
introduce a small parameter 8, which however has to be larger than &, namely:

ofb
B>eT, o™ = min{o™4 PV} < 1. (13)

We introduce a further parameter p, whose size has to be small, independently
of . Roughly speaking, p will play the role of controlling the errors in evaluat-
ing the positions of the “barriers” Z™4™ and similar, just below, and the space
displacement 2 with respect to W, defined in the main results, Theorems 4.2
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and 4.3 below.
Let us define

1
po =7 min {Zg‘_"’d, ZEWd,Q2} (14)
Then we have the following.

LEMMA 3.3. Assume FO, F1, F2, K, G. We can choose gy and By such that
for any 0 < € < g9, any 0 < B < By with B > Eanb we can define ZIwdn,
zfwdout 5o that the flow of (PS) on Zfwhin\ { Pfudin Bfwdiny g o, Zfwd.out\
{Ofwdout Glwd.out) qimg towards the interior of K™, Then, for any 0 < p <
po we find

1Bt —5(0) | = B, | Pttt — 5(0)]| = 3,
fwd fwd fwd fwd
BTEH < @i < g, g < |QIvbent| < g,
fuwd — . N fwd _
ﬁa +p < Hwad,m _ ’Y(O)H < ,60 p,’

bwd _

+u < ”O_'fwd,out” < /Ba'_ I

(15)

a,bmd

/B —
Finally we can assume that K¢ C B(T, 32"), and that there is ¢ > 0 such
that B(T, ce) N (Zfwdin y Zfwd.outy — (),
A sketch of the proof of both Lemma 3.3 and Lemma 3.5 below is postponed
to Appendix A.

REMARK 3.4. We invite the reader not to focus on the precise values of the
exponents appearing in (15). Notice that if A\ = A, = |\F| =|A\; | as, e.g., in
the smooth Hamiltonian case inequalities (15) simplify as follows

| Bwain — 50)]| = 8, | Predont —5(0)]| = B,
B < || Gain| < pin, phn < (|G| < pion,
gl < IR — 5(0)) < 1,

B%_HL < ||O’fwd,out|| < ﬁ%—#.

(16)

Further, taking into account that 0 < p < 1/16, we get K™4 ¢ B(T, g/4).

Similarly, we construct some other auxiliary curves useful to build up the
Poincaré map in backward time. By a modification of [15, Lemmas 6.4, 6.7
and from [15, §6.2.2] we construct the continuous, piecewise-C" curves ZPWd:in,
zPwdout with the following properties, see Figure 5, see also Figures 10 and 11.

The curve ZP¥4in gtarts from a point PP¥din ¢ (L°NE™), passes through a
point GP¥in ¢ Lin and ends in a point BPVin ¢ (L°NE™), so that the branch
from PPwdin to Gbwdin ig in O~ while the branch from QP¥din to Rbwdin jg
in Q7F, and they are both C".
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Figure 5: Construction of the set K®¥9 (the the superscripts «Pwd»  «in» wout»
are denoted as “P7, “1” “0” yegpectively, for short). This picture enables us
to control the trajectories of (PS) in a neighborhood of I in backward time.

Analogously, the curve ZP¥d:out starts from a point OPWdout ¢ [—out
passes through a point PP¥d:0ut ¢ (L0 0 Fout) and ends in a point GPWd-out ¢
L+°ut 5o that the branch from OPVdout o pbwdout j¢ iy O~ while the branch
from PPwdout to gbwdout i in OF and they are both CT. Further ZP¥din
Ein while wad,out C Eout.

We denote by KP4 the compact set enclosed by ZPwd.out [ +.out —out
ZPwdin and the segment of QO between pbwdin and BPwdin - We denote by
Kbwdt — gbwd 0 OF  Again, by construction, ZPV4in and ZPWwdout do not
intersect each other or themselves and I' ¢ KPWd,

LEMMA 3.5. Assume FO, F1, F2, K, G. We can choose €9 and By such
Pk
that for any 0 < ¢ < g9 and any 0 < B < By with B > €2 we can define
wad,in’ wad,out so that the ﬂow Of (PS) on wad,m\{wad,m7wad,m} and
on Zbwdout\ fQbwd.out Qbwd.outy gims towards the exterior of K. Then, for
any 0 < p < po we find
[ PPedi —5(0)] = 8, [Predent —5(0)]| = 8,

bwd __

+u < ||Q_'bwd,inH S ﬂ07 /,1,’ ﬁaffd-i-u < |‘wad,out|‘ S Boﬁ”d—u’
g7 < | RP i — 5 (0) < 87,

bwd _

ﬁo_b_wd+# S HO"bwd,outH S IBJ_ K

Cies
(17)

Finally, we can assume that K*% C B(T', 32™H), and that there is ¢ > 0 such
that B(T', c) N (Zbwdiny zbwd.outy — (),

Again, the precise values of the exponents appearing in (17) are not so rel-
evant in this paper, and if A} = A, = |\I| = |A; ], (17) simplifies analogously
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to (16).
We continue with further constructions illustrated again by Figure 4.

_ From Lemmas 3.3 and 3.5, we know that W(r) ¢ K™ K"4, Further
W (7) splits the compact set K™4(7) (K"¥4(7)) in two components, denoted
by K4(r) and K54 () (K}¥(7) and K3(r)), respectively in the interior
and in the exterior of the bounded set enclosed by W (7) and the branch of Q°
between P, (7) and P, (7).

We denote by A™4:+(7) the open branch (i.e. without endpoints) of Q°
between P4in and P, (1), and by A™4~(7) the open branch of Q° between
Rwdin and P,(7). Let § € A™4F(7) and follow Z(t,7; Q) forward in ¢ for
t > 7; from Lemma 3.3 we get that i"(tm;@) will stay close to W(t) until it
completes a loop and reaches A™4—(7™(G, 7)) at t = TG, 7) > 7.

Similarly, we denote by AP"4:~(7) the open branch of Q° between Pbwd,in
and P,(7) and by AP"4+(7) the open branch of QO between EP¥din and
Py(7). Let @ € AP4~(7) and follow Z(t, ;@) backward in ¢ for t < 7; from
Lemma 3.5 we know that Z(¢, 7; Cj) will stay close to W(t) until it completes a
loop and reaches AP+ (. 72%d(G 7)) at a suitable t = 7", 7) < 7.

Let K% () = Kivd(r) nQF, K" () = K§d(7) N QF, then we have
the following.

LEMMA 3.6. Assume FO, F1, F2, K, G. Let Q € Afwdt (1), Then there are
Thi(Q,r) > TL(Q,T) > T s_ych that the trajectory f(t_zT;Q) € Kiwd’Jr(tz for
anyT <t<m(Q,7), Z(t,7;Q) € ngd’_(t) for any 7 (Q,7) <t < TMQ, ),
and it crosses transversely Q0 at t € {7, 71(Q, ), 74 Q,7)}. Hence,

PG, 1) = (1 (G, 7),7;Q) € L™,

PG, 7) = BTG, 7), 73 Q) € AT (TG, 7).

Analogously, let Q € Abwd= (7). Then there are 9”“"%@, T) < T_l(Q, T) <
T such that Z(t,7;Q) € K™ (t) for any 7 1(Q,7) < t < 7, &(t,7;Q) €
K5 (@) for any TG, 1) <t < 7_1(Q,7), and it crosses transversely Q°
at t € {r,7_1(Q,7), 7", 7)}. Hence

2@, 7) = F(r1(@,7), 7 Q) € L™,

PG 7) = H TG 7), 7 G) € AT G ).

From the smoothness of the flow of (PS) it follows that all the functions
defined in Lemma 3.6 are C": we add a sketch of the proof for completeness.
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REMARK 3.7. The functions 2M4(@, 1), 7(Q,7), 2™Q,7), 7™q, 1),
and 2" R 1), 7_1(R,7) and 2""Y(R, 1), 7"%4(R, T) constructed via Lem-
ma 3.6 are C” in both the variables, respectively for Q € Afwdit (7)) R €
APYd=(7) and T € R.

Proof of Remark 3.7. The smoothness of ﬂin(Q, 7), 71(@, 7) follows from the

smoothness of the flow of (PS) on Q1. Let @ be a point in the branch of L®

between the origin and @de’in, and 7 € R; let us denote by 7'2(@, 7) the time

such that Z(t, 7; Q) € Q forany 7 <t < TQ(Q, 7) and it crosses transversely

Q0 at t = 75(Q, 7). Then 7(@, 7) and 2™Q, 1) := Z(7(F,7),7: Q) are CT

in both the variables due to the smoothness of the flow of (PS) on Q™.
Hence, the maps

TVQ,7) = 1(Q,7) + (2@, 7), (@, 7)),
Z™UQ,m) = 202U, 1), (A7)

are C" since they are obtained as a sum and compositions of smooth maps.
The smoothness of Z*V4(R, 1), 7_1(R,7) and Z"V4(R, 1), 7*"4(R, 7) can
be shown similarly. O

In fact, using the argument of Remark 3.7 with some minor changes we can
show the following.

REMARK 3.8. Let A be an open, connected and bounded subset of €, let
7o > 71 and denote by

B(t) = {#(t,7; Q) | G € A}.

Assume that in Q0 N B(t) there are no sliding phenomena for any t € [y, 72].
Then the functions

@7’2,7’1 tA— B(T2)7 (PTl’TQ : B(T2) — 4,
Oryr (@) = #2113 Q),  Bryry = B

are homeomorphisms.
Assume further that AN Q° =, B(12) NQ° = (), and that for any Q € A,

if Z(£,71; Q) € QO for some € (11,7,), then it crosses Q° transversely. Then
®., -, and @, -, are C" diffeomorphisms.

REMARK 3.9. Let us denote by V() the compact connected set enclosed by
W () and by the branch of Q° between P,(7) and Py(7). If § € A™+(7),
then Z(t,7; Q) € V(t) for any ¢ € [r, 7Y@, 7)].

Analogously if G € AP~ (7), then Z(t,7; Q) €V (t) for any te[T"(Q, 1), 7].



NON-AUTONOMOUS HOMOCLINIC TRAJECTORIES (17 of 67)

REMARK 3.10. Denote by B™4*(7) the branch of QO between Py(7) and
Piwdout and by BPd~(7) the branch of Q0 between P, () and PPwd.out,
Observe that, if @ € B™4+(7), there is 71 (@) > 7 such that Z(t,7;Q) €

—

KEWd’+(t) for any 7 < t < 71(Q), it crosses transversely L*°" at ¢ = 71(Q)
and leaves a neighborhood of T' at some ¢ > 71(Q).

Analogously, if @ € B"4~(7), there is 7_1(Q) < 7 such that Z(t,7; Q) €
K27 (t) for any 7_1(Q) < t < 7, it crosses transversely L™°" at t = 7_1(Q)

and leaves a neighborhood of T' at some ¢ < 7_1(@).

4. Statement of the main results

In this section we need to measure the distance between the points on °, and
to be able to determine their mutual positions. Since Q0 is a regular curve we
can define a directed distance for points in Q2° by arc length, once an orientation
is fixed. We choose as the positive orientation on Q° the one that goes from
the origin to 4(0). So, for any Q € L° we define K(Q) = fﬂo(@@) ds > 0 where

Q°(0,Q) is the (oriented) path of Q0 connecting 0 with @, and we define the
directed distance

2(Q, P) = U(P) —¢(Q) (18)

for §,P € L°. Notice that 2(@Q, P) > 0 means that @ lies on Q° between 0
and P. Now, we introduce some further crucial notation.
Notation. We denote by Qs(d, 7) the point in A™9:+(7) such that

2(Qs(d, ), Py(r)) = d >0,
and by Q,(d, 7) the point in A"~ (7) such that
P2(Qu(d,7), Pu(1)) = d > 0.
We introduce a further small parameter § > 0. This parameter can be

chosen independently of € > 0, but we need to set § < g Then we will always
assume 0 < d < 6.

REMARK 4.1. We explicitly notice that, if 0 < d < § then Q. (d,7) € Awd+ (1),
i.c., the open branch of Q° between P¥4in and P, (7). Indeed

|Qs(d,7) = Po(n)ll < 12(Qs(d, ), Po(r))| = d < 6 < B/2;
further from || P, () — 7(0)|| = O(e) one can see that

1Qs(d, ) = FO)II < |1 Po(r) = FO)I| + 1Qs(d, 7) = Po()]| < B,
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since ¢ < f; while by construction ||P™din — 7(0)|| = . Hence for & small
enough @, (d, 7) € AN+ (7).

Similarly we see that if 0 < d < 6 then Q,(d,7) € AP~ (1), i.e., Qu(d, 7) lies
on the open branch of Q° between PP and P, (7).

From Lemma 3.6, we see that for any 7 € R and any 0 < d < ¢ we can
define the maps

%( ) nyd(Q_’ ( )aT)v <@1(6177—) = nyd(Qs(dvT)vT)v

- (19
T 1(d,7) = T™YQ,(d,T),T), P_1(d,7) == P*NYQu(d,T),T).
Sometimes we will also make use of the maps
yl(dﬂ—) = Tl(és(dvT)vT)a gzl(dvT) = gin(Qs(daT)vT); ( )
2 2 20

T_a(d,7) =7 4(Qu(d,7),7),  P_i(d,7) =P (Qu(d,7),7).

