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Abstract. In this work, we prove the existence of a positive solution
to the second-order nonlinear problem u′′ + f(t, u, u′) = 0 with mixed
boundary conditions, where f is an Lp-Carathéodory function satisfying
certain properties. Three boundary conditions are analysed. Further-
more, we also prove the existence of a positive solution to the problem
u′′ + b(t)g(u) = 0, where b(t) is an L1 function and g(u) is a con-
tinuous function. The proofs of the results are based on the Mawhin’s
coincidence degree.
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1. Introduction

In some recent works by Guglielmo Feltrin and Fabio Zanolin, the existence of
positive solutions for nonlinear problems with boundary conditions is studied.
For example, in [4], they prove the existence of a positive solution for the
second-order nonlinear equation

u′′ + f(t, u, u′) = 0, 0 < t < T

with Neumann or periodic boundary conditions. To obtain the result, they
use the Mawhin coincidence degree to guarantee the existence of at least one
solution. Then they apply a weak maximum principle to prove that the solution
found is non-negative. Lastly, they use a strong maximum principle to prove
that the obtained solution is positive.

In this work, we extend the result obtained by Guglielmo Feltrin and Fabio
Zanolin to other boundary conditions, as it will be seen later. It will be applied
the same techniques used by them, namely the Mawhin’s coincidence degree
and a maximum principle. It is worth mentioning that the maximum principle
used here is slightly different from the one used by them. There is a specific
section dedicated to its proof.
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Assuming that f : [0, T ] × [0,+∞) × R → R is a Lp-Carathéodory func-
tion, in this work, it will be studied the second-order nonlinear problem with
boundary conditions {

u′′ + f(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0),
(P)

where the linear operator B : C1([0, T ],R) → R2 represents the boundary
conditions, which can be

B(u) = (u′(T )− u(0), u′(0)− u(0)) ,

B(u) = (u′(T )− u′(0), u(0)) or

B(u) = (u(T )− u(0), u′(0)) .

A solution to problem (P) is a function u : [0, T ] → R, of class C1 such
that u′(t) is absolutely continuous and u(t) satisfies (P) for almost every t ∈
[0, T ]. We are interested in positive solutions of (P), i.e., solutions u such that
u(t) > 0 for all t ∈ [0, T ]. However, when the problem is studied with the
boundary condition B(u) = (u′(T )− u′(0), u(0)), we already know in advance
that u vanishes at t = 0. In this case, the sought-after solution will be such
that u(t) > 0 for all t ∈ (0, T ]. After studying problem (P), we present an
application by proving the existence of a positive solution to the problem{

u′′ + b(t)g(u) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0
, (E)

where g : [0,+∞) → [0,+∞) is a continuous function such that

(g1) g(0) = 0, g(s) > 0 for s > 0,

and the weight coefficient b : [0, T ] → R is a L1 function that changes sign on
[0, T ].

This work is organized as follows. In Section 2, some basic facts are recalled
about Mawhin’s coincidence degree. In this way, this section serves as a guide
for the approach used in the study of the problems in the subsequent sections.
In Section 3, is presented the main notations used in the study the problem (P).
Section 4 is used to carefully address the problems. Despite the similarity
in the constructions of the problems, treating them separately and carefully
allows us to better understand the differences generated by the alteration of the
boundary conditions. In Section 5, we apply the result presented in Section 4
to the specific problem (E). At the end, it is included an appendix where it is
presented a maximum principle and a priori bounds result.
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2. Mawhin’s coincidence degree

Consider the real Banach spaces E and F , and the linear Fredholm mapping
L : domL ⊆ E → F of index zero. Let kerL = L−1(0) denote the kernel
or nullspace of L, and ImL ⊆ F denote the range or image of L. We choose
linear continuous projections P : E → kerL and Q : F → cokerL ⊆ F with
cokerL ∼= F/ ImL being the complementary subspace of ImL in F . The linear
subspace kerP ⊆ E is the complementary subspace of kerL in E. This gives
us the direct sum decomposition

E = kerL⊕ kerP and Z = ImL⊕ ImQ.

We define the right inverse of L as KP : ImL → domL ∩ kerP , which
satisfies LKP (w) = w for each w ∈ ImL. As L is a Fredholm mapping of index
zero, we have that ImL is a closed subspace of F , and kerL and cokerL are
finite dimensional vector spaces of the same dimension. Now fix an orientation
on these spaces and consider a linear (orientation-preserving) isomorphism J :
coker L→ kerL.

Now, let N : E → F be a possibly nonlinear operator, and consider the
coincidence equation

Lu = Nu, u ∈ domL. (1)

According to [9], the coincidence equation is equivalent to the fixed point
problem

u = Φ(u) := Pu+ JQNu+KP (Id−Q)Nu, u ∈ E, (2)

Mawhin’s coincidence degree theory is a powerful tool for solving equa-
tion (1) when L is not invertible. To apply this theory, it is needed to make
some structural assumptions on the possibly nonlinear operator N . Specifically,
it is assumed that N is L-completely continuous, meaning that N is continuous
and that for every bounded set B ⊆ E, both QN(B) and KP (Id − Q)N(B)
are relatively compact sets.

Suppose we have an open and bounded set Ω ⊆ E such that Lu ̸= Nu for
all u ∈ domL ∩ ∂Ω. In this case, we can define the coincidence degree of L
and N in Ω as

DL(L−N,Ω) := deg(Id− Φ,Ω, 0),

where “deg” denotes the Leray-Schauder degree. Here, Φ is the operator defined
in equation (2). We denote the (finite dimensional) Brouwer degree by dB .

Remarkably, the coincidence degree of L and N in Ω is independent of the
choice of projectors P and Q, and is also independent of the choice of linear
isomorphism J , provided that it is fixed an orientation on kerL and coker L
and only consider orientation-preserving isomorphisms for J .
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Mawhin’s coincidence degree has several properties that provide us with
information about the solutions of equation (1) in Ω. For example, we have
additivity and homotopy invariance. An interesting property states that if
DL(L−N,Ω) ̸= 0, then (1) has at least one solution in Ω.

3. Notations and preliminaries

In this section, we will detail the notations used in the following sections as
well as some preliminary hypotheses.

For a fixed T , let E := C1([0, T ],R) equipped with the norm

∥u∥1 = ∥u∥∞ + ∥u′∥∞

and let F := L1([0, T ],R) equipped with the norm L1, denoted by ∥ · ∥L1 .
We define L : domL→ F by

(Lu)(t) := −u′′(t), t ∈ [0, T ],

where domL = {u ∈ E : u′ is absolutely continuous and B(u) = (0, 0)}.
Firstly, let f : [0, T ]× [0,+∞) × R → R be an Lp-Carathéodory function,

for some 1 ≤ p ≤ ∞, satisfying the following conditions:

(f1) f(t, 0, ξ) = 0, for almost every t ∈ [0, T ] and for every ξ ∈ R;

(f2) there exist a nonnegative function k ∈ L1[0, T ] and a constant ρ > 0 such
that

|f(t, s, ξ)| ≤ k(t)(|s|+ |ξ|),
for almost every t ∈ [0, T ], for every 0 ≤ s ≤ ρ, and |ξ| ≤ ρ;

(f3) suppose that f(t, s, ξ) satisfies a kind of Bernstein-Nagumo condition in
order to have |u′(t)| bounded whenever u(t) is bounded.

