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Abstract. We have proposed in [7], a new projection or extragradient
method to solve many variational inequalities problem classes. The cor-
responding algorithm is established under continuity and pseudomono-
tonicity of the underlining mapping. The numerical implementation
results express its remarkable efficiency. In this paper, we extend the
application of this algorithm to the class of nonlinear constraints. The
main idea is to linearize the constraints in the neighbourhood of each
iterate, then we calculate the necessary projections. It is important to
point out that most of the theoretical results already obtained in our
previous work will be modified and justified according to the class of
problems studied in this paper. The global convergence is proven under
weak hypothesis. The numerical results are very encouraging and show
that the method is also very efficient to solve this class of problems.
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1. Introduction

Let C be a nonempty closed and convex set in Rn and F a continuous mapping
from Rn to itself. The classical variational inequalities problem abbreviated
V IP (F,C) or simply (V IP ) is to find a point x ∈