Notice that by construction the trajectory Z(t,; Qs(d, 7)) is in Kin’+(t)
for any 7 <t < .71(d,7) and it is in K;Wd’_(t) for any 7 (d,7) <t < J1(d,7);
further it intersects transversely L™ at t = Z1(d,7) and A= (7 (d, 7)) C L°
att = 71(d, 7). Similarly, the trajectory Z(t, 7; @u(d, 7)) isin K};Wd’_ (t) for any
J_1(d,7) <t <7 anditisin KT () for any 71 (d,7) <t < T_1(d,7);
further it intersects transversely L'" at t = J_1(d,7) and APYAH (7 1(d, 7)) C
LV att =7 1(d, 7).

THEOREM 4.2. Assume FO, F1, F2, K, G and let fi and g be C" with r > 1.
We can find g > 0, 6 > 0, such that for any 0 < € < €g, the functions
Ti1(d, 1), Py1(d,7) are C" when 0 < d < § and 7 € R. Further, for any
0 < p < po we get

A7 < PP (d,7), Pu( i (d, 7)) < d7H,
d‘f”d+ﬂ<9(9 (d, ), P T 1 (d, 7)) < d"n, (21)
|12y (d,7)]| < d7F"= 12_ s (d,7)|| < do="*

(d) (2w 4 4] | In(d)

(@) (d,7) < [S*+ ] [ n(d)
(= — ) (@) < (7 (d7) = 7) < [+ ] [ n(a)),

(d) (d,7) < [B2 4+ p] [ In(d),

|
and all the expressions in (21) are uniform with respect to any 7 € R and
0<e<ep.

< B
< B

(22)
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In fact, with the same argument developed in §5, we are able to estimate
the positions of the trajectories Z(t,7; Qs(d, 7)) and Z(t,7; Qu(d, 7)) for any
telr,Z7(d,7)] and t € [T_1(d,T), T], respectively.

THEOREM 4.3. Assume FO, F1, F2, K, G and let fi and g be C" with r > 1.
We can findeg > 0, § > 0, such that for any 0 < e <eg,0<d<6,0< p < po
and any 7 € R we find

12(t, 75 Qs(d, 7)) — E(t, 73 Po(m)|| < d7+ " (23)

forany T <t < ﬂé(d, 7), and

1Z(t, 75 G (d, 7)) — #(t, Zi(d7); Po(Z3(d. 7)) < doF* (24)

for any 9%(d, T)<t< ZAd,T).
Similarly, for any 0 < e <ep, 0 <d <6, 0< p < py and any 7 € R we

find

a,b_wd7

|1Z(t, 75 Qu(d, 7)) — &(t, 73 Pu(7))| < d
for any 9_%(d, T)<t<T, and

g (25)

1Z(t, 7 Guld, 7)) — E(t, To1(d, 7); Po(Toa(d, 7)) < d7=7F (26)

for any T_1(d,7) <t < T _1(d, 7).

T2

5. Proofs of Theorems 4.2 and 4.3

In this section we assume all the hypotheses of Theorems 4.2 and 4.3 without
further mentioning, and we adopt the notation introduced in §3; we recall that
fi and ¢ are C" with r > 1+ « for some 0 < o < 1, i.e., their derivatives are
Holder continuous.

For simplicity we denote by

FE(,t,e) = [5(T) + eg(t, T,e), TeQTUQ°
and we assume the following:
H There are 0 < a < 1 and N, > 0 such that, for ||2]| < 1,
sup{||[FE(P + h,t,e) — FX(P,t,¢)|| | P € B(T',1), t € R, |e| < 1} < N ||h||*.

The proofs of Theorems 4.2 and 4.3 is technical and lengthy and it is divided
in several steps.
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Figure 6: A scheme of the proofs of Lemmas 4.2 and 4.3.

Adapting [15] we introduce a small auxiliary parameter w, w > §, see
Remark 5.1, whose value will be fixed below, and the following set depending
on it:

St .= {dﬁ+ - O |d| < 1} (27)
' “ [ In(w) " In(@)[
see Figure 6. Let us denote by 7(7) the unique intersection between W*(7)
and S+, whose existence follows from the fact that W* (7) is locally a graph on
its tangent, see also Remark 5.14. Moreover we let ¢/5(6) = (0 + 7, 7; Ts(7));
notice that ¢7,(0) € K™+ for any 0 > 0 and limg_, 4 o 75(0) = 6, see Figure 4.
Then we denote by

SH(r) = {=dv}f +7(1) |0 < d <6} (28)

Since 7,(7) = o + O (W) then S+(7) C §+.
Analogously we denote by
§ = {dU b < 1} (29)
' © o [In(w) " (@) )
Let 7, (7) be the unique intersection between W*(r) and S—, whose existence
follows from the fact that W*(7) is locally a graph on its tangent. We let
Fu(0) = Z(0 + 7,7;Tu (7)), and we observe that ,(0) € KP¥4~ for any 6§ < 0

=

and lim;, %, (0) = 0. Then we set
S7(7) i= {—dv,; + Tu(7) \0<d§5}. (30)

Again by construction S~ (1) C S~.
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Roughly speaking, to prove the results of this section we consider a trajec-
tory performing a loop and we estimate flight time and space displacement:
for this purpose we distinguish four different parts of the loop. Firstly in §5.1
we follow the trajectories from L° to ST forward in time (and we deduce what
happens backward in time from ST to L°): we get estimates of the fly time
and the displacement with respect to W#*. Then with the same argument we
follow the trajectories from L° to S~ backward in time (and forward from S~
to LY) and we estimate fly time and displacement with respect to Wu. In the
proofs we will use the fact that the trajectories are close to W, which is in turn
close to T

Then, in §5.2 we follow the trajectories going from S* to L™, forward and
backward in time, and we evaluate fly time and displacement from W#. Then
in §5.3, with an argument analogous to the one of §5.2, we follow trajectories
going from S~ to L™, forward and backward in time and we evaluate fly time
and displacement from W, Eventually, putting all these results together,
we get an estimate of the distance of the trajectories from W and we prove
Theorems 4.2 and 4.3.

REMARK 5.1. In this section we introduce several small parameters, which need
to be chosen in the right order.

Equation (PS) assigns € > 0, which measures the size of the perturbation,
and the constant po which depends only on the eigenvalues A\, \I, see (14).

Then we introduce a parameter 8 > /2 and, via Lemma 3.6, we deduce
the existence of ¢y and §jy such that for any 0 < € < g¢ and any 0 < e7"/2 <
B < By we can construct the maps gziw‘j, gptwd - gpbwd gpbwd,

Nextly we set 1 €]0, o] which measures the size of the errors that we make
in the estimates of flight time and displacement appearing in Theorems 4.2
and 4.3.

In this section we introduce a further small parameter w €]0,1[ which
measures the distance between the origin and the lines ST and S, transversal
to ' (these distances are of order |In(ww)|~!). This parameter is needed just
for the proofs of Theorems 4.2 and 4.3 and it does not appear in the statement
of the results.

Then we choose 6 = d(w,e) €]0,w[: 6 measures the displacement of the
trajectories performing a loop with respect to W: in fact each trajectory ap-
pearing in Theorems 4.2 and 4.3 has distance O(d) from W when it crosses L°,
where 0 < d < §. Finally we possibly reduce the size of ¢ so that the fixed
point arguments described in §5.1 and §5.2 work.

Let us spend a few more words about the order in which these parameters
need to be chosen. The parameter ¢ is assigned from (PS); we choose Sy > 0
and €y > 0 so that Lemma 3.6 holds for any 0 < /2 < B < Po and any
0 < ¢ < g9, and the maps appearing in Lemma 3.6, Theorems 4.2 and 4.3 are
well defined.
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Then we choose 1 > 0: in fact we have to choose a parameter p; > 0 which
is needed for the estimates of the trajectories going from L° to ST and from
S~ to L°, and a parameter 2 > 0 which is needed for the estimates of the
trajectories going from St to L'™ and from L™ to S~. Then we set po = 2/
and p = ¢,y where ¢, > 7 is a constant (depending only on A, At see (83)
below), and we need to choose p so that 0 < p < pg. So, the choice of u
prescribes the values of p1 and po.

Then we choose w = w(u, €), nextly 6 = §(w, i, €); finally for any fixed 0 <
1 < po we choose g9 = eg(p) so that our argument works for any 0 < ¢ < gg.
We think that in fact the estimates might be improved and it could be shown
that p could be chosen as a linear function of ¢, but this is beyond the interest
of this paper, see Remark 5.29. In fact we believe that one can improve further
the estimates if g, (t,0,e) = 0.

REMARK 5.2. By Lemma 3.6 we know that if § € A™4F(7), then Z(t, 7; Q)
is confined in the region KZWd’+(t) for any 0 < t < 71(Q,7). To simplify
the presentation and avoid cumbersome notation we will tacitly assume that
the systems (PS+) and (31) are well defined, through any smooth extension,
even when 7 € QY U Q™ is “sufficiently close” to QF. In fact, the choice of the
extension does not affect our argument since we just focus on Q° U QF.

We will maintain the same kind of assumption when dealing with Z(¢, 7; @)
and @ € APV (7).

Before starting the actual proof we recall some facts concerning exponential
dichotomy. The roughness of exponential dichotomy (see [11, Proposition 1,
§4] and also [9, Appendix]) yields that the linear systems

—

#(t) = FE(0,t,0)Z(t) (31).

admit exponential dichotomy on the whole of R with projections P*+€, and
exponents A\ + ke < 0 < Af — ke for some k > 0.

Keeping in mind the definitions of A\ and A given in (10), we shall assume
w.l.o.g. that keg < %A, so that

_ 1 1 _
—2)\<)\Si—k5<>\f+ks<—§g<0<§A</\f—k5<)\f+ks<2)\.

In this paper we use the version of exponential dichotomy introduced in [9,
Appendix] in which we estimate the projections using actual solutions of (31).

In the whole section (unless otherwise stated) e > 0 is fixed: so from now
on we leave this dependence unsaid.

Let us denote by wF(t) and by w¥(t) the unique solutions of the linear
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equations (31)1 satisfying the following conditions

o=t el =0, i ((20) g
= N0 )
O =1 i ol =0t (L) w0
Let us denote by #F(t) and by @ (t) the unit vectors o (t) = Hgfﬁ and
TE(t) = % Then, following [9, §6.2] we define
wE(t wE(t
e =jgEGl  Fe =G )
Note that for any ¢,7, s € R we have
2E(t,s) = 25 (t,r)2E(r,s), 2E(t,s) = 25 (t,r) 25 (1, 5).
Moreover, there are C' > 0 and k; > 1 such that for any ¢, s € R we have
175 () =Tl < Ce, |55 () = 55| < Ce,
(kl)—l exf(t—s)—ks|t—s| < zf(t,s) <k e)\f(t—s)+ks|t—s| , (34)
(kp)~L e e (tm)—kelt=sl < (4 o) < ) M7 (=) helt=s]
So that, for any ¢ < s we find
2E(t,s) < ky e 2Alts] 2E(s,t) < ke 72l (35)

Denote by X () the fundamental solutions of (31)+ satisfying X+<(0) = L.
We also need to define the shifted projections

PEe(r) = X (r)PEE(XEe(r) 7L
Notice that both |[PE¢(7)|| and ||[I — P%<(7)|| are bounded, so we can set

ks := 2sup[{| PEO(r)|| | 7 € R} U{L = P=O(7)|| | T € R}]

so that max{||P%(7)|; [T — P%=(7)||} < ko for any ¢ > 0 small enough and
any 7 € R. We need the following result.

LEMMA 5.3. For any s,t € R and any Ee R? we have the following.
”X:l:’E(t)Pi’E(Xi’e(s))flgu < kazs(t, 8)\\5qu
| XE= (1) (1 — PEE)(XH5(s)) 72| < kozal(t, 8)||E]|

for some ko > 0.
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Proof. Let A be a linear operator, we denote by RA its range and by NA
its kernel. Fix 7 € R, then for any £ € R? we find £(7) € span[vf(7)] =
RPH<(7) and ££(7) € span[tif (7)) = NP32(7) such that £ = £5(7) +E5 (7).
Further [|€5(7) || < kell€]| and [|€5(7)]| < ko [I€]]-
Next by the invariance of the projections of exponential dichotomy we have
X2 () PE(XE(s) ! = XES(1)(XE4(s) " PEA(s),
XEO[L - PEEXF(s)) " = XE()(XF5(s) ' [[ - PF=(s)].

Hence for any E € R? we find

IXH(6) PEE(XH(5) 7 HE]| = [ X5 ()(X55(s)) T (9)]
= 25(t, )67 () < kazi (8, 9) €]

IXE2()[I = PEEYXES(s)) €] = | X (0)(XF5(s) " Ex (9]
= 2u(t, )€ ()] < Razult, 5)IIE],

so the lemma is proved. O

Using standard arguments from exponential dichotomy theory (see again [9,
§6.2]), we get that there is ¢;, > 1 such that

(i) L e s < |70, + 7,7

(7
(er) ™t e PN < (00 + 7,75 Pu(r))| < 03

whenever 0, < 0 < 0, for any 7 € R.