For each η > 0, there exists a continuous function

ϕ = ϕη : [0,+∞) → [0,+∞), with

∫ ∞ ξ
p−1
p

ϕ(ξ)
dξ = ∞,

and a function ψ = ψη ∈ Lp ([0, T ], [0,+∞)) such that

|f(t, s, ξ)| ≤ ψ(t)ϕ(|ξ|), for almost every t ∈ [0, T ],∀ s ∈ [0, η],∀ ξ ∈ R.

For technical reasons, when dealing with Nagumo functions ϕ(ξ) as above,
we always assume that

lim inf
ξ→+∞

ϕ(ξ) > 0.

This avoids the possibility of pathological examples as can be seen in [2,
p. 46-47] and does not affect our application.
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As the first step of our strategy, we extend the function f to a Carathéodory
function f̃ defined on [0, T ]× R2, by

f̃(t, s, ξ) =

{
f(t, s, ξ), if s ≥ 0

−s, if s ≤ 0
.

Now we introduce a nonlinear operator N : E → F , the Nemytskii operator
induced by f̃ , that is,

(Nu)(t) := f̃(t, u(t), u′(t)), t ∈ [0, T ].

The fact that we choose an extension of f that takes positive values for
s < 0 is important for the application of the maximum principle, as we will see
later.

4. The existence result

The objective of this section is to present the theorem that guarantees the
existence of a positive solution to the problem (P). To do this, we will first
analyse the problem for each of the boundary conditions. And finally, we will
present the theorem of existence of positive solution that encompasses all three
cases.

4.1. First case: u′(0) = u′(T ) = u(0)

Here, we will transform the problem{
u′′ + f(t, u, u′) = 0, 0 < t < T

u′(0) = u′(T ) = u(0).
(3)

into an equivalent operator equation, so that we can later use the degree theory.
To do so, we will define the domain of the operator L, its kernel and image.
With this, we will construct the projections P and Q. After this step, we will
be ready to state the theorem of existence of positive solution.

A solution to problem (3) is a function u : [0, T ] → R of class C1 such that
u′ is absolutely continuous and u(t) satisfies (3) for almost every t ∈ [0, T ].
In this section, we are interested in solutions u of (3) with u(t) > 0 for all
t ∈ [0, T ].

For this problem, let us consider the operator L defined in section 3, where
domL ⊆ E is the vector subspace

domL = {u ∈ E : u′ is absolutely continuous and u′(0) = u′(T ) = u(0)}.
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In these conditions, the kernel of the operator L is given by

kerL = {u ∈ E : u(t) = at+ a, a ∈ R},

which can be identified with the set of real numbers, i.e., kerL ≡ R. In fact,
let u ∈ kerL. That is, u′′(t) = 0 for all t ∈ [0, T ]. Thus, u(t) = at + b, with
a, b ∈ R. Hence, u(0) = b and u′(0) = u′(T ) = a. Since u(0) = u′(0) =
u′(T ), we have a = b. Therefore, u ∈ {u ∈ E : u(t) = at + a, a ∈ R}, i.e.,
kerL ⊆ {u ∈ E : u(t) = at + a, a ∈ R}. On the other hand, let u ∈ E such
that u(t) = at + a with a ∈ R. It is clear that u′(t) is absolutely continuous.
Moreover, u(0) = u′(0) = u′(T ) = a. Therefore, u ∈ domL. And obviously,
u′′(t) = 0 for all x ∈ [0, T ]. Hence, {u ∈ E : u(t) = at+ a, a ∈ R} ⊆ kerL. We
conclude that kerL = {u ∈ E : u(t) = at+ a, a ∈ R}.

Furthermore, the image of the operator L is given by

imL =

{
w ∈ F :

∫ T

0

w(t)dt = 0

}
.

Indeed, let w ∈ imL. Then, w = −u′′ for some u ∈ domL. Thus,∫ T

0

w(t)dt = −
∫ T

0

u′′(t)dt = −u′(T ) + u′(0) = 0.

On the other hand, let w ∈ Z such that

∫ T

0

w(t)dt = 0. Define, for s ∈ [0, T ],

v(s) := −
∫ s

0

w(t)dt and u(s) :=

∫ s

0

v(t)dt.

By the fundamental theorem of calculus, we have, for t ∈ [0, T ],

u′(s) = v(s) and − u′′(s) = −v′(s) = w(s).

It is clear that u′ is absolutely continuous and, moreover,

u′(0) = v(0) = 0, u′(T ) = v(T ) = 0 and u(0) = 0.

Thus, u ∈ domL and Lu = w. We conclude that

imL =

{
w ∈ F :

∫ T

0

w(t)dt = 0

}
.

Observe that L is a Fredholm operator of index zero. In fact, L is a bounded
linear operator with dim(kerL) = 1. It remains to prove that dim(cokerL) = 1.
To this end, note that w ∈ F can be written as

w(t) = w1(t) + w2(t),
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where

w1(t) = w(t)− 1

T

∫ T

0

w(ξ) dξ and w2(t) =
1

T

∫ T

0

w(ξ) dξ.

We have w1(t) ∈ imL and w2(t) ∈ cokerL. Since w2(t) is constant, we conclude
that dim(cokerL) = 1. Thus, the index of L is

dim(kerL)− dim(cokerL) = 0.

At this point, we can define the projections P : E → kerL and Q : F →
cokerL as follows:

(Pu)(t) =
u(T )− u(0)

T
t+

u(T )− u(0)

T
and (Qw)(t) =

1

T

∫ T

0

w(t)dt.

Since dim(kerL) = dim(cokerL), we have cokerL ≡ R. Moreover, kerP
is given by C1 functions such that u(0) = u(T ) and the linear operator Kp :
imL → domL ∩ kerP , which is the right inverse of L, associates to each

w ∈ L1([0, T ],R) with
∫ T

0

w(t)dt = 0, an unique solution u(t) of

u′′ + w(t) = 0, u′(0) = u′(T ) = u(0) = u(T ).

In this scenario, u is a solution of the equation

Lu = Nu, u ∈ domL, (4)

if, and only if, it is a solution of the problem{
u′′ + f̃(t, u, u′) = 0, 0 < t < T

u′(0) = u′(T ) = u(0).
(5)

Furthermore, from the definition of f̃ for s < 0 and the conditions (f1) and (f2),
it is easy to verify, using the maximum principle, that if u ̸≡ 0, then u(t) is
strictly positive and hence is a (positive) solution of problem (3).