5.1. The loop: from L° to S*(7) and from S~(7) to L°

In the whole section w > 0 is a small parameter and we choose § = §(w) < @
according to Lemmas 5.4, 5.9, and then we let 0 < d < d. We recall that
P,(7) is the unique intersection between W*(r) and L° while P,(7) is the
unique intersection between W (7) and L°; further G(d, ) and @, (d, ) are
as defined at the beginning of §4. We introduce the following notation

@ (d 1) = — v} +7(7) € ST(r),

- (37)
Q (d,7) =—dvy +7u(1) € 57 (7).

We focus firstly on the trajectory Z(t, T; C_Q’S(d7 7)) going from L° to St. The
next lemma is a consequence of Lemma 3.6.
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LEMMA 5.4. Let w > 0 be a small constant, then there is § = §(w) such
that for any 0 < d < & and any T € R there are T} (d,7) > 0 and ﬁ;(d, T)
such that Z(t,7;Q(d, 7)) € KR (t) for any 7 < t < 7+ T{(d,7) and it
crosses transversely ST (T (d,7) +7) c St at t = 7+ T/ (d,7) in ﬁ;(d, T) =
T (d,7) +7,7;Qs(d, 7).

Conversely, going backwards in t, there are TY(d,7) > 0 and ﬁ;‘ (d,7) such
that Z(t,7; Q% (d, 7)) € K\ F(t) for any 7 — TY(d,7) < t < T and it crosses
transversely LO at t = 7 — TV (d,7) in B} (d,7) = Z(r — T2(d, ), 7; @t (d, 7).

Now we proceed to estimate the functions Tlf , ]3+ TP, PY defined in Lemma
5.4. We denote by —T < 0 < Tlf, T = Tf the Values such that "y(Tf) €St

REMARK 5.5. Observe that if ¢ = 0 then T} (0,7) = T and T2(0,7) = T?.
From (36) we find

11n(1) i< 2 ()
2 \ a9 FEA Rl

Using |7(T7)|| = Tty for some 0 < ¢ < 2, we derive

Loy (@Y < 77 < 2 ey ina))),
2\ Ck A (38)
L (@) 2
— — | < < — .
o In ( o sTisy In(ci|In(w)])
Hence for any 0 < € < gy we have
1 1 2
Loy (@ o T7(0,7) < = In(2¢| In())),
2\ 2cg A (39)
1 [In(w)| 2
— < < — .
2/\ | ( 20, T2(0,7) < X In(2¢i| In(w)|)

LEMMA 5.6. Assume H and let w > 0 be a small constant, then there is § =
0(w) such that for any 0 < d <6 and any 7 € R we have

7 (d,m) =1/ (0,7)| < 1, (40)
T3 (d, 7) = T3(0,7)] < 1. (41)

Proof. Let us set T = % In(4cy| In(w)|), using continuous dependence of (PS)
on initial data (see Remark 3.7), we see that there is § = §(w) such that

120 + 7,75 Qs(d, 7)) — Z(0 + 7,73 Py (7))|| < |In(w)|~* (42)
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for any 0 < 6 < T and for any 0 < d < §. Since f(f(Tlf(O,T) + 7,7 Py(7))) is
transversal to S* and 1+ T} (0,7) + 7 < T, using (39) we find

slc’(Tlf(O,T) + 7,7 153(7'))
= fHOF(T (0,7) + 7,7 (7)) + o(F(T{ (0,7) + 7,7 Ps(7))) + O(e) (43)

=~ N5 o)) + 0

Further, a similar estimate holds when 6 € [0, 1], namely
+
)\j s 0 .

:1—7’(9 + T1f(077') + 7,7, ﬁs(T)) - Wﬂ

S

So, from (43) and (44) we find that

BE1+TI(0,7) + 7,7 P,(7)): 2| In(w)|"2) N &+ = 0.
Then using (42) we find

B(E(1+ T/ (0,7) +7,7:Gs(d,7)); | In(w)| %) N 5+ =,

so we get T/ (d,7) < T/ (0,7) + 1. Using a specular argument we prove (40);
the proof of (41) is analogous and it is omitted. O

Adapting slightly the proof of Lemmas 6.2 and 6.3 in [15], which are in fact
based on Theorem 12.15 in [22] we obtain the following estimates of the fly
time and displacement with respect to W*, moving forward and backward in
time.

PROPOSITION 5.7. Assume H and let w > 0 be a small constant, then there is
0 = 6(w) such that for any 0 < d < § and any 7 € R we have

In(|In(@)) _ s Aln(|In(w)|)
5 <T]d,T1)< X . (45)

Further ﬁf(d, 7) = —DI(d, 7T} + 7 (r + T (d, 7)) where
0 < d|In(w)|~¢ < DI (d,7) < d|In(=)|°. (46)

Here and below C > 0 is a constant independent of w, § and €.
Respectively,

1n(|ln£w)|) < Tf(d,T) - 41n(] In(w)])

D) A ’
and DY(d,7) = Z(P}(d, ), Ps(t — T(d, 7)) verifies

0 < d|In(w)|~C < Db(d,7) < d|In(=)|°.
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Proof. The estimate (45) follows immediately from (40) and (39), and similarly
for the estimates concerning 77 (d, 7).
Let us now estimate the displacement
D]

Di(d,7) = DI (d,T,e) = o (0,7,0)d + o(d + ) (47)

ap{!
ad

since DY (0,7,¢) = 0. Now we estimate
proof we consider € = 0. Let us set

(0,7,0), so from now on in this

My =sup {{|tr f; (D) | Z€ B, )} u{|tr £ (Z)|| £ € B(TT,1)}},

where I'T = IT'N QF. In this proof we denote for the sake of brevity (6, P) =
F(0+ 7,7 P,= = 0). Notice that 5(6,7(0)) = 7(6) and 5(6,7(0)) = /*(7(6)).
if # > 0. Adapting Theorem 12.15 in [22] we consider the variational equation

#(0) = £+ (5(0))0) . (48)

Following [22] we see that if X (0) is the fundamental matrix of (48) then for
any T > 0 we get

T
det X (T) = exp ( /O tr f;"(i(@))d&) )

Further, recalling that fF(7(6)) is close to f; (0) when 6 — +oo we find
|X ()] < T < [n(e) 2, (49)
Next from (45) we get
| In(e)[~*M1/2 < det(X(T{)) < |In(ew)| "M/ (50)
for any 0 < d < §. Let now ¥ be the unit vector tangent to 29 in ¥(0) aiming
towards E'™: notice that ¥ is transversal to ¥(0%) = f(3(01)), cf. K.
Observe that by construction Q,(0,7) = Py(r) = 7(0), ani(dO’T) = ¥; fur-
ther, %ﬁ(@,ﬁ'(O)) = X (0) is the fundamental matrix of (48).
Now we proceed to evaluate T;(7) = a%Tlf(d, 7)|4=0- Note that, by con-

struction, [P3(T{ (d,7), Gs(d, 7))]*TF = |In(w)|~* for any 0 < d < § and any
7 € R. Hence differentiating we find

— >3 04, 0,7 L,
[P 2T (0,7), Pu(r) 22592 | 5t

T\ (1) = — -
" (PHAT (0,7), B(n)|

[P+ X (T)i)] ot
[P )

(51)
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Now, observing that

q ) gt
AT (0,7), Po(r)) = (T ) = — +0(|1nl )

| In(w)| ()]
we get
T R A
fr(Iy)) =fz OF(I7) + o(¥(17)) |In(w)| * * (|ln(w)|)
whence

Recall that max{||P¥|[; | — P~||} < kg; then, using (49) and (52) in (51), we
find -
i

i) < % In () (53)

To proceed in the computation, it is convenient (cf. p. 377-388 in [22]) to
consider the matrix representation Y (T}) of X (T7) with respect to the bases

@) 74 - JrEAT)
{‘|f+(7(0))|‘, o} in the domain and {\|f+('y(Tf))\|’ 7l } in the codomain, i.e., to

set Y(Tlf) = BX(Tlf)A where

< F*G0) 5) B ( FHEE) 4+>

(PRGN I EE )

Since p(6, 7(0)) is a solution of the variational equation (48) we get
FrEah) = p! 5(0) = X(T)p(0,7(0)) = X (T{)F* (5(0))

or equivalently

=21

We recall that
7D{(d, 7—)17; = ﬁ(Tlf(dv T)a Qs(da 7_)) — T (Tlf(da T) + T)'

Notice that 7,(7) = F(I7) € ST for any 7 when & = 0, so dzs (r) =0 if
e=0.
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Now, recalling that
p(T{ (d.7), Qs(d. 7)) = F*(0(T{ (d. 7), Qs(d. 7))

we find
8D{ . 8 — — 8@5(077)
- 8d (O7T)Uu - ﬁp(Tl (077—)7135(7—)) 8d
. _orf (0,71 . .
4 0.7), o) P x( iy T
Thus, Y (T7) is the matrix
IF*GETNL 7 (TN 1T
Y (T{ (0,7)) = | 17GO)I 11 (;[(51 NITa(m) (54)
0 - 3d1 (037)

Now let K4 and Kp equal the determinants respectively of A and B: since
their columns are made up by unit vectors which are transversal, then |K 4| > 0
and |Kpg| > 0. Hence

Gy (i) _ onf UG
KsKp od [f+(¥(0) | KaKp
So from (50) and (52) we find 0 < ¢; < ¢y such that

det X (T7) = (55)

oD]

41\lf
Tt <
ad

4IWf 1
c1|In(w) < < ¢y In(w)| > .

(0,7)

So, taking into account (47) and setting C' = % + 2 we conclude the proof of
(46). B

Notice that (45) is independent of § and 7 so the estimate of T} (d, ) is
obtained from (45). Then the proof concerning D%(d, 7) is obtained from (46)
reversing the role of d and D{ . O

We emphasize that we have proved also the following result, cf. (53) which
allows us to improve (40).

REMARK 5.8. Let the assumptions of Proposition 5.7 be satisfied. Then

0 k 8241
)] o= [ 07| < S (@3

so, for any 0 < d < § < w, we have

|8%+1d < ds—m/?,

2k
TH(dr) - T (0,7 <

3 ()
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Analogously let us consider the trajectory (¢, ; QZ((L 7)) backward from

L° to S™; using again Lemma 3.6 we obtain the following.
LEMMA 5.9. Let w > 0 be a small constant, then there is 6 = 0(w) such
that for any 0 < d < § and any 7 € R there are TP(d,7) > 0 and Pabf(d, T)
such that Z(t,7;Qu(d, 7)) € K5~ (t) for any 7 — T(d,7) < t < 7 and it
crosses transversely S~ (1 — TP(d, 7)) € S~ at t = 7 —TP(d,7) in 13b_ (d,7) =
#(r —T(d,7), 75 Qu(d, 7).

Conversely, going forward in t, there are Tf(d, T) > 0 and 13; (d,7) such
that Z(t,7;Q~(d, 7)) € K"“~(t) for any 7 < t < 7+ T} (d,7) and it crosses
transversely LO at t = 7+ T} (d,7) in ﬁ; (d,7) = Z(r + T{ (d,7),7; G (d, 7)).

Then, arguing as in Proposition 5.7 we find

PROPOSITION 5.10. Assume H and let @ > 0 be a small constant. Then there
is 0 = §(w) such that for any 0 < d < ¢ we have
In(|1 41n(]1
2((@)) _ oy o A )
4\ A

for any T € R. Further ﬁb_ (d,7) = —=D%(d, 7)0; + ®u(T — TP(d, T)) where

0 < d|In(w)|¢ < Db(d, 7) < d|In(=)|°,
and C > 0 is as in Proposition 5.7. Respectively,
In(| 1n£w)|) 41n(|In()|)
4N A ’
and D} (d,7) = 2(P; (d,7), Pu(t + T{(d, 7)) verifies

<T{(d,7) <

0 < d|In(w)| ¢ < Df(d,7) < d|In(w)|°.

The proof is analogous to the one of Proposition 5.7 and it is omitted.
From an analysis of the proof of Proposition 5.7 we get the following.

LEMMA 5.11. Assume H and fix 0 < p; < 1/2 and 7 € R, then there are
w=w(u) and 6 = §(p1,w) such that

|20 + 7,73 Qs(d, 7)) — Z(0 + 7,75 Po(7))|| < d6™H,
|17(6 + 7,7, Q7(d, 7)) = &)+ 7, 73 7o (7)) ]| < A5

for any —TP(d,7) < ¢ <0< 0 <T/(d,7), and any 0 < d < &; further
1E(¢ + 7,73 Quld, 7)) — F(b + 7,73 Pu(7))|| < d6™,
120 + 7,7 (d, 7)) = #(0 + 7,73 Fu(7)) || < d6—H

Jor any —TP(d,7) < ¢ <0< 0 <T{(d,7), and any 0 < d < 6.
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5.2. The loop: from S*(7) to L'®

In this section we consider the fly time and the displacement of trajectories
travelling from S*(7) to L'®, see Figure 6. In this case we linearize center-
ing in the origin and we decompose the solution as a sum of three terms: a
“stable” nonlinear component, i.e., a trajectory of the stable manifold, a linear
“unstable” component, i.e., a trajectory of the linearization (31) of (PS) in the
origin, and a remainder.

Let us recall that Q% (d, 1) € S%(7) are defined in (37), see also Figure 6.

In the whole section we assume that 0 < § < w are suitably small parame-
ters, see Remark 5.15 (in fact for the results in this section we do not need to
find a function § = §(w) small enough: we just need to assume ¢ < w).

LEMMA 5.12. Assume H and fixr 7 € R; for any 0 < d < § there are C”
functions T{ (d,7) and D} (d,7) such that Z(0 +7,7; Q" (d, 7)) € K{"* T (0 +7)
for any 0 < 0 < Tzf(d, 7) and it crosses transversely Q0 at 6 = Tzf(d, T) in a
point such that |Z(T{ (d,7) + 7,7 QT (d,7))|| = DI (d, 7).

Proof. 1t follows from the argument of Lemma 3.6, taking into account the
mutual positions of 7, vF. O

REMARK 5.13. Note that the mapping U* : (d,7) — (D4 (d,7), T (d,7) + 7)
is injective on |0, §] x R due to the reversibility of the flow.

Let us recall that ¢s(0) = @(6 + 7,7;7s(7)); following [9, §4.2] we can
estimate ¢ as indicated in the next remark.
REMARK 5.14. There are 0 < ¢ < ¢5/2, a;f () and a (#) such that

zF T, T zF )\
gue>=eﬁ165$;25|)6:w+w»+a:w>(q$;zﬁ]>) 7 (6+r) (56)

and ¢ < af(0) < ¢s/2, |at(0)] < ¢s/2 for any 6 > 0.

Since € > 0 is fixed in this section we leave this dgpendence unsaid, 0 we write
X () for the fundamental matrix of (31); and F* (&, 7) instead of F'+(Z, 7, ¢).
Denote by

) = -XtTO+7)(XT() Yo} (r) = —dzH (0 + 7, 7)T (0 +7).  (57)

u

Notice that by definition F‘*‘(G) = FH(0,0 + 1) (0), £+(0) = —dzt (7).
Now, using (56) and (57), and taking into account Remark 5.2 we expand
F(0+ 7.7 G (d, 7)) as
O+ 7,7mQ (7)) = G:(0) + £7(0) + ht(0), (58)

where § > 0 and 1T (6) is a remainder.



(32 of 67) A. CALAMAI ET AL.

We want to write a fixed-point equation for the remainder, in a suitable
exponentially weighted space. Notice first that ht(6) satisfies

R (0) = Qt(d, 1) — Ro(T) + dTH (1) =0

and the equation

H0) = #(0+ 7,7 G (d, 7)) — 5 (0) — £7(6)
= FT(7,(0) + €1 (0) + ht(0),0 + 1)
— FY(4.(0),0 + 1) — FF (0,0 + )0+ (0)
= FF (0,0 +7)h*(0) + R (0,h*(9)) + RS (6,h(6))

where the remainder terms B (6, h*(0)) and B} (6, h*(6)) equal

-

RE(0,F) = [F+(g’s(9),9 +7) = FF (0,0 +7)| (0*(0) + ),
B3 (0,h) == F*(§,(0) +£7(0) + 1,0 +7) — F*(§,(6),0 + 7)
F(7.(0),0 + 7)(T*(0) + ).

x

Let us set ) 2/ 1n(8)|
n

_ My = .

mEP 0T T

Let now M > M be fixed, and X+ = C(]0, M],R?) be the Banach space
of continuous functions equipped with the norm

4]l x+ = max — lZ®)l .
0€(0,M] zy (0 4+ 7, M + 1)

DO =

(59)

Fix 0 < Dy < Dg and set d = Dy/z;7 (M + 7,7), so that from (35) we find

,LA
dé DO S kle 2 kl 5 S 5
z (Mo +7,7) —  [In(d )\ NEOE

since we can assume § < e~V kl, see Remark 5.1.

From (56) and (57), we see that

- Cg Cskl _1
7:(0)] < (0 +77) < 329

[n(w)] (w)
16H0)|| = dzf (0 +7,7) =dzf (M +7,7)z 0+ 7, M +7) (60)
kq

=Dz (0 +7,M+71) < e~ 2 AM=0),

[ In(6)[?



NON-AUTONOMOUS HOMOCLINIC TRAJECTORIES (33 of 67)

Moreover, assumption H implies

VR0, P < Nallgu(@)] - 1176 + A,
1
\R3 60,7y = H / [F;@s(e) ol (0)+ .0+ 7)
0

< N |17 (6) + R
(61)

— FF(7.(0),0 + T)] (0(0) + h)do

On the other hand,
B (0,12) — B (0,1,) = [F+( (0),0 +7) —Fj(ﬁ,%—r)} (ha — Tn).
Further
RS (0,hs) — RE(0,hy)
= F(§,(0) + €1 (0) + hy,0 + 1)
— FH(§.(0) + 0 (0) + h1,0 + 1) — FF (§:(0),0 + 7)(ha — 1)

= /1 {Fj (y*s(e) +0(0) + hy + a(hy — 1), 0 +7’>
0
~ FE0).0+ 7)| Gz ~ Ty
Thus,
| 6. R2) = R (0,50 < Nallge@)1 152 = Fall,
|75 0, F2) - R (0.7 (62)
N (17 (0) |+ ma{ 1, 1 Ball}) 1> — ol
Let us define the operator ™ : XT — X as
(4
FH@)0) =/ X0 +7)(X (s +7) 7 (B (5,(9) + B (5,(5)) ) ds
/ XHO+ )P (X (s 4 7))~ (Bf (s,() + B (s.1(s)) ) ds
/ XH(O+ 1) PHY(XF(s 4 7)) (B (s,18(5)) + R (s,1(s)) ) ds.

Notice that ht(6) is a fixed point of F* if and only if the function #(6 +
7,7:Q%(d, 7)) given by (58) solves (PS) and A+ (0) = 0.
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REMARK 5.15. In the next Lemma 5.16 we let

In(w) < —max{(20)%*;4},
o k2H2 (o + 1) (63)

here C' = (2¢§ + 1)N,
where (2¢5 +1) o

Observe that this is not an optimal constant: however, the relevant fact is that
both C and w are independent of d,  and e.

LEMMA 5.16. Assume H, fix w > 0 as in (63) let § = §(w) < w be as in
Lemma 5.4 and Remark 5.9. With the above notation, for any 0 < d <4, the

fized point equation F' (i) = @ admits a unique solution h in B ={v ¢
XF | [|7]x+ <1} where r = Dyg|In(w)| /2.

. =Xt . . .
Proof. First we show that F* maps B, into itself. For this purpose, notice

—x+
that if @ € BT),( then [|@(0)| < rzf (0 + 7, M + 1) for any 6 € [0, M]. Now,
using

1€5(6) + @) < (De + 1)z (0 +7, M +7) < 2 In(@)[*/22] (0 + 7, M +7),
from (60) and (61) we get
1B (0, @(O))I| < 2Nales)*r|In(e)| /2[5 (0 +7,7)] 25 (0 + 7, M + 7),
1S (0,7(9))]| < Na [2r|In(@)|*/225 (0 + 7, M +7)]

Moreover, from (35) we get the following estimates:
0
/ 2O+ 7 s+ 1) (s+7,7)]% (s +7, M+ 71)ds
0

0
Sk%JrO‘zI(G—i—T,M—&—T)/ 2 (s + 71,0 +7)ds
0

2k 2+«
AOTE 0+ m M ),

0
/ 2 O+7,5+7) [z:(s +7, M+ T)}Hads
0

0
- [zj(9+r,M+r)}1+“/ FO+7s+7) [z (s+70+7)] s
0

0 242«
2k
< k%+2azz-(9 M T)/ e—%&(2+a)(9—s)d5 < )\(21 5 Z;'_(e + M+,
0 A
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0
/ Z;_(Q+T,8—‘rT)[Z:_(S—I—T,T)]QZJ(S—I—T,M-i-T)dS
0

9
= Z,j(&-FT,M-FT)/ [Z;L(S—FT,T)]adS
0

2(kp)™
Ao

2H O+ 7, M+ 1),

IN

and
o 14+
/ZJ(Q+T,S+T)[Z$(S+T,M+T)] “ds
0
0
:Z;r(0+7',M+T)/ [zj(erT,MJrT)]ads
0

25O +71, M+ 7).

Using the above, we get

/ X0 P PH(XH(s ) B (s, ()
0

< 2N, (¢5)%kor| In(ww)|~2/2
0
. zj‘(G—&—7'75—l—T)[zj(s—l—T,T)]“z;f(s+T7M—|—T)ds
0
2k2+0¢
< 2N, (cs) ks IA | In(w)| =2 2 (0 + 7, M + 1),

/0 Xt O+r)PH(Xt(s+ 7'))71]%;(5, u(s))ds
0

< Noks[2r| In(w)|*/2] F

0
. / zFO+T1,s+7)[zf (s+7, M+ T)]Hads
0
2]{;%-5-2(1

i N W a/2)lte 4+ M
e ra) [2r|In(w@)[*2] 77 25 (0 + 7, M + 1),

S Nak2



(36 of 67) A. CALAMAI ET AL.

/0 X0+ 7)1 —PH) (Xt (s+ 7)) R (s,1(s))ds
0

< 2Ny (es)*kor| In(w)| /2
0
/ 2O+ T1,5+7) [z;"(s+T,T)]az$(s+T,M—|—T)ds
0
« 2k(lx —a/2 +
< 2N, (cs) kgT | In(w)] zF @+ 7, M +71),
pYe

and

/0 XH(O0+7)1A—-PH)(XH(s+ 7)) RS (s,1(s))ds
0

6
< Nyko [2r| ln(w)|0‘/2] Ita / 2O +T1,5+7) [ij(s +7, M + 7)] ey
0
2]{:& o
< NakQToll (27 In(@)[*/2] T 2 (0 + 7, M + 7).

Since 7|In(w)|*/? = Dy < Dy = |Ind|~2 < |In(w)| 2, we have
(2] In(e)|*/2) " = r|In(w) |72 | In(e)|*/2 - | In(w) ]|
< | In(w)| =22 In(w)|~* < 7| In(w)|~*/%;
further

2r|In(w)|*/? = 2D, < 2|In(w)| "2 < | In(w)| /2, (65)

|a/2

so in particular r|In(w) < 1/2. Hence from the above estimates and Re-

mark 5.15 it follows that

|7 @+ < Clin(w)| /21 < .

Next, we show that F* is a contraction. First, by (60) and (62) we have
the estimates:

)
¢s)* (@) =2 [0 +7,7)] |1 (0) — @2(9)],
)

|
< No[2r|In(@)|*2]" [z (0 + 7, M + 7)] " ||@1(0) — @2(0) ||

e .
for any 1,4y € B, . Consequently, using

|11 (s) — tia(s)]|
2 (s 47, M 4 1)
<zl(s+7,M+7)|t) — sl x+

i1 (s) — tia(s)]| = 2 (s + 7, M + 7)
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for all s € [0, M], we derive

6
/O X0+ ) PHXF(s+1)"! (ﬁf(s, @1(s))ds — By (s, ﬁg(s))) ds

kaNa(cs)™ [* il ,
< el [ 6 rs D s i e) ~ a9

22T kyNo(cs)® . .
— A |In(w)|e/2 |l — tal|x+25 (0 +7, M + 1),

0
/O X +7)PH(XH (s 4+ 7)) (RS (s,1(5))ds — B (s, 72(5)) ) ds

< ko N, [2r| In(w)[*/2]"

0
. / O+ 75+ 1) e (s + 7 M+ 1) s (s) — da(s)|ds
0

< mk’ﬂ\fa [2T| ln(W)|0¢/2]a||ﬁ1 — || x+ 2 (0 + T, M +7),

9
/0 XH(O+7) (1 - PT)(XT(s+7))7* (ﬁf(s,ﬁ'l(s))ds - ﬁf(&ﬁg(s))) ds

c)e f a
- m/o 2y (0 + 15+ 1) [ (s + 7,7)] " [[@n(s) — @a(s) | ds

2]{7? nga(Cs)a . - )
2k1 RalVa(Cs)™ ) , .
~ da |In(w)|e/2 @1 — 2| x+2y (0 +7,M+7),

and

0
/0 XtO+7)I-PH(XT(s+7)" (R‘;(& iy (s))ds — B (s, ﬁg(S))) ds

< ko N [2r| In(w)[*/2]

9
/ 20+ 71,5+ 1)z (s + 7, M + 7)1 (s) — ta(s)||ds
0

2k anL o
< lenga 2| ln(w)|o‘/2] ity — i x+ 2 (6 4+ 7, M + 7).
Ao
Now using (65) and the previous four estimates, recalling Remark 5.15 and (65)
we find

" " L L.
| FF (@) — F* ()] x+ < [tn(w)[*/2 |1 — sl x+ < §||U1 — || x+-
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The proof is finished by the Banach fixed point theorem. O

REMARK 5.17. By fixing § > 0, the values of My and Dy are given. Then for

L x+ o
any fixed M > My, h € Bf if and only if ||h(0)| < rz} (0 + 7, M + 7) for all
6 € [0,M]. Here one may consider a sufficiently smooth extension of (PS+)
beyond Q0 if needed. On the other hand, if 0 < T < My, taking M > T—i—% In kq

N —x+t
yields that if s € B\ then
@) < 72 (0 +7.T + 1)z (T +7,M +7)
<rzf(@+7,T+71)k em2AM-T) < rz(@+7,T+71)
for any 6 € [0, 7).

Now, the trajectory Z(6 + T,T;Q+(d, 7)) crosses the curve Q0 when its
projection on the “stable” and on the “unstable” linear spaces are compara-
ble. This idea allows us to estimate the crossing time and displacement: see
Lemma 5.19 below.