4.2. Second case: u′(0) = u′(T ) and u(0) = 0

For this boundary condition, we will follow the same outline as in the previous
case. We will transform the problem{

u′′ + f(t, u, u′) = 0, 0 < t < T

u′(0) = u′(T ) and u(0) = 0.
(6)
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into an equivalent operator equation, so that we can later use the degree theory.
A solution to problem (6) is a function u : [0, T ] → R of class C1 such that

u′ is absolutely continuous and u(t) satisfies (6) for almost every t ∈ [0, T ].
As already noted, in this section, we are interested in solutions u of (6) with
u(t) > 0 for all t ∈ (0, T ].

For this problem, let us consider the operator L defined in section 3, where
domL ⊆ E is the vector subspace

domL= {u ∈ E : u′ is absolutely continuous and u′(0)=u′(T ) and u(0)=0}.

In these conditions, the kernel of the operator L is given by

kerL = {u ∈ E : u(t) = at, a ∈ R},

which can be identified with the set of real numbers, i.e, kerL ≡ R. In fact, let
u ∈ kerL. That is, u′′(t) = 0 for all t ∈ [0, T ]. Thus, u(t) = at+b with a, b ∈ R.
Therefore, u(0) = b and u′(0) = u′(T ) = a. Since u(0) = 0, we have b = 0.
Hence, u ∈ {u ∈ E : u(t) = at, , a ∈ R}, i.e., kerL ⊆ {u ∈ E : u(t) = at, a ∈ R}.
On the other hand, let u ∈ E such that u(t) = at with a ∈ R. It is clear that
u′(t) is absolutely continuous. Moreover, u(0) = 0 and u′(0) = u′(T ) = a.
Therefore, u ∈ domL. And obviously, u′′(t) = 0 for all t ∈ [0, T ]. Hence,
{u ∈ E : u(t) = at, , a ∈ R} ⊆ kerL. We conclude that kerL = {u ∈ E : u(t) =
at, , a ∈ R}. Furthermore, the image set of the operator L is given by

imL =

{
w ∈ F :

∫ T

0

w(t)dt = 0

}
.

In fact, let w ∈ imL. Then, w = −u′′ for some u ∈ domL. Thus,∫ T

0

w(t)dx = −
∫ T

0

u′′(t)dt = −u′(T ) + u′(0) = 0.

On the other hand, let w ∈ F such that

∫ T

0

w(t)dt = 0. Define, for s ∈ [0, T ],

v(s) := −
∫ s

0

w(t)dt e u(s) :=

∫ s

0

v(t)dx.

By the fundamental theorem of calculus, we have, for s ∈ [0, T ],

u′(s) = v(s) e − u′′(s) = −v′(s) = w(s).

Clearly, u′ is absolutely continuous and, furthermore,

u′(0) = v(0) = 0, u′(T ) = v(T ) = 0 e u(0) = 0.
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Thus, u ∈ domL and Lu = w. We conclude that

imL =

{
w ∈ F :

∫ T

0

w(t)dt = 0

}
.

At this point, we can define the projections P : E → kerL and Q : F →
cokerL as follows:

(Pu)(t) = u′(0)t and (Qw)(t) =
1

T

∫ T

0

w(t)dt.

Similarly to the previous case, L is a Fredholm operator of index zero, and
therefore dim(kerL) = dim(cokerL), so that cokerL ≡ R. Moreover, kerP
consists of C1 functions such that u′(0) = 0, and the linear operator Kp :

imL → dom∩ kerP associates to each w ∈ L1([0, T ],R) with
∫ T

0

w(t)dt = 0, a

unique solution u(t) of

u′′ + w(t) = 0, u′(0) = u′(T ) = u(0) = 0.

In this scenario, u is a solution of the equation

Lu = Nu, u ∈ domL, (7)

if, and only if, it is a solution of the problem{
u′′ + f̃(t, u, u′) = 0, 0 < t < T

u′(0) = u′(T ) and u(0) = 0.
(8)

In addition, from the definition of f̃ for s < 0 and conditions (f1) and (f2),
it is easy to verify, using the maximum principle, that if u ̸≡ 0, then u(t) is
strictly positive and thus is a (positive) solution of problem (6).

4.3. Third case: u(0) = u(T ) and u′(0) = 0

Again, we will follow the same structure as in the two previous cases. We will
transform the problem{

u′′ + f(t, u, u′) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0.
(9)

into an equivalent operator equation, so that we can later use the degree theory.
A solution to problem (9) is a function u : [0, T ] → R of class C1 such that

u′ is absolutely continuous and u(t) satisfies (9) for almost every t ∈ [0, T ].
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In this section, we are interested in solutions u of (9) with u(t) > 0 for all
t ∈ [0, T ].

For this problem, let us consider the operator L defined in section 3, where
domL ⊆ E is the vector subspace

domL={u ∈ E : u′ is absolutely continuous and u(0)=u(T ) and u′(0)=0}.

In these conditions, the kernel of the operator L is given by

kerL = {u ∈ E : u(t) = b, b ∈ R},

which can be identified with the set of real numbers, i.e., kerL ≡ R. In fact,
let u ∈ kerL. u′′(t) = 0 for all t ∈ [0, T ]. Thus, u(t) = at + b, with a, b ∈ R.
Hence, u(0) = b e u′(0) = a. Since u′(0) = 0, we have a = 0. Therefore,
u ∈ {u ∈ E : u(t) = b, b ∈ R}, i.e, kerL ⊆ {u ∈ E : u(t) = b, b ∈ R}. On
the other hand, let u ∈ E such that u(t) = b with b ∈ R. It is clear that
u′(t) is absolutely continuous. Moreover, u(0) = u(T ) = b and u′(0) = 0.
So, u ∈ domL. Therefore, u ∈ domL. And obviously, u′′(t) = 0 for all
t ∈ [0, T ]. Hence, {u ∈ E : u(t) = b, b ∈ R} ⊆ kerL. We conclude that
kerL = {u ∈ X : u(t) = b, b ∈ R}.

Furthermore, the image of the operator L is given by

imL =

{
w ∈ F :

∫ T

0

(∫ s

0

w(t)dt

)
ds = 0

}
.

Indeed, let w ∈ imL. Then, w = −u′′ for some u ∈ domL. Thus,

∫ T

0

(∫ s

0

w(t)dt

)
ds = −

∫ T

0

(∫ s

0

u′′(t)dt

)
ds

= −
∫ T

0

u′(s)ds = −u(T ) + u(0) = 0.

On the other hand, let w ∈ F such that

∫ T

0

w(t)dt = 0. Define, for t ∈ [0, T ],

u(t) := u(0)−
∫ t

0

(∫ x

0

w(s)ds

)
dx.

.
By the fundamental theorem of calculus, we have, for t ∈ [0, T ],

u′(t) = −
∫ t

0

w(s)ds and − u′′(t) = w(t).
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It is clear that u′ is absolutely continuous and, moreover,

u′(0) = 0 and u(0) = u(T ).

Thus, u ∈ domL and Lu = w. We conclude that

imL =

{
w ∈ F :

∫ T

0

(∫ s

0

w(t)dt

)
ds = 0

}
.

At this point we can define the projections P : E → kerL e Q : F → cokerL
as follows:

(Pu)(t) =
1

T

∫ T

0

u(t)dt and (Qw)(t) =
2

T 2

∫ T

0

(∫ s

0

w(t)dt

)
ds.

As in the two previous cases, here L is also a Fredholm operator of index
zero. Thus, dim(kerL) = dim(cokerL), so cokerL ≡ R. Moreover, kerP is
given by C1 functions with mean value zero and the linear operatorKp : imL→
dom∩ kerP , which is the right inverse of L, associates to each w ∈ L1([0, T ],R)

with

∫ T

0

(∫ s

0

w(t)dt

)
ds = 0, a unique solution u(t) of

u′′ + w(t) = 0, u(0) = u(T ), u′(0) = 0 and

∫ T

0

u(t)dt = 0.

In this scenario, u is a solution of the equation

Lu = Nu, u ∈ domL, (10)

if, and only if, it is a solution of the problem{
u′′ + f̃(t, u, u′) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0.
(11)

Furthermore, from the definition of f̃ for s < 0 and the conditions (f1) and (f2),
it is easy to verify, using the maximum principle, that if u ̸≡ 0, then u(t) is
strictly positive and hence is a (positive) solution of problem (9).

4.4. Main result

In this section, we present the main result of this work, in which the existence
of a positive solution for problem (P) is proven. Before presenting the main
theorem and its proof, we establish a technical framework that will serve as the
foundation for our arguments.
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Considering ϑ ∈ (0, 1], the equation

Lu = ϑNu, u ∈ domL, (12)

is equivalent to problem{
u′′ + ϑf̃(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0).
(13)

Fixing d > 0, the condition (f3) takes on an important role. Let ϕ =
ϕd : [0,+∞) → [0,+∞) and ψ = ψd ∈ Lp([0, T ]) be such that |f(t, s, ξ)| ≤
ψ(t)ϕ(|ξ|), for almost every t ∈ [0, T ], for all s ∈ [0, d] and ξ ∈ R. Applying the
Nagumo’s lemma [2, § 4.4, Proposition 4.7], there is a constant M = Md > d
such that, for some ϑ ∈ (0, 1], any solution of (12) or, equivalently, any non-
negative solution of {

u′′ + ϑf(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0),
(14)

satisfying ∥u∥∞ ≤ d is such that ∥u′∥∞ < Md. This way, we can define the
open and bounded set Ωd ⊆ E by

Ωd := {u ∈ E : ∥u∥∞ < d, ∥u′∥∞ < Md}. (15)

When the boundary condition is B(u) = (u′(T ) − u(0), u′(0) − u(0)), we

have Ωd ∩ kerL =
(
− d

1+T ,
d

1+T

)
.

Let u ∈ ∂Ωd ∩ kerL =
{
u ∈ E : u(t) = a+ at, |a| = d

1+T

}
. In this case,

−JQNu = − 1

T

∫ T

0

f̃(t, a+ at, a)dt.

By definition of f̃ we have

h(a) := − 1

T

∫ T

0

f̃(t, a+ at, a)dt =


− 1

T

∫ T

0

f(t, a+ at, a)dt, if a > 0

a+
aT

2
, if a ≤ 0 .

Similarly, when the boundary condition is B(u) = (u′(T ) − u′(0), u(0)) we
obtain Ωd ∩ kerL =

(
− d

T ,
d
T

)
.

For u ∈ ∂Ωd ∩ kerL =
{
u ∈ E : u(t) = at, |a| = d

T

}
,

−JQNu = − 1

T

∫ T

0

f̃(t, at, a)dt.
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In this case,

h(a) := − 1

T

∫ T

0

f̃(t, at, a)dt =


− 1

T

∫ T

0

f(t, at, a)dt, if a > 0

aT

2
, if a ≤ 0 .

Following the same idea, when the boundary condition is B(u) = (u(T ) −
u(0), u′(0)), we have Ωd ∩ kerL = (−d, d).

For u ∈ ∂Ωd ∩ kerL = {u ∈ E : u(t) = a, |a| = d},

−JQNu = − 2

T 2

∫ T

0

(∫ s

0

f̃(t, a, 0)dt

)
ds.

In this case,

h(a) := − 2

T 2

∫ T

0

(∫ s

0

f̃(t, a, 0)dt

)
ds

=


− 2

T 2

∫ T

0

(∫ s

0

f(t, a, 0)dt

)
ds, if a > 0

a, if a ≤ 0 .

This technical framework, together with the finite-dimensional reduction of
Mawhin’s coincidence degree [4, Lemma 2.1], will play an important role in
the proof of the main theorem, which will be presented next. The proof of the
theorem below follows the ideas used in [4, Theorem 2.1].

Theorem 4.1. Assume (f1), (f2), and (f3), and suppose that there exist two
constants r,R > 0, with r ̸= R, such that the following hypotheses are true.

(H1) The following condition is satisfied.

JQNu < 0,

with u ∈ ∂Ωr ∩ kerL and u(t) > 0 in [0, T ]. Moreover, any solution u(t)
of the problem (14) for 0 < ϑ ≤ 1, such that u(t) > 0 in [0, T ], satisfies
∥u∥∞ ̸= r.

(H2) There exist a non-negative function v ∈ Lp([0, T ],R) with v ̸≡ 0 and a
constant α0 > 0, such that every solution u(t) ≥ 0 of the problem{

u′′ + f(t, u, u′) + αv(t) = 0, 0 < t < T
B(u) = (0, 0),

(16)

for α ∈ [0, α0], satisfies ∥u∥∞ ̸= R.
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(H3) There are no solutions u(t) of (16) for α = α0 with 0 ≤ u(t) ≤ R, for
every t ∈ [0, T ].

Then the problem (P) has at least one positive solution u(t) with

min{r,R} < max
t∈[0,T ]

u(t) < max{r,R}.

Proof. As we have seen before, the choice of spaces E, domL, F and operators
L : u 7→ −u′′ and N imply the equivalence between

Lu = Nu, u ∈ domL, (17)

and {
u′′ + f̃(t, u, u′) = 0, 0 < t < T

B(u) = (0, 0).
(18)

It is also we know that L is a Fredholm operator of index zero and that N is
L- completely continuos.