Observe that there are K+ > 0 such that the unit vector

v - Ktol v, - KU
178 = K+af|| [[ow — K-o5 |

(66)

is tangent to Q° in the origin and aims towards E'™.

Hence the vector p(7f — 2K*4) points towards Q™ and p(v] — K~ 0))
points towards Q7 for p > 0 small enough, see Figure 2. Fix § < @ and let
0 < d < §; then

p (55(0) — 2K+ 5L (9)) € 0,
1
p (17;'(9) - 2K+177f(9)) et for any 6 € R,

for p > 0 small enough. Hence there is K+ = K*(d,7) € [AKT,2K*] such
that Z(TJ + 7,7; Q% (d, 7)) € Q°, where T =T (d, 7), verifies
TS +7,7;,G%(d, 7)) € span{vf — K5},
i.e., there is g7 = (T + 7,d) > 0 such that
E(T)) +5s(T) + A (T)
= pHah(@f + ) - KT 55T + 7).

REMARK 5.18. In the next Proposition 5.19 we fix po such that (14) holds,
then for ps €]0, uo/2] we let w = w(uz) be such that the following estimates
hold true:

(67)

BIn@) _ s

|In(w)| > Kkt Ke.

(68)



NON-AUTONOMOUS HOMOCLINIC TRAJECTORIES (39 of 67)

PROPOSITION 5.19. Assume H; let po €]0, uo/2] where po satisfies (14) and
choose w = w(uz) satisfying both (63) and (68). Then there is § = §(pa, ™) >
0 such that for any 0 < d <6 and any T € R we find

nfvd (1 - %) |In(d)| < T (d, ) < £ (1 + %) | In(d))| (69)
and
owd po A ofwd _Mzki
d = (1+ uiw) < Dg(d,r) <d* (1 m) (70)
where
Di(d,7) == |&(T{(d,7) +7,7: G (d, 7))l (71)

Proof. Let us fix 7 € R; we choose w and § < w so that Lemma 5.16 holds
and we set M = T§ (d,7), so that for any 0 < d < & we find Dy(d,7) =
dz (Tf (d,7) + 7,7). In this proof we write @+, TJ and DT for TJ (d,7),
Q*(d,7) and D{(d,7) to deal with less cumbersome notation. Notice that
T > My (cf. (59)) so that the expansion (58) and Lemma 5.16 hold for 0 <
t <Tf. Let h (T) and hf (T) be such that

T = W ()T (T + 1) + b (T)ad (T + 7).

u S

Using (56) and (57), from (67) we see that

1+«
1 Z+(Tf+7' T)
- | —d (T )+ () | + ht (T
K+(T2f+7') ( 2 ) ( 2) HH(W)‘ ( 2)
zj(Tzf—i—ﬂ T)

+(f
Tn(=0)| +hy(Ty). (72)

= pH (T +7,d) = al (T)

We want to compare the highest order terms of (72). First note that

s 1+ta + (7
ai (1) (%) is negligible with respect to a7l (T;)% More-

over, |hI(Tf)| = |PH=(T + nh (T < kol (TY)|| and |hf(T)| =
(I = PH=(Tf +7)hH (T < kol |hH(T)]|, and using Lemma 5.16 we get
Dgzj(TQf + 7, TQf +7) D

(T < = ‘ Dy.
= = @ T e <

Hence also ht (TJ) and ki (TJ) are negligible with respect to Dy = dz (T§ +
T, T).

. . D ~ o\ 2L (T +7T)
Thus the highest order terms in (72) are WZ‘}JFT) and af (Ty )Ilrf(iw)l
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So, picking up the highest order terms and neglecting the others, we can
find a constant Cr € [@Jf*cs] (cf. (56)) such that

(T +77)

Dy(d,7) = dz (T +7,7) = Cx )] (73)
Now using
ie(,\jﬂ)\y—zks)TQf < ZEL(Tzf +7,7) _ Ck < 12 oI HIN [ +2ke) T
k2 = e d|1 -
i (T +7,7)  dlIn(@)|
we get
Gt Cinc)
k2d[1n o] < T2f < d[ In(w)| 7 (74)
A+ AT+ 2ke T 7 T N M| — 2ke
Cxk? .
In <d|ln(wl)|> = |In(d)| + In(Cxk?) — In(|In(w)|) < |In(d)]

by the first inequality in (68); further from the second inequality in (68) we get

C~'K - K2
In|—-—o—1|>-1 p2/4y > (1 - E2) | 1n(d)].
! (/c%d| lnw|> > ~Infdw /%) 2 (1= 52 |In(a)

So plugging these inequalities in (74) we get

1—p2/3
A+ AT

(1 —p2/4)(1 — c16) |

In(d
A+ AT n()

[In(d)] <

1—po/4

1
— = 2" )| <Tf <
)\u—|—|)\s\—|—2k5| (@) ?

- |ln(d
S a2k @
1+ cie 14 p2/3
T+ AT A+ AT

[ In(d)] < [In(d)| (75)

where ¢; = 4k/(]AT| + A\}); so (69) is proved.
Then plugging (69) in (73) we find

1tua/3 )(,\;*Jrka)

AF ke 1,<
) < kyd  \AEHT

Dy(d, ) < kid (eT2f

o_fwd_( pord >_<k8<1+u2/3>>
=kid © sOF+TD AT AT

ofwd_ no g Uﬂ:vd (1_M2*+1'>
<d T 20F+ndn =4 2nF1 )
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Similarly, plugging again (69) in (73),

4 otk @ GEEE) 0T
Dy(d,7) > = (eT2> >

kl kl
fwd At o ke(1—pun/3)

d0+ +<3(At+ui\>>+< Ad I >

k1

fwd po g fwd (1 u2ﬁ[>

>d7* tootinrn =7 UTang
Summing up we have shown that
fwd K2y fwd parg
o <1+ T > o (177+>
d 21/ < Dz(d, 7—) <d 2831/ (76)

Now, again from (72) we see that there are ¢; > ¢; > 0 (independent of d and
T) such that

& Dy(d,7) < M (T +7,d) < e;De(d, 7);
further from (67) and (71) we see that there are ¢4 > €3 > 0 such that
espt (T4 +7,d) < Df(d,7) < cap™ (T +7,d).

So, these last two inequalities imply that there are C' > ¢ > 0, independent of
d, 7, € and po, such that

eDy(d,7) < DI(d,7) < CDy(d, ). (77)

uz*i ofwd
Now assuming that §2131° " <min{C !, ¢}, the proof of (70) follows from (76)
and (77). This completes the proof of Proposition 5.19. O

For future reference it is convenient to state the following remark concerning
estimate (77).

REMARK 5.20. There are C' > ¢ > 0 independent of d, 7, £ and po such that
¢Dy(d,7) < DJ(d,7) < CDy(d, 7).

Now we want to prove a result which is, to some extent, the converse of

ofwd ( oA ) .
Proposition 5.19. Let us set 6; = & 231/ and consider the set L™(67).
For any 0 < D < &; we denote by R(D) the unique point in L"(d1) such that
IR(D)|| = D.
Then, adapting slightly Lemma 3.6, we prove the following.
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-
r=T%D) o~ v (d,T)
—_—
R
A v
(d, ) ¢ ¢
_ °
d=d*"(D) d=d*(D) d
d
T=T"(D) o

Figure 7: An explanation of the proof of Proposition 5.22.

oiwd (1+u2*$>
REMARK 5.21. Fix ;1 € R, 0 < D < 6 =46 ° A1/ and follow the

trajectory Z(t,71; R(D)) backward in time. Then there are D5(D,71) > 0,
TY(D,7) > 0 and 75 (D,m1) = 7 — T¥(D,7) such that Z(t,m; R(D)) €
K44 (t) for any 7 (D, 1) < t < 71 and it crosses transversely St (75" (D, 1))
in the point G+ (D4(D, 1), 7 (D, 7)), where @ (-, ) is as defined in (37).

Using the uniformity in 7 of the estimates in (5.19) we show the following.

PROPOSITION 5.22. Assume H; let pa €0, po/2] where pg satisfies (14) and

choose w = w(uz) satisfying both (63) and (68). Then there is § = §(p2, w) >
oo (14 m2AE

0 such that for any 0 < D <8 =6 © AT > and any 71 € R the functions

T2(D, 1) and D}(D, 1) are well defined, C" and one-to-one. Further

AL [1 M2 (2&% + %” | In(D)]

AL
b 1
S T3 (DaTl) S T
AT

AT
(142 (233 +3)] Im(D)]
1 maAE
@(”2 T

> < Dg(Dle) < D@ (1,2%)

In particular imp_q Dg(D, 71) = 0 wniformly in 71 € R.

Proof. The proof is easier to follow while keeping in mind Figure 7. From
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Remark 5.21 we see that the functions 7% (D, 71) and D$(D, 1) are well defined;
further they are C" and one-to-one due to the smoothness of the flow, see
Remark 3.8.

Let us consider the following function, as in Remark 5.13:

Ut(d,7):0,0] xR =]0,1] xR,  Ut(d,7) = (DI(d,7),T{(d,7)+ 7).

e We claim that (]0,6,] x R) € ¥ (]0,4] x R).
Let (D,71) € (]0,61] X R): we need to show that there is (d,7) € (]0,4] x R)
such that U+ (d, ) = (D, ). We denote by dg = D'/°+"; then we set

1 Bra A 3r2Xy
W(H' T ) +=F
d-‘r(D):D ¥ INT :dO R )

a1 ((ysmand 1 Seand
fwd B — g
= = o

up A
TH(D) =7 — {Eﬁ‘fd (1+£) <1+ f2 “) +zaivd] n(do)|,

— 3pup\F
T+(D) =7 — [zf;vd (1 - @) (1 oz u) - 20&”‘1} | 1n(do)|.

Then consider the rectangle

R = ([d5(D),d*(D)] x [LX(D), T+(D)]) <0,1/10] x R,

and denote by OR its border. Further set

' ={d*(D)} x [LX(D), T+(D)],
—{d (D)} x [L%(D), TT(D)],
= [d*(D), d*(D)] x {T(D)},

= [dX(D),d*(D)] x {T*(D)},

so that OR = (Zl ueturu E“).
Now observe that the restriction U of ¥t defined by ¥+ : R — R where
R = Ut (R), is a C" diffeomorphism, see Remark 3.8. Hence, from Brouwer’s
domain invariance theorem (cf. [33, Proposition 16.9]), we see that R is a
compact and simply connected set and its border OR satisfies IR = W(IR).
Let /! = U (¢) and similarly for gr, Zd, /v all these sets are compact images
of curves. Let

nod paAd

5_ lDH 2 D] < [r ~ (D)), 7, + | (D)
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and denote by 09 its border: obviously (D, ) € Q.
Let 7/, 7" € [[*(D),T*(D)] and consider
(dT(D), ') € ¢ and (d+(D),7") € ("

from Proposition 5.19 we find

pjar(p).7) < oyt (i) 2 plieity) (o)

AL 2 (2

14+2p0

AT
3 1 i
-D nrl M ohr « p T

I
)

A4 b . AT
IA?\) :D<1+H2\A§W M2

b 2 (Ah)? xf
1— gy 2
H2E

@), = @y

1—2pg 2t 3,2 Qu)”
=D "R ehH? - p

Whence AN Q=0=/¢nNO.

Similarly observe that for any d’,d” € [d*(D),d"(D)] (so that (d', T+ (D)) € ¢*
and (d",T+(D)) € £*), from Proposition 5.19 we find

T (d, T*(D)) + T*(D) < T(D) + =4 (1+ £2) |n(@*(D))|

=7 — 20&”‘1\ In(do)| < 11 — O'Td| In(dp)| =7 — | In(D)|,

Tf (@’ T7(D)) + T¥(D) > TH(D) + 2 (1= £ |m(@* (D))

=711+ 205‘_“1\ In(dg)| > 1 + crf+VVd| In(do)| = 1 + |In(D)].

Whence /1N Q =0 =¢nNOQ. ~
Summing up we have shown that (QN&R) = 0; in fact we easily see that Q is
contained in the bounded set enclosed by R = ¥(AR). So we see that there
is (d,7) € R such that ¥+(d,7) = (D,71) and the claim is proved, by the
arbitrariness of (D, 1) € (]0,61] x R).

Now from the claim we see that for any (D,71) €]0,d1] x R there is a
unique couple (d,7y) €]0,d] x R such that (D, ) = ¥ (d, 1), since ¥" is
defined through the flow of (PS).