Let us consider case 0 < r < R and, by (15), take the open and bounded
set

Ωr := {u ∈ E : ∥u∥∞ < r, ∥u′∥∞ < Mr} ⊆ E.

By condition (H1) we have

Lu ̸= ϑNu, ∀u ∈ domL ∩ ∂Ωr,∀ϑ ∈ (0, 1].

Regardless of the boundary condition used, by the first condition in (H1),
we have h (−r) < 0 < h (r). In this way, we obtain

degB (h,Ωr ∩ kerL, 0) = 1.

By the finite-dimensional reduction of the Mawhin’s coincidence degree [4,
Lemma 2.1], we conclude that

DL(L−N,Ωr) = degB (−JQN |kerL,Ωr ∩ kerL, 0)

= degB (h,Ωr ∩ kerL, 0) = 1. (19)

Now let’s analyze hypothesis (H2) by studying equation

Lu = Nu+ αv, u ∈ domL, (20)

for some α ≥ 0. This equation is equivalent to the problem{
u′′ + f̃(t, u, u′) + αv(t) = 0

B(u) = (0, 0).
(21)
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Taking any solution u of (20) for some α ≥ 0, the way we defined the extension
f̃ allows us to apply the maximum principle and conclude that u(t) ≥ 0 for all
t ∈ [0, T ]. Thus u is a solution of (16).

Once again, we will use condition (f3). Let ϕ = ϕR : [0,+∞) → [0,+∞) and
ψ ∈ Lp([0, T ],R) such that |f(t, s, ξ)| ≤ ψ(t)ϕ(|ξ|), for almost every t ∈ [0, T ],
for all s ∈ [0, R] and for all ξ ∈ R. Taking α ∈ [0, α0], we obtain

|f(t, s, ξ) + αv(t)| ≤ ψ(t)ϕ(|ξ|) + α0v(t) ≤ ϕ̃(t)ψ̃(|ξ|)

for almost every t ∈ [0, T ], for all s ∈ [0, R] and for all ξ ∈ R, where

ψ̃(t) = ψ(t) + α0v(t) and ψ̃(|ξ|) = ψ(|ξ|) + 1.

Note also that

ψ̃ ∈ Lp([0, T ]) and

∫ ∞ ξ
p−1
p

ϕ̃(|ξ|)
dξ = ∞.

Similarly to what we did earlier, we use Nagumo’s lemma There is a positive
constant M = MR > Mr such that any solution of (21), or equivalently, any
non-negative solution of (16) satisfying ∥u∥∞ ≤ R satisfies ∥u′∥∞ < MR. Thus
we can define the open and bounded set ΩR ⊆ E by

ΩR = {u ∈ E : ∥u∥∞ < R, ∥u′∥∞ < MR}.

The condition (H2) implies that

Lu ̸= Nu+ αv, ∀u ∈ domL ∩ ∂ΩR, ∀α ∈ [0, α0].

In addition, the condition (H3) implies that

Lu ̸= Nu+ α0v, ∀u ∈ domL ∩ ΩR.

Due to the homotopy invariance of the Mawhin coincidence degree, we have

DL(L−N,ΩR) = 0. (22)

Using (19), (22) and the additivity of the degree, it follows that

DL(L−N,ΩR \ Ωr) = −1.

This guarantees the existence of a nontrivial solution ũ of (17) with ũ ∈ ΩR\Ωr.
As ũ is a nontrivial solution of (18), by the (strong) maximum principle, it
follows that ũ(t) is a solution of P with B(u) = (u′(T )− u(0), u′(0)− u(0))
and ũ(t) > 0 for all t ∈ [0, T ].

In the case where 0 < R < r, we proceed analogously. Regarding the
previous case, the only relevant change is the following. First, we fix a constant
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M =MR > 0 and obtain (22) for the set ΩR. Then, we repeat the first part of
the proof above, fix a constant Mr > MR and obtain (19) for the set Ωr. Now
we have

DL(L−N,Ωr \ ΩR) = 1.

This guarantees the existence of a nontrivial solution ũ of (17) with ũ ∈ Ωr \ΩR

and we conclude, as above, that ũ(t) > 0 for all t ∈ [0, T ] (by the strong
maximum principle).

5. An application of Theorem 4.1

In this section, we give an application of Theorem 4.1 to the existence of positive
solutions for problem {

u′′ + b(t)g(u) = 0, 0 < t < T

u(0) = u(T ) and u′(0) = 0,
(E)

where g : [0,+∞) → [0,+∞) is a continuous function such that

(g1) g(0) = 0, g(s) > 0 for s > 0;

(g2) lim
s→0+

g(s)

s
= 0.

The weight coefficient b : [0, T ] → R is a L1-function such that

(b1) there exists δ > 0 such that b(t) is essentially negative on [0, δ] and also
on [T − δ, T ];

(b2) there exist m ≥ 1 intervals I1, . . . , Im, closed and pairwise disjoint, such
that

b(t) ≥ 0, for a.e. t ∈ Ii, with b(t) ̸≡ 0 on Ii (i = 1, . . . ,m);

b(t) ≤ 0, for a.e. t ∈ [0, T ] \
m⋃
i=1

Ii;

(b3)

∫ s

0

b(t)dt < 0 for all 0 < s < T .

Let λi1, i = 1, . . . ,m, be the first eigenvalue of the eigenvalue problem

φ′′ + λb(t)φ = 0, φ|∂Ii = 0.

From the assumptions on b(t) in Ii it clearly follows that λi1 > 0 for each
i = 1, . . . ,m.
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A function g : [0,+∞) → [0,+∞) satisfying (g1) is regularly oscillating at
zero if

lim
s→0+
ω→1

g(ωs)

g(s)
= 1.

Now we are ready to present the following result. A similar result is found
in [4]. However, here the hypotheses on b(t) are substantially different. Ad-
ditionally, a mixed boundary condition is considered. Nevertheless, as we will
see below, a strategy similar to the one used in [4, Theorem 3.1] works in the
proof of the theorem.

Theorem 5.1. Let g(s) and b(t) be as above. Suppose also that g(s) is regularly
oscillating at zero and satisfies

g∞ := lim inf
s→+∞

g(s)

s
> max

i=1,...,m
λi1.

Then problem (E) has at least one positive solution.

Proof. We define
f(t, s, ξ) = f(t, ξ) := b(t)g(s),

and observe that f is L1 - Carathéodory. Now we prove the hypothesis (f1),
(f2) and (f3):

• (f1) follows from g(0) = 0;

• (f2) is an consequence of the fact that g(s)/s is bounded on a right
neighbourhood of s = 0 and b ∈ L1([0, T ]). We can that there exists
ρ > 0 such that

|b(t)g(s)| ≤ |b(t)||s|
for almost every t ∈ [0, T ] and for every 0 ≤ s ≤ ρ.

• to prove the Nagumo condition (f3) we can take p = 1, ϕ(ξ) ≡ 1 and
ψ(t) = |b(t)| max

0≤s≤η
g(s).

Let’s start by verifying the validity of hypothesis (H1). To verify the first
part of (H1), note that∫ T

0

(∫ s

0

f(t, k, 0)dt

)
ds =

∫ T

0

(∫ s

0

b(t)g(k)dt

)
ds = g(k)

∫ T

0

(∫ s

0

b(t)dt

)
ds.

By the hypotheses (g1) and (b3), we have∫ T

0

(∫ s

0

f(t, k, 0)dt

)
ds < 0, ∀k > 0. (23)

Now, let’s verify the second part of (H1). To do this, consider the following
claim.
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Claim 5.1. There exists r0 > 0 such that for all 0 < r ≤ r0 and for all ϑ ∈ (0, 1]
there are no solutions u(t) of (14) such that u(t) > 0 on [0, T ] and ∥u∥∞ = r.

Verification of Claim. Consider a sequence (rn)n of positive real numbers
such that rn → 0. By contradiction, suppose that for n ∈ N, there exist
ϑn ∈ (0, 1] and un(t) positive solution of

u′′ + ϑnb(t)g(u) = 0, u(0) = u(T ) and u′(0) = 0, (24)

with ∥un∥∞ = rn.
Using Rolle’s theorem, there exists tn ∈ (0, T ) such that u′n(tn) = 0. Inte-

grating (24), we obtain

0 = −
∫ tn

0

u′′n(t)dt = ϑn

∫ tn

0

b(t)g (un(t)) dt.

Then ∫ tn

0

b(t)g (un(t)) dt = 0. (25)

Now, we define

vn(t) :=
un(t)

∥un∥∞
.

Dividing (24) by ∥un∥∞, we have

v′′n(t) + ϑnb(t)
g (un(t))

un(t)
vn(t) = 0. (26)

By integration of (26), we obtain

v′n(t) = v′n(0)− ϑn

∫ t

0

b(ξ)
g (un(ξ))

un(ξ)
vn(ξ)dξ,

hence,

∥v′n∥∞ ≤
∫ T

0

|b(t)|g (un(t))
un(t)

dt. (27)

Recalling that b ∈ L1([0, T ]), by (g2) and the dominated convergence theorem,
we conclude that

lim
n→∞

v′n(t) = 0, uniformly on [0, T ]. (28)

Note that, for each n, ∥vn∥∞ = 1, therefore there exists sn ∈ [0, T ] such
that vn(sn) = 1 for all n ∈ N. Since

vn(t) = vn (sn)−
∫ t

sn

v′n(ξ)dξ,
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follow that

lim
n→∞

vn(t) = 1, uniformly on [0, T ]. (29)

By (25), fix n ∈ N such that∫ tn

0

b(t)g (un(t)) dt = 0.

Thus, we can write

0 =

∫ tn

0

b(t)g (un(t)) dt =

∫ tn

0

(b(t)g (rn) + b(t) [g (rnvn(t))− g (rn)]) dt.

At this point, let us define, for each n, ωn := vn (tn), for a suitable choice
of tn ∈ [0, T ]. Note that, by (29), lim

n→∞
ωn(tn) = 1.

Since g (rn) > 0, then

−
∫ tn

0

b(t)dt =

∫ tn

0

b(t)
g (rnvn(t))− g (rn)

g (rn)
dt.

Consequently, by (b3),

0 < −
∫ tn

0

b(t)dt ≤ ∥b∥L1 max
t∈[0,T ]

∣∣∣∣g (rnvn(t))g (rn)
− 1

∣∣∣∣ = ∥b∥L1

∣∣∣∣g (rnωn)

g (rn)
− 1

∣∣∣∣ .
Moreover, since g is regularly oscillating at zero, we have

lim
n→∞

g (rnωn(tn))

g (rn)
= 1.

Therefore, we obtain

0 < lim
n→∞

∫ tn

0

b(t)dt < 0, (30)

that is a contradiction. Thus, we have proved the claim. And with what
was proved in (23), we conclude that the hypothesis (H1) is satisfied for all
r ∈ (0, r0].

Remark 5.2. To ensure that inequality (5.8) holds, it is necessary to guarantee
that the sequence (tn)n converges to a positive value. For this purpose, we use
property (b1), which states that there exists δ > 0 such that b(t) < 0 for almost
every t ∈ [0, δ]. It follows that ∫ δ

0

b(t) dt < 0.
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Now, let us consider a solution u(t) of

u′′ + ϑb(t)g(u) = 0, u(0) = u(T ) and u′(0) = 0,

with ϑ ∈ (0, 1]. Thus, u′′(t) > 0 for almost every t ∈ [0, δ]. Therefore, u(t) is
convex on [0, δ]. Given s ∈ (0, δ], we have

u′(s) = −
∫ δ

0

b(ξ)g(u(ξ)) dξ > 0.

We conclude that u is increasing on [0, δ], and hence it has a relative maxi-
mum t̂ ≥ δ. This ensures that we can take the sequence (tn)n such that tn ≥ δ
for all n ∈ N.

Continuing with the proof, let’s verify hypothesis (H2).

Initially, we define W :=

m⋃
i=1

Ii and let v : [a, b] → R be the characteristic

function of the setW . Note that v ∈ L1([0, T ]) with v(t) ≥ 0 inW and v(t) = 0
in [0, T ] \W .

Since b(t) ≥ 0 on each interval Ii, we have

b(t)g(s) ≥ 0, a.e. t ∈ Ii,∀s ≥ 0

and

lim inf
s→+∞

b(t)g(s)

s
≥ b(t)g∞, uniformly a.e t ∈ Ii.

Due to the second condition in hypothesis (g2), the first eigenvalue of the
eigenvalue problem

φ′′ + λg∞b(t)φ = 0, φ|∂Ii = 0,

is strictly less than 1 , for all i = 1, . . . ,m. Thus, we can apply Lemma 6.2 in
the Appendix and conclude that, for each i = 1, · · ·m, if k : [0, T ]×[0+∞) → R
is a Carathéodory function with

k(t, s) ≥ h(t, s), a.e t ∈ Ii,∀s ≥ 0,

then there exists a constant RIi > 0 such that every solution u(t) ≥ 0 of the
problem

u′′ + k(t, s) = 0, u(0) = u(T ) and u′(0) = 0 (31)

satisfies maxt∈Ii u(t) < RIi .
Therefore, consider a constant R > r0, where r0 was obtained in the first

part of the proof, such that

R ≥ max
i=1,...,m

RIi (32)
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and fix α0 > 0 such that

α0 >
∥b∥L1 max0≤s≤R g(s)

∥v∥L1

. (33)

Take α ∈ [0, α0] and, setting k(t, s) = b(t)g(s) + αv(t), consider the problem

u′′ + b(t)g(s) + αv(t) = 0, u(0) = u(T ) and u′(0) = 0, (34)

which is equivalent to problem (16). Note that b(t)g(s) + αv(t) ≥ b(t)g(s) a.e.
t ∈ W and for all s ≥ 0. By applying Lemma 6.2 on each interval Ii, any
solution u(t) ≥ 0 of problem (34) satisfies maxt∈W u(t) < R. observe that the
solutions of (34) are convex on the intervals of [0, T ] \W . Hence,

max
t∈[0,T ]

u(t) = max
t∈A

u(t).