Hence from Proposition 5.19 we get

fwd no At fwd HaAd
1 u 1— u
d”*<+ui\><D<dg*< Mil)
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from which we get

2p0 A

-1
ﬁ(l‘*‘i) ﬁ(l—“ﬁi)
DY P < pet T

So the assertion concerning D is proved.
Again from Proposition 5.19 we find

2 (1-B) In(@)| < 71 - 7 = (D, m) = T (d,7) < 25 (14+52) (@)

So we conclude

Efwd )\+
b + H2 u
T(D.m) < 5 (1+§) <1+2u2|/\2_ ) | In(D))|
<! {1+ <2)‘:‘r + >}|1(D)|
- n(D)|,
D 12 Ad
T3(D, 1) Zaiwd (1 - §> <1 2N2|X;> |In(D)|
> 1 {1 (2 v +1)}|1(D)|
- n
ST SN
Then the assertion concerning T%(D,7;) is proved. O

LEMMA 5.23. Assume H and let po, w and 6 = 6(uz, @) be as in Proposi-
tion 5.19. Let 0 < d <6, 19 € R, and consider the trajectory

f(taTO;Q+(d7 7—0)) = x(thl;R(D)) 70 é t S T1

is the point of L™ such that |R(D)| = D €0, 6]

where D = D{(d, 70), E(D)
0). Then

and 71 = 79 —|—T2f(d,7'
I1Z(t, 70; G (d, 70)) — s (t — 7o)

gwd (A ) fwd(l, ﬁ)
< gdg+ ( H2T zF(t,m) < Lk:ldc“r H2INET) o= 3A(m—1t)
c ¢

whenever 1o <t < 1, where ¢ > 0 is as in Remark 5.20.
Analogously let 0 < D < 61, 1 € R, and consider the trajectory

#(t, 70; G (d, 70)) = x(t, 71; R(D)) To<t<Tn
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where d = DY(D,71) and 7o = 71 — T9(D,71). Then
= 2k1 _l)\( —t)
[(t, 715 R(D)) = s (t = 70) || < DZ (t,71) < —De 22"
c

whenever 1o <t < 1.

Proof. Let us decompose Z(t, 70; @1 (d, 7)) as in (58), and set 71 = 1o+T% (d, 7).
From Lemma 5.16 and Remark 5.20 we find

RO < 17 e+ 25 (6, m) < 2 n() /2D e 3
where t = 0 + 79. Further from (60) and Remark 5.20

0 k
[€5(0)|| < Dz (t, 1) < %De*%A(Trt)_

Therefore

. k
1Z(0 + 70, 70; O (d, 7)) — 7 () §2?1 e~ AT (d70)-0) . (78)

Whence, using Proposition 5.19, we conclude the first part of the proof; the
second part of the proof is analogous and it is omitted. O

5.3. The loop: from S~(7) to L™

Let S~ and S~ (7) be as in (29) and (30); let us choose @~ (d,7) = —dv; +
7u(t) € S7(1). We aim to follow the trajectory Z(t,7;Q~(d,7)) from S~
backwards to Q.

The next lemma is analogous to Lemma 5.12 and again it follows from the
argument of Lemma 3.6, taking into account the mutual positions of 7, v¥

LEMMA 5.24. Assume H and fir 7 € R. For any 0 < d < § there are C"
functions TY(d,7) and D5(d,7) such that Z(0 + 7,7;Q~(d, 7)) € sz’* for
any —T%(d,7) < 0 < 0 and it crosses transversely Q° at § = —T2(d,7) in a
point such that |Z(—T2(d, ) + 7,7 @~ (d,7))|| = D4(d, 7).

In order to get estimates of T (d, 7) and D5(d, 7), we perform an inversion
of time argument.
—t
Let us denote by f (Z) = —fE(Z) and g(t,#,e) = —g(—t, ¥, ¢), and notice
that if Z(¢) is a solution of (PS), then Z(¢) = Z(—t) is a solution of

=t
=f (&) +eglt,7e), ¥eQ* (79)
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-‘+
2] = . . . . .
Further, ai—w(()) has eigenvalues —\! < 0 < —A\! with eigenvectors v} and v}

respectively, while %(6} has eigenvalues —\;, < 0 < —A; with eigenvectors
v,, and ¥, respectively.

So applying Proposition 5.19 to (79) and then going back to the original
system we obtain the following.

PROPOSITION 5.25. Assume H; let py €0, po/2] where po satisfies (14) and
choose w = w(uz) satisfying both (63) and (68). Then there is § = §(p2, w) >
0 such that for any 0 < d < 6 and any T € R we find

ywd (1 - %) |In(d)| < T2(d, ) < St (1 + %) | In(d)| (80)
and
o) DY(d, r) < o) (81)
where
Dy(d,7) = || &7 = T3(d, 7), 7;Q (d, 7)) (82)

Similarly applying Remark 5.21 and Proposition 5.22 to (79) and then going
back to the original system we get the following.

sbwd (1+u2\>\§\
REMARK 5.26. Fix 71 e R,0< D <d_1 =6 v

Mu ) and follow the
trajectory #(t,7_1; R(D)) forward in time. Then there are D?{(Dj,l) > 0,
TS (D,7_1) > 0and 75 (D, 7_1) = 7_1+TJ (D, 7_1) such that Z(t,7_1; R(D)) €
Kng’_(t) for any 7—1 < t < 75 (D,7—1) and it crosses transversely
S (15 (D,7_1)) in the point G~ (D] (D,7_1),75 (D,7_1)), where @~ (-,-) is
as defined in (37).

PROPOSITION 5.27. Assume H; let uy €0, po/2] where uo satisfies (14) and
choose w = w(uz) satisfying both (63) and (68). Then there is § = §(p2, w) >

ghwd (1 r2lrs |
0 such that for any0 < D <6_1 =68 ( S ) and any T7_1 € R the func-
tions T3f(D,T,1) and Dg(D,T,l) are well defined, C" and one-to-one. Further

% [1 — iz (2'?? + ;)} | In(D)|

1 Ay 1
<t (D) < 5= |14 (252 4 3) | o),

1 malAg |
fwd | 1 =2 =

T>§D9{(D,T—1)SDT< A )

In particular limp_q Dg(D7 7_1) = 0 uniformly in 7_1 € R.
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Let us recall that 4,(0) = Z(6 + 7, 7; T, (7)), see (29). We conclude the sec-
tion with the following result, obtained applying the inversion of time argument
to Lemma 5.23.

LEMMA 5.28. Assume H and let ps, w and § = 6(ua,w) be as in Proposi-
tion 5.25. Let 0 < d <9, 19 € R, and consider the trajectory

—

#(t, 70; @~ (d, 70)) = (t, 7_1; (D)) T-1 St <7

where D = DY(d, 7o), B(D) is the point of L™ such that |R(D)|| = D €]0,6_]

ﬂbwd(l_,'_uzM;I)
where §_1 =0 Yoo ) and T_1 =10 — T%(d, 79). Then

= 2 Uliwd 1—L2‘>\£‘
||j(t7TO;Q_ (dv T)) - gu(t - 7-O)H < Ed ( ! Au >Zs_ (t,T_l)

bwd [Ag |
< 2o (15 e
c

whenever 7_1 <t < 719.
Analogously let 0 < D < d_1, 7_1 € R, and consider the trajectory

—

Z(t,170; Q™ (d, 10)) = x(t, 7—1; E(D)) T1<t<T9
where d = D:{(D,T_l) and 19 = T7-1 + T;(D,T_l). Then

2
&

> 2
8t 7-1 R(D)) = Gt = )| < ~ Dz, (t.7-1) < =F Do 320770

whenever 7_1 <t < 719.

5.4. Final step: estimate of time and space displacement

Now we are ready to complete the proofs of Theorems 4.2, 4.3.

We start with Theorem 4.2: the proof of the result follows immediately from
combining Propositions 5.7, 5.19, 5.27, 5.10 in forward time and Propositions
5.10, 5.25, 5.22, 5.7 in backward time.

However we proceed with the lengthy and tedious computation of the es-
timate of pg, the upper bound in the errors performed to evaluate time and
space displacement. In some sense, the only relevant fact is that the value of
o (that is the upper bound of p) depends only on the eigenvalues A\, At
We make use of the following estimates

<og<o<

M
2| >

bl\%‘ >|
>l 1>
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Proof of Theorem 4.2. Let us set

1
CMZCT-i-Cd-Fé (83)
where 5
A A 1 1
’
= — = = -4 —. 4
Cq 3 Cq = 7)\3, cr 6+2A (84)

Notice that ¢, > cq > 7. Assume that 0 < 21 = po and let 0 < p = ¢, p0 < po,
where pg is as in (14). We can choose 0 < d < ¢ < w small enough so that

d" < oM < 't < |In(w)| "¢

where C is a constant as in Proposition 5.7.
Combining Propositions 5.7, 5.19 we find the following estimates of the
space displacement

121 /2(d, 7| = DI (D (d.7), 7 + T (d, 7)),

fwd

Ao A < || Py o (dy 7| < dOFOHB (85)

fwd
where, using \/\+| oy § 33, we find

~ +
B=(1-m)- o (1= T ) <o > = ) =~ > g (50

w Ao wd o A
A= (1+4m) fd<1+|>\+#2)— < */\(N1+M2+/~L1M2)

(87)

So we have shown that

A7 < | Py ()] < A
Let us set

m(dr) =7, D(dr)=d, 7 =T/(D[ (d7),7 1)+ ,d7)

fori=1,2,3,4.
Now combining Propositions 5.7, 5.10, 5.19 and 5.27 we find the following

P(P1(d,7), Pu(Fi(d, 7))
= D{(D{(DJ(D{(d, 7). 7{ (d, 7)), (d, 7)), 7{ (d, 7)),
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D(P1(d,7), Po(Z1(d,7))) = DY (DL(| 21 )2(d, ), 3(d, 7)), 7 (d, 7)),
d"f“”"+A<@< < 1), B(Zi(d,7))) < 7B
where, using (85)

§ , we find

w 1 Ay olvd
B=(1-m) - (03" = cpa) - 5 (1—2u |/\ |> e

fwd / fwd

9+ Ca A
de A7 (88)
— u

—H1 obwd T M2 Bwd T 242
- DY +2ch+2X3 N . X3> N
= —MU2 2A2 A A?) Z — 2 9 AS Calte = — i,

w 1 A o
A= (14 m) - (03 + ) - obwd (1+2/‘2>\ ) ;_wd
)\s— c - de /\
/;\id (o4 cua) (1"’2”2 |> + Mgw(cii (1+2 2. |) 22 bwd| |
Au Au Au
ol A x| o5 | |
= bwd 14+2p0—— e +cy bwd 142p9— - (141 )+2u2 Sl
X 1 2 12X 1 X
<mi (1 1+-2) (142 ) +2m>s
MAQ< +2A>+cd,i2A ( +2A>< +8>+ 3
—3 -3
A (3 39 A
<o (242224 2) < Tl = capn <
_M2)\3<2+ 5 8+)< HQA?’ Capz < 4
(89)
using po < i. So, we have shown the first estimate of (21), i.e.
4o < P(Py(d, 1), Po(Ti(d, 7)) < A7 (90)

Now we evaluate the space displacement backward in time: for this purpose
we simply need to apply the previous analysis to the modified system (79), i.e
to perform an inversion of time argument, analogous to the one detailed in
§5.3. This way from (85) and (90) we get respectively

A7 || Py o (d )| < A7
&N < Y(P_y(d,T), Py T (d, 7)) < d°

Now we consider the time displacement; again we start by following the
trajectory forward in time. Let us set

Tot+ T < Ti(d,7) =T <1+ 7,
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7!+ 7 +T/,/+Tlv<<%(d T)—1 <1+ 7 —|—Té'/+7'g”

where 7, and 7/ are estimates from below and from above of the time spent by
Z(t, T @S(d, 7)) to travel from L° to ST, 7/ and 7' are estimates of the time
spent to travel from ST to L™, 7/ and 7,/ are estimates of the time spent to
travel from L™ to S, 727 and 7V are estimates of the time spent to travel
from S~ to L°.

From Proposition 5.7, possibly choosing a smaller @ > 0 we see that

H1A

(@) < § (%) < L@ (o)

4
0 <7 <=1
<7' n by

A
Analogously, from Proposition 5.10 we see that

0< 7 <7V < %|ln(5)|.

Then combining Propositions 5.7 and 5.19 we find

1~ yfwd _ K2 _
m 22 (1= B2) (1= )| ()

)
> i <1 _ g) n(d)] > 29(1 — )| In(d),

i <5 (14 2) (14 ) In(d)

. Sup + 13 w
e (1 22 gy < 55090+ .

Summing up we have found

Fi(d,r) —7 < (szd + % + 0w 2) | In(d)|

s ()]

= (S0 + erpz) [n(d)] < (3 + ) In(d)],
7 > (2fvd — 2fvdy,) [n(d)| > (Effd - 2;) | 1n(d)
> (25 = erpa) [n(d)] > (S5 — o) In(d) .
Thus we find

(S = w)|In(d)| < Fy(d,7) — 7 < (B + p) | In(d)]. (92)

2
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Finally combining (85), (87), (86) and Proposition 5.27 we find

1 |)‘;| 1 ofwd A
R e ) | [ e

u u

IN

1 A1
o |1 (254 5) |02+ i)

fwd XQ fwd
< <a+ Lk A [In(d)| < (U; +Cdu2) [In(d)|.

Analogously we find

O.fwd
T > (;_ — cd,ug) [In(d)]|.

fwd
Observe now that V4 = Efﬁ“d + a)\%, then, summing up all the estimates,

we find

"

Fd, ) =1 <+ 7 + 1+
fwd O-fiYVd H1
< (B A+ erpo)| In(d)| + e + cqpz | [ In(d)] + §| In(0)]

u

1
< | (er ot ennt )| (@] = (5% ey (o)

< (5™ 4+ )| In(d)].