As a result, we have that ∥u∥∞ < R. Thus, we conclude the proof of (H2).
To prove hypothesis (H3) we need to verify that for α = α0, defined in (33),

there are no solutions u(t) of (16) with 0 ≤ u(t) ≤ R on [0, T ]. Indeed, if u is
a solution of

u′′ + b(t)g(u) + αv(x) = 0, u(0) = u(T ) and u′(0) = 0, (35)

with 0 ≤ u(t) ≤ R, then, applying the hypothesis (b1), there exists δ > 0 such
that

u′′(t) = −b(t)g(u(t))− αv(t) > 0 a.e t ∈ [T − δ, T ].

By a convexity argument, we have that u′(T ) > 0.
Now, integrating (35) on [0, T ], we obtain

u′(T ) + α∥v∥L1 = α

∫ T

0

v(t)dt ≤
∫ T

0

|b(t)|g(u(t))dt ≤ ∥b∥L1 max
0≤s≤R

g(s).

Due to the choice of α0 we reach a contradiction, which proves hypothesis (H3).
Thus, we have proved hypotheses (H1), (H2) and (H3). By applying Theo-
rem 4.1, we conclude the proof.

6. Appendix

The results presented in this section play an important role in the proofs of
Theorem 4.1 and Theorem 5.1. Here, we will see two results related to problem{

u′′ + h(t, u) = 0

B(u) = (0, 0),
(36)
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where h : [0, T ]×R → R is a L1 - Carathéodory function and the linear operator
B : C1([0, T ],R) → R2 represents the boundary conditions, which can be

B(u) = (u′(T )− u(0), u′(0)− u(0)) ,

B(u) = (u′(T )− u′(0), u(0)) or

B(u) = (u(T )− u(0), u′(0)) .

In the following lemma, we present the maximum principle. This lemma
is divided into two parts: part (i) is the weak maximum principle, and part
(ii) is the strong maximum principle. These parts ensure, respectively, the
non-negativity and positivity of the solutions to the problem (36).

Lemma 6.1 (Maximum principle). Let h : [0, T ]×R → R be an L1-Carathéodory
function.

(i) If h(t, s) > 0, almost every t ∈ [0, T ] and for all s < 0, then any solution
of (36) is non-negative on [0, T ].

(ii) If h(t, 0) ≡ 0 and there exists q ∈ L1 ([0, T ], [0,+∞)) such that

lim sup
s→0+

|h(t, s)|
s

≤ q(t),

uniformly for almost every t ∈ [0, T ], then any non-trivial non-negative
solution of (36) satisfies:

• u(t) > 0 for every t ∈ (0, T ] if B(u) = (u′(T )− u′(0), u(0));

• u(t) > 0 for every t ∈ [0, T ] if B(u) = (u(T )− u(0), u′(0));

• u(t) > 0 for every t ∈ [0, T ] if B(u) = (u′(T )− u(0), u′(0)− u(0)).

Proof. (i) Suppose there is a solution u(t) of (36) and t̂ ∈ [0, T ] such that
u(t̂) < 0. Let (t1, t2) ⊆ (0, T ) be the maximal open interval containing t̂
such that u(t) < 0 for all t ∈ (t1, t2). We will analyse four cases, namely:

(a) 0 < t1 < t2 < T :
By hypothesis, u′′(t) = −h(t, u(t)) < 0 for almost every t ∈ (t1, t2).
This means that u(t) is a concave function on [t1, t2]. Moreover,
u(t1) = u(t2) = 0. Therefore, we have u(t) ≥ 0 for all t ∈ (t1, t2),
which contradicts the assumption that u(t̂) < 0. Thus, this case is
not possible.

(b) t1 = 0 and t2 = T :
By hypothesis, we know that u′′(t) = −h(t, u(t)) < 0 for almost
every t ∈ [0, T ]. This guarantees that u′(t) is strictly decreasing in
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[0, T ]. Thus, we have u′(T ) < u′(0) which contradicts the bound-
ary conditions in the cases B(u) = (u′(T )− u(0), u′(0)− u(0)) and
B(u) = (u′(T )− u′(0), u(0)).

For the case where B(u) = (u(T )− u(0), u′(0)), we use the facts that
u′(t) is strictly decreasing in [0, T ] and that u′(0) = 0 to conclude
that u′(t) < 0 for all t ∈ (0, T ]. Therefore, u(t) is decreasing in
[0, T ] implying that u(T ) < u(0), which contradicts the boundary
condition. Hence, this case is also not possible.

(c) t1 = 0 and t2 < T :

By hypothesis, we know that u′′(t) = −h(t, u(t)) < 0 for almost all
t ∈ [0, t2]. Therefore,

0 >

∫ t2

0

u′′(t)dt = u′(t2)− u′(0). (37)

Thus, we have u′(t2) < u′(0). When the boundary condition is
B(u) = (u′(T )− u(0), u′(0)− u(0)), we have u′(t2) < u′(0) = u(0) ≤
0. This is a contradiction since u′(t2) ≥ 0. In the case where
the boundary condition is B(u) = (u(T )− u(0), u′(0)), we have
u′(t2) < u′(0) = 0, again contradicting the fact that u′(t2) ≥ 0.
We still need to look at the condition B(u) = (u′(T )− u′(0), u(0)).
But in this case, u(0) = u(t2) = 0, which can be solved with the
same argument used in case (a).

(d) 0 < t1 and t2 = T :

We start with the condition B(u) = (u(T )− u(0), u′(0))). Note
that u(T ) ≤ 0. The possibility u(T ) = 0 can be excluded by the
same strategy used in part (a). Now, if u(T ) is negative, by the
boundary condition, u(0) is also negative. Suppose t2 = sup{t :
u is negative in [0, t)} and use the same argument as in part (c) for
the interval [0, t2].