Analogously, using the fact that Z(d,7) — 7 > 7., + 7/ + 7/ + 7% and the
previous estimates, we find

(2% = )| (d)] < Fi(d. ) =7 < (S + )| In(d)]. ©3)

Then, applying again an inversion of time argument, from (92) and (93)
respectively we find

(B — )| In(d)| < 7 — T_1y2(d, 7) < (E2 + )| In(d)],

(= — ) n(d)] < 7= T-1(d,7) < (EP 4 )| In(d)|
and the proof is completed. O
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REMARK 5.29. Modifying slightly the proof of Proposition 5.19 we might show
that we can find a constant K5 > 1 (independent of all the small parameters)
such that we can choose ps = Kh'e; then we could replace (69) and (70) by the
following

2 (1 - Kfe) [In(d)] — | In(w)| < T (d,7) < T (1 4 Kb'e) | In(d)|

v 3 v (94)
|1n(w)|—2dcfi d(1+Khe) < Dg(d, ) < |1n(w)|2d"5r Y(1-Kfe)

Then, we conjecture that with a proper choice of a fixed w = wy > 0 satisfy-
ing (63), eventually we would obtain, as we said in Remark 5.1,

,%(d, 7_))) < C«dof‘”d—i-K“s)

C—ldafwd-;-Kus < 9(2(d,7), P’ ( (95)
) < (V4 4 K#e)|In(d)| + C

(2™ Kre)|In(d)| — C < (Fi(d,T) —

for suitable K* > K5 > 0 and C' > 1. Further we think that if gw(t76, g) =0,
so that for the exponential dichotomy estimates in (34) we can use AT and A\
as exponents, we can even set K* = 0 in (95).

Now we prepare the proof of Theorem 4.3.

Notice that in Theorem 4.3 we need the distance between Z(t, 7; Q4(d, 7))
and Z(t, 7; Py(7)) to be small but in fact in §5.2 we measure the distance be-
tween Z(t, 7; Q4(d, 7)) and Z(t, T} (d,7) + 7; 7(T/ (d, 7) + 7)). We need Lem-
mas 5.30 and 5.31 below to measure this mismatch.

With the notation of Lemma 5.4 we set

lu(d, 7)== Pf(d,7) — &(T{ (d,7) + 7,7; Py(7)),
Ty(d, 1) := 7T (d,7) + 7) — (T} (d, 7) + 7,73 Py(7));
then we have the following.

LEMMA 5.30. Let the assumptions of Proposition 5.7 be satisfied; recalling that
0<d<é<w we find

< |In(w)[$V2,

(96)
125(d, 7)|| < 2|In(@)|*M2 d < 2| In(6) P2 d < do—+/2.
Further
2k -
Had 5(d, ) Lamo|| € 22| In(wo) BV,
4k 4k)\ ~ (97)
|1s(d, )] < —2 5| >|8Wd< : — I n(8)[FM2 d < do—r/2,
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Proof. Notice that (T} (0,7) + 7,73 Py(1)) € [W*(T7(0,7) + 7) N S*] and
W (T (0,7) + 7) N S+ = {Z,(T{ (0,7) + )} = {P} (0,7)} for all £. So we use
an expansion as in (47) and in the rest of the proof we consider € = 0. Hence
£(0,7) =0 = 5(0, 7).
Differentiating ¢s(d, 7) with respect to d we get
d - ot - 0Q,(0,7)
7t (@ ) la=0= E(Tlf(dv )+ 7,75Qs(d, 7)) lam0—5 7
+[#(T (d.7) + 7,7 G (dy 7)) = F(T (d,7) + 775 Py(7))] La=o T (7)
= X(1{ (0,7)7, (98)
where X (¢) is the fundamental matrix of (48). So the first inequality in (96)
follows from (49); then the second inequality in (96) follows immediately.
Now notice that if ¢ = 0, then 74(7) = Ter = T N ST for any 7 € R, so

that %ﬁs(T) = 0. Hence

5q % (0.7) = =Ta(r)[* ((TY)), (99)

then the first estimate in (97) follows from (52) and (53). Finally the sec-

ond inequality in (97) follows immediately from the first and the fact that
|Us(0,7)]] = 0. O

We denote by 7/ = 7{(d,7) = 7+ T/ (d,7) and 7?5,1(7'{) = Z(r{, 7 B,(1)).
Notice that 7, 1(rf) € W*(r{) but it is not necessarily in S* and recall that
by construction {7 ()} = W5(r{) N S+, cf. (27). Let us set

To(0;d,7) = 2O + 7,7 Ran (7)) = 20+ 7,7 s 7)),

and recall that f* and § are C" and a = min{r — 1;1}. Then we have the
following estimate.

LEMMA 5.31. Let 0 < d < 6, then

AFe
|1Ts(8;d, 7)|| < dP 7 eTFer (100)
for any 6 > 0.

Proof. Observe that both Z(t, 7 ; 7?571(7'{)) and Z(t, i ; 7 (7)) belong to W*(t)
for any ¢t > 74 , and set 7,(0) = Z(0+71 , 7 ; 7s(r{)) for short. From Lemma 5.30
we know that

15,05 d, 7| = [T )| = 1T (7)) = Rl )| < d' 7072, (101)
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To prove (100) we use exponential dichotomy and a fixed point argument in an
exponentially weighted space. Notice that T5(6;d, 7) is a solution of

Z(a) = FF(0+7{,3.00),e)h(0) + N©@ + ], h(8),¢) (102)

where

NO+7{ 1(0),e) = FY (0 +7,57.00) + h(0),¢) — FH(0 + 7, 7.(0),¢)
— FF 0 +1],7,(0),2)h(0).

Recall that Ft e C", so there is C, > 0 independent of ¢, t, such that

IN Gt hye)ll < Callhl™+,
IN(t, h1,e) = N(t; has e)|| < Co[max{|[ha ], [|h2l|}* 21 — hal|
(cf. BS(6,R) in (61) and (62)).
Observe further, that [|7(6) — 7(T{ + 6)| = O(e) uniformly for 6 > 0, so

R(0) = FH (0 + 7, 5.(9), ) (0) (103)

admits exponential dichotomy in [0, +00[, and the exponents are e-close to the
respective ones of Z = I (F(T{ + 0)), i.e., to AF, Af". Further the optimal
dichotomy constant & is | In(z)|~! close to k; since f;‘(’_y’(j’lf—&—ﬁ)) is | In(ww)| !
close to f;‘(@), so we can assume ki = 2k.

So let X (6) and Py, be the fundamental matrix and the projection (of the
exponential dichotomy) of (103). We can assume that

AF
|1 X () Pa[Xn(s)]71E]| < 2k1 T2 i s 550, (104)

At

X R (O — Pul[Xn(s)] ]| < 2k e T2 if s>t >0,

Further, since U(0;d, ) converges to 0 exponentially, for § — 400, we see
AL
that it is on the stable manifold of (102). In particular ¥4(0;d, T)eHO‘/?a is
bounded for 8 > 0.
In fact Us(6;d, ) is the unique bounded solution of (102) such that

Puhi(0) = Pu[fsi (r]) — 7o(r])] =: . (105)

So let H be the space of all continuous functions from [0, +oc[ to R? endowed

. - _, AT
with the norm |||y = sup920{||y(9)|\exp[lhr;/l2 1}
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Let us consider the operator 7 : H — H defined by

)
T(D)(0) = Xn(0)Puco + | Xn(0)Pu[Xn(s)]'N(s + 1, §(s),¢)ds
0
—+oo
- Xp(0)[I — Pu)[Xn(s) 'N(s +7{,5(s),€)ds. (106)
o

Notice that ¢(#) is a fixed point of T if and only if it is a bounded solution of
(102), (105). We aim to show that 7 maps the ball of radius R = 6k;d'~#1/2
of H in itself and that it is a contraction. Then it follows that ¥,s(6;d, 7) is the

unique fixed point of A in this ball, and that ||T,(6;d, 7)||x < R.

In fact from (101) and (104) we find
AT R AF

| Xk (0) Py < 2kid'—m1/2 e T+a72" = §e1+a/29. (107)
Further, possibly choosing a smaller 6 > d, and consequently a smaller R, we

afAf|

1/«
m) , SO that whenever ||yHH S R we find

can assume R < (

6
/0 X3 (0)Pu[Xn(s)] 'N(s +7,(s),¢)ds

0 A, A
< 2k Cu R / eTHaz0=9) | Trap(+a)s 5 (108)
0

At
R s

AF :
< MRUFQ eme < §el“"<’4/20;

al AT
and finally

+oo
Xn(O)[1 — Prl[Xn(s)] "' N(s + 1, §i(s), e)ds

0
A

“+oo
< 2k,C, Rt / elta/2
0

54
072 eTrap ey (109)

+ +
< 21Ca(l+a/2) b1y, elfiéi/z“*“)" _R 8137;/29.
T+ (L o)A 3

So from (107), (108) and (109) we conclude that 7 maps the ball of radius R

in itself. With a similar argument we show that 7 is a contraction in R and
we conclude that ||Us(0;d,7)|l% < R so

155(6; d, 7) || < 6kyd!~H1/2 < d'

if 0 < d < § is small enough; thus (100) is proved. O
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Analogously, let us set
Zu(d, T) = ﬁl; (d,7) — Z(r —Tb(d,7), T; ,ﬁu(T)),
'Uu(da T) = 7?u(T - le(dv T)) - f(T - le(da T); ) ﬁu(T))v
then, as in Lemma 5.30, we have the following.

LEMMA 5.32. Let the assumptions of Proposition 5.10 be satisfied, recalling that
0<d<dé<w we find

0 - 5
— 0o (d, T) | 4o || < |In(w)[3M2,
| (i < 106 o
12 (d, 7)1 < 21 In(eo) V2 d < 2| n(3) V2 d < do—1/2.
Further
0 8X/A
70u(d, 7) La=o0 || < [In(w)[*4,
od
(111)

" B 5 B
17,0, 7)|| < 4k2§| In(w)[3M2 d < 4k2X| In(8) 32 d < ds—H/2,

We denote by 70 = 70(d,7) = 7 — TP(d,7) and @, 1(70) = Z(0, 73 Pu(7)).
Again, note that 7, 1(7)) € W¥(r?) but it is not necessarily in S~ while

{Fu(2)} = W¥(rP) N S~ by construction, cf. (29). Let us set
Tu(05d,7) = F(0 + 70, 703 Tu (1)) = F(O + 70, 705 T (17)).-
Then, as in Lemma 5.31 we have the following estimate.

LEMMA 5.33. Let 0 < d < ¢ then

)\1:0
|G (8;d, 7)|| < d'7Hr eTFer (112)
for any 0 <0.

Proof of Theorem 4.3. Let us fix us = 2p1, p = cupe < po; then fix w and
¢ so that Lemmas 5.11, 5.23 and 5.32 hold true, and finally let 0 < d < §
and 7 € R. We start from (23); we denote by 7/ = 7 (d,7) = 7 + T/ (d,7),
Toa (i) = Z(+{, 7, Pi(7)). Notice that #,(rf) = W*(r) N ST, see (27), while
7?&1(7{) € WS(Tlf)7 but it might not be in S*. Let us set, as in §5.4, 7,(0) :=
Z(0 + T{,Tlf;fr’s(ﬁf)) and

Fo1(0) :=Z(O0+ 7 . 7{ ;71 (])) = T(0 + 7 , 73 By(7)).



(58 of 67) A. CALAMAI ET AL.

From Lemmas 5.32 and 5.23, setting ¢t = 0 + Tlf we see that

”f(t» T Qs(dv T)) - f(tv 75 ﬁs (T))||

<EO + 7,7 Qo(d ) = GO + 151 ) = GO (413
w AL
< % aid<1—u2ﬁ) —|—d17#‘1 < dJinilJt
c

for any 7 <t < 9% (d,7), since ot < 1 and p = c,po (see the proof of

Theorem 4.2).
Further, from Lemma 5.11 we find

|Z(t, 73 Qs (d, 7)) — Z(t, 73 By(r))|| < d6—H < don =

for any 7 <t < 7{. So (23) is proved.
The proofs of (24), (25) and (26) are similar and are omitted. O

6. Some remarks and future developments

In this section we spend a few more words concerning some projects we wish
to develop using the results of Theorems 4.2 and 4.3, as we said in the Intro-
duction.

Firstly, it is well known that, if A; + A, < 0 and € = 0, in the framework
of Scenario 1 the set T of (1) is asymptotically stable from inside (stable from
outside in Scenario 2). We think that the results of this paper could be of
use in exploring the possibility to construct an integral manifold which will be
asymptotically stable from inside, when we have just one zero of the Melnikov
function M(7), see (9). Notice that the presence of chaotic phenomena prevents
the possibility of asymptotic stability if we have infinitely many zeros of M(7).