We move to the condition B(u) = (u′(T )− u′(0), u(0)). Note that
u(t1) ≤ 0. First, assume that u′(T ) ≥ 0. Since u′′(t) = −h(t, u(t)) <
0 for almost every t ∈ [0, t2], it follows that

0 >

∫ T

t1

u′′(t)dt = u′(T )− u′(t1), (38)

which implies u′(t1) > u′(T ) ≥ 0. This leads to a contradiction. If
u′(T ) is negative, then by the boundary condition, we have u(0) = 0
and u′(0) < 0. Therefore, there is s ∈ (0, T ) such that u(t) < 0 in
(0, s). Suppose

s = sup {s : u(t) é negativa em (0, s)} .
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Note that s ≤ t1 < T , so we go back to case (c).

Finally, let us consider the case B(u) = (u′(T )− u(0), u′(0)− u(0))).
Assuming u′(T ) ≥ 0 and using (38) we conclude that u′(t1) >
u′(T ) ≥ 0, which leads to a contradiction. Now, if u′(T ) < 0,
then by the boundary condition, we have u′(T ) = u′(0) = u(0) < 0.
Therefore, there exists s ∈ (0, T ) such that u(t) < 0 in (0, s). Sup-
pose

s = sup {s : u(t) is negative in ]0, s[} .

Note that s ≤ t1 < T , so we go back to case (c).

(ii) By contradiction, suppose that there exists a solution u(t) ≥ 0 of (36)
and t∗ ∈ [0, T ] such that u(t∗) = 0. It is clear that if t∗ ∈ (0, T ), then
u′(t∗) = 0. Let us examine what happens to u′(t∗) in the cases t∗ = 0 or
t∗ = T for each boundary condition:

• B(u) = (u′(T )− u′(0), u(0)): In this case, we cannot make any as-
sertions about t∗ = 0. But if t∗ = T , since u′(0) = u′(T ), u(T ) = 0
and u(t) ≥ 0 in [0, T ], we conclude that u′(T ) = 0.

• B(u) = (u(T )− u(0), u′(0)): Here, u′(0) = 0. Therefore, we know
what happens when t∗ = 0. But we cannot make any assertions for
t∗ = T .

• B(u) = (u′(T )−u(0), u′(0)−u(0)): Assuming t∗ = 0, by the bound-
ary conditions, we have u′(0) = u(0) = 0. Setting t∗ = T , then
u(T ) = 0. Since u(t) ≥ 0 for all t ∈ [0, T ], we have u′(T ) ≤ 0.
By the boundary condition, u(0) = u′(T ) ≤ 0. But u(t) ≥ 0 in
t ∈ [0, T ], so u(0) = 0, i.e., u′(T ) = 0.

Now we will prove the following claim:

Claim 6.1. There exist ε > 0 such that u(t) = 0 for all x ∈ [t∗ − ε, t∗ + ε].

From the hypothesis, we know that there is δ > 0 such that

|h(t, s)| ≤ q1(t)s, for almost every t ∈ [0, T ], for all s ∈ [0, δ],

where q1(t) := q(t) + 1. Using the continuity of u(t), we fix ε > 0 such that
0 ≤ u(t) ≤ δ, for all t ∈ [t∗ − ε, t∗ + ε]. We will use ∥(ξ1, ξ2)∥ = |ξ1| + |ξ2| as
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the norm for R2. For all t ∈ (t∗, t∗ + ε] we have

0 ≤ ∥(u(t), u′(t))∥ = |u(t)|+ |u′(t)|

= u(t∗) +

∫ t

t∗
u′(ξ)dξ +

∣∣∣∣u′(t∗) + ∫ t

t∗
−h(ξ, u(ξ))dξ

∣∣∣∣
≤

∫ t

t∗
|u′(ξ)|dξ +

∫ t

t∗
|h(ξ, u(ξ))|dξ

≤
∫ t

t∗
[q1(ξ)|u(ξ)|+ |u′(ξ)|] dξ

≤
∫ t

t∗
(q1(ξ) + 1)(|u(ξ)|+ |u′(ξ)|)dξ.

Using the Gronwall inequality, we obtain

0 ≤ u(t) ≤ ∥(u(t), u′(t))∥ = 0, ∀t ∈ (t∗, t∗ + ε].

With a similar calculation, we can prove u(t) = 0 for all t ∈ [t∗ − ε, t∗). Thus,
the assertion is proved.

Finally, we need to show that Claim 6.1 leads to a contradiction. We will
see this in the following claim:

Claim 6.2. The Claim 6.1 implies that u ≡ 0 in [0, T ], which is a contradiction.
Indeed, suppose t∗ ∈ (0, T ). Fix ε > 0 such that J := [t∗ − ε, t∗ + ε] ⊆ (0, T ) e
u ≡ 0 in J . Consider E = {t ∈ [0, T ] : u ≡ 0 in [t∗, t] or u ≡ 0 in [t, t∗]}. We
want to show that E = [0, T ]. If E ⊊ [0, T ], then supE < T or inf E > 0. Let
b = supE and assume b < T . I claim that b ∈ E. In fact, since b = supE,
there is a sequence (tn)n ⊂ E with tn → b. As u is continuous, lim

n→∞
u(tn) =

u(b) = 0, since u(tn) = 0 for all n. Note that b ∈ E, otherwise there would
exist y ∈ (t∗, b) with u(y) ̸= 0. However, as tn → b, there is n such that tn > y,
which is absurd, since u ≡ 0 in [t∗, tn]. Now we know that b ∈ (t∗, T ). By
Claim 6.1, there exists ε > 0 such that u is zero in [b − ε, b + ε]. But then
[t∗, b+ ε] ⊆ E, which is absurd, since b = supE. Hence b = T .

The second result of this section provides a priori bounds for non-negative
solutions on the intervals where h(t, s) is non-negative. The proof of this re-
sult can be found in [4, Lemma 6.2]. It is worth noting that in the proof, the
boundary conditions are not used, hence this is a result that holds indepen-
dently of the boundary condition considered. This lemma is used for verifying
hypothesis (H2) in Theorem 5.1.
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Lemma 6.2. Let h : [0, T ] × R → R be a L1-Carathéodory function. Suppose
there exists a closed interval J ⊆ [0, T ] such that

h(t, s) ≥ 0, a.e. t ∈ J, ∀s ≥ 0;

and there is a measurable function q∞ ∈ L1 (J,R+) with q∞ ̸≡ 0, such that

lim inf
s→+∞

h(t, s)

s
≥ q∞(t), uniformly a.e. t ∈ J.

Let µJ be the first positive eigenvalue of the eigenvalue problem

φ′′ + λq∞(t)φ = 0, φ|∂J = 0,

and suppose that µJ < 1. Then there exists RJ > 0 such that for each
Carathéodory function k : [0, T ]× R+ → R with

k(t, s) ≥ h(t, s), a.e. t ∈ J, ∀s ≥ 0,

every solution u(t) ≥ 0 of the boundary value problem

u′′ + k(t, u) = 0, B (u) = (0, 0),

satisfies maxt∈J u(t) < RJ .
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