Secondly, we plan to use Theorems 4.2 and 4.3 to study the possibility
to establish a sub-harmonic Melnikov theory. More precisely we think that
if the function M(7) has a unique zero at 7 = 79 then we should find two
different type of results: if M’(79) > 0 then we expect that the homoclinic
trajectory &(t,e) bifurcating from () will be unique, while if M’(75) < 0
then we think there should be a monotone decreasing sequence of g, > 0 such
that if 0 < & < ¢ then there are k homoclinic trajectories, each of them
performing exactly j loops (i.e., passing O(e) close to 4(0) exactly j times),
where 7 = 1,..., k. In fact we expect that this will be the case if M(7) does
not converge to 0 when 7 converges either to +0o0 or to —oo, while some extra
conditions on the speed of convergence to 0 is needed if M(7) — 0. This
dynamical result is suggested also by the bubble-tower phenomena appearing
in quasi-linear elliptic equations, see e.g. [10,12,13].
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Thirdly, we believe that Theorems 4.2 and 4.3 could be used to find safe
regions in systems characterized by Melnikov chaos, i.e., chaos generated by the
non-autonomous perturbation of an autonomous homoclinic trajectory. More
precisely we aim to find subsets of initial conditions close to I', which will
remain far from the chaotic set for a long, possibly infinite time. Roughly
speaking we think we can use these ideas to give some conditions sufficient to
answer the question:

How far should I stay from T to be sure not to finish in a chaotic pattern?
We think this kind of result should be quite useful from an engineering point
of view.

Finally, as we said in the Introduction, Melnikov theory has been extended
to the context of piecewise smooth systems (PS) assuming that 0 € QO in [8],
where we proved that the classical Melnikov condition is enough to ensure
the persistence to perturbation of the homoclinic trajectory. However quite
unexpectedly, it does not guarantee the persistence of chaos if § is periodic in
t, as it happens in a smooth setting, see e.g. [29] but also in a non-smooth setting
if the origin does not belong to the discontinuity surface Q°, see e.g. [2-4]. In
fact in [15] we have found a big class of counterexamples to the presence of
chaos: roughly speaking a geometrical obstruction forbids chaotic phenomena
whenever we have sliding close to the origin.

In a forthcoming paper we plan to show that, if such a geometrical obstruc-
tion is removed then the usual Melnikov conditions guarantee chaos as in the
smooth setting, and Theorems 4.2 and 4.3 of the present paper are essential in
this project. We also think that these kinds of results should give us a better
insight of what happens close to I" in a smooth setting, possibly allowing us
to give some results concerning the size and the position of the Cantor-like set
giving rise to chaos.

A. Sketch of the proofs of Lemmas 3.3 and 3.5

This section is devoted to the construction of the curves Zfwdin = zfwdout
Zbwdsin - zbwdout ' o “to the proofs of Lemmas 3.3 and 3.5, which are adaption
of the argument in [15, §6.2], see in particular [15, Lemmas 6.4, 6.7] and [15,
§6.2.2]. We invite the reader to compare the references with Figures 8, 9.

In the whole section we assume the hypotheses of Lemmas 3.3 and 3.5
without further mentioning. Following [15, §6.2.2] we denote by fL*(Z) the
R2-valued function such that (fLE(Z), (@) = 0, |f-*@)| = [|/£@)],
i.e. fL+(Z) is the C" function in QF obtained by rotating f*(Z) by /2. We
choose the orientation in such a way that 7(t) + cfL-%(7(t)) € E™ if ¢ > 0 is
small enough.
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Then we set
K = 2max{sup{||§(t, 7, 0)|/[/* (@] | # € BT, 1) N (2" U Q) t € R},
sup{[|g(t. Z, 0)II/Ilf~ @] | # € BT, 1) (@ uQ’), t € R}}.
Observe that I > 0 is bounded, see [15, Page 1457]. Then we denote by

fE@) = [5(@) + L[5 (D),
FE@) = fH (@) — ek fHE(@).

The curves zWdin  zfwdout = zbwdin = 7bwdout are in fact obtained as orbits
of trajectories of the autonomous systems # = f=(Z) and & = f}:i(f) From
now on we denote with the subscript a quantities referred to the former system
and with the subscrlpt b quantities referred to the latter system. In particular
we denote by 7a(t, P) and iy(t, P), resp., the trajectory of = f= (i) and of
7= fb ( 7) leaving from P at ¢ = 0. Notice that fi( 7) on T aims towards E™
while f£(#) on T aims towards E°".

Note that the origin is still a saddle for both the systems so it admits
unstable and stable leaves W2, W', W7, W;. Due to the discontinuity W}
(and similarly for Wy, W2, W) has a corner in the origin and it may be split
on a component W'~ entering 27, the one we are interested in, and another,
say W% T entering Q7.

If we follow WY, WS, W, W from the origin towards L?, from a continuity
argument, we see that they intersect L° transversely the first time in points
denoted respectively by (¥, (7, (7;, fg .

Further from [15, Lemma 6.9] we get the following.

(114)

REMARK A.1. There are positive constants cy, ¢, ¢5, ¢; such that

G =7(0) + (chte + o(e)) @, { = 7(0) — (cje + ole)) T,
Ca =7(0) = (cze +ole))w, ¢ =7(0) + (cze + o(e)) W
where @ is a normalized vector, tangent to Q° in ¥(0) and oriented so that
5(0) + cif € E™ for ¢ > 0 small enough.

Let us start by a sketch of the proof of Lemma 3.3.
Let P™4in(D) be the unique point such that

P’fwd,in(D) c LO7 ||ﬁde’in(D) _ ESH =D > 0, <P’fwd,in(D) _ 527 u—]»> >0

where D > 0 is small enough. The following result is the key ingredient to
construct the curve ZH4in (see Figure 8).

LeMMA A.2. There is A > 0 such _that for any 0 < D < A there are 0 <
TwY(D) < T*%(D) such that i, (t, P*4"(D)) € (QY N E™) for any 0 < t <
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Figure 8: Zf™din constructed via Lemma A.2.

TwY(D), . (t, Pein(D)) € (A~ N E™) for any T (D) < t < T*2(D), and it
crosses transversely L™ at t=T"'(D) in Qf*%in(D) := g, (T (D), Pfvdin( D))
and L° at t = T*2(D) in Rfvdin(D) .= 7, (T2(D), Pf*tin(D)). Further, for
any 0 < pu < g, any 0 < D<A and 0 < € < gg we find

fwd = ; fwd
D+ +u < fwd,in D)l < D°+ 7#7
< |Gn(p)| < s

fwd

D +u < ”ﬁfwd,in(D) _ @H < Dofwd—u'

The proof of this lemma is obtained by adapting the argument in [15, §6.2.2]
which derives from the estimates in [15, Lemma 6.4].

REMARK A.3. Note that from Remark A.1 and Lemma 115 we find
D" ge < || RM4in(DY — 5(0) < D + ce (116)

where ¢ := 2max{c{,c}, ¢}, ci}.

Let 8> ¢ /2 be as in (13) and recall that o® < 1; it is easy to check that
there is D"’ € 8 —2cie, B — %E] such that Pfvdin .— ﬁde’i“(Df’i) satisfies
Hp’fwd,in _ '?(O)H = 8 and P’fwd,in c Ein,

Now the curve Z™4in is defined as follows

wad,in — {g'a(t’ﬁfwd,in) | 0<t< T;’2(Df’i)}7

and we set Q"fwd,in — Q'fwd,in(ljﬁi) R’fwd,in — R’fwd,in(nyi).
In fact by construction the flow of (PS) on ZW%i" points towards the exte-
rior of the bounded set enclosed by Z™4™ and the segment between P& and
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ﬁde’i“, see Figure 8. Now the estimates concerning ﬁde’i“, Qde’i“, Riwdin i
Lemma 3.3 follow from Lemma A.2 and Remark A.3.

Let P™d-out(D) be the unique point such that
p'fwd,out(D) c LO, ”p’fwd,out(D) B 5;1;” -D> 0, <]5'fwd,out(D) . _;1;715> <0

where D > 0 is small enough. Rephrasing the argument of [15, §6.2.2] which
is based on [15, Lemma 6.7], we get the following result needed to construct
Ztwdout (see Figure 9):

LEMMA A.4. There is A > 0 such that for any 0 < D < A there are T;L’*l(D) <
0 < 7" (D) such that Fy(t, Pf*&ov (D)) € (Q~ N E°“) for any 7"~ (D) <t <
0, G(t, Pvdout(D)) e (QF N E°) for any 0 < t < 7°"(D), and it crosses
transversely L= att = 7, (D) in Ofwd.out( D) .= Gy (1" H(D), Pfwd.out( D))
and LT0% at t = 71 (D) in QM®ow(D) := gy (1" (D), Pf*4v(D)). Further,
forany 0 < p < ppo, any 0 < D<A and 0 < € < g9 we find

D < |Gt (D)|| < D7,
(117)

fwd _

fwd N
[D+ (c§ + cf)el ™ T < QMY D)|| < [D+ (cf + cf)e] 7+ .
Again, there is D" € [B—2c}e, B— %s] such that Pfwd.eut .— piwd,out (Df’o)
satisfies \\ﬁde"’ut —5(0)|| = 8 and Pfwd.out ¢ pout,
Then the curve Zfwdout ig defined as follows

wad,out — {:Ijb(t,ﬁde’OUt) |T;’_1(Df7o) <t< T;A,l(]—)f,o)}’

and we set éfwd,out .: éfwd,out(Df1O) Q_'fwd,out . Q_'fwd,out(f)fvo)
: ) : .

In fact by construction the flow of (PS) on Z™d:°ut points towards the inte-
rior of the bounded set enclosed by ZfWd-0ut and the segments L~°"* between
0 and O™dout “and L+ between 0 and Qf9°ut, Further the estimates con-
cerning Ofwd.out - pfwd.out - Gfwd.out iy [ emma 3.3 follow from Lemma A.4. So
Lemma 3.3 is proved.

The construction of the curve ZP¥4i" (see Figure 10) is analogous to Z™d:in,
Namely, let PP¥4i1(D) be the unique point such that

BPanD) € 10, |BN(D) - Gl =D >0, (BND) - G i) > 0.
Reasoning as in Lemma A.2 we get the following.

LEMMA A.5. There is A > 0 such that for any 0 < D < A there are T;’_Q(D) <
Ty (D) < 0 such that Fy(t, Phedin(D)) € (0~ N E™) for any T, (D) <t<
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Figure 9: Zfd.out constructed in Lemma A 4.

0, §i(t, PP (D)) € (Q+ N E™) for any T (D) < t < T~ (D). Let us set

wad,in(D) _

= 7,(Ty " (D), P***™(D)) and
R’bwd,in(D):

b
zjb(Tl;s,—Q(D)’ I__)’bwd,in(D)) )

Then, for any 0 < u < pg, for any 0 < D<A and 0 < e < gy we find

bwd _

bwd = .
P < |G| < e,

bwd

Lo . . (118)
D7 < R D) - G < D7

REMARK A.6. Analogously to Remark A.3 we see that
D7 e < | RPYn(D) — 5(0) < D7 4 e

Again we see that there is D € B+ %575 + 2cj'e] such that Powdin .—
ﬁde’in(Db’l) satisfies l|ﬁde’in — F(0)|| = B and PPvdin ¢ pin,
So the curve ZPW¥4in ig defined as follows

Zbwd,in . _ {gb(t, P’bwd,in) | TI;‘;,—Q(Db,i) <t< 0},

and we set Q’bwd,in — Q_'bwd,in(vai) and Rbvdin . R’bwd,in(DbJ)_

In fact by construction the flow of (PS) on ZP¥4in aims toward the inte-
rior of the bounded set enclosed by ZP¥4" and the segment between Pbwdin
and RP¥4in Further the estimates concerning PP¥din @Gbwdin = fbwdin
Lemma 3.5 follow from Lemma A.5 and Remark A.6.
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Figure 10: ZP¥9in constructed in Lemma A.5.

Now, let PP¥d:0ut(D) be the unique point such that

wad,out(D) c LO7 Hpbwd,out(D) o C;” =D> 0’ <wad,out(D) o ;w) <0

where D > 0 is small enough. Reasoning as in Lemma A.4 we get ZPVd.out (

Figure 11):

LEMMA A.7. There is A > 0 such that for any 0 < D < A there are 75~ 1(D) <
0 < 75°X(D) such that §,(t, P@%0u (D)) € (0~ N E°™) for any 75~ (D) < t <
0, Jalt, Prwdout(D)) € (0 N E°) for any 0 < t < 752(D), and it crosses
transversely L= att = 75~ 1(D) in OP»®out(D) .= g7, (751 (D), Ptwdout( D))
and L0 at t = 751(D) in QUwhouwt(D) := i, (r51(D), PP»®ou(D)). Further,
forany 0 < pu < pg, any 0 < D<A and 0 < e < eg we find

see

bwd
—pu

[D+ (¢ + 1)) T < | OP o (D)|| < [D+ () + c)e]™" ",

119
Do_iwd-‘,—“ < ”Q’bwd,out(D)H < Daffd_“. ( )
Again, there is D" e [B—2cse, B— %“6] such that pbwd.out .— pbwd,out (Db’o)
satisfies Hﬁde’out —5(0)|]| = 8 and Pbwdin ¢ pout
Then the curve ZP¥d-out ig defined as follows

=b,o

wad,out — {ga(t7ﬁbwd,out(D ) ‘ T;,fl(vao) <t< T;’l(Dbp)},

and we set ébwd,out = ébwd,out (Db’o) wad7out = wad,out (Db»o).
The flow of (PS) on ZP¥4°u aims towards the exterior of the bounded
set enclosed by ZP¥dout and the segments L~ °" between 0 and OPwdout
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Figure 11: ZPWdout constructed in Lemma A.7.

and LT°" between 0 and QPV9°" see Figure 11. Moreover, the estimates
concerning QPwd.out - pbwd,out “Abwd,out f4]]ow from Lemma A.7. So Lemma 3.5
is proved.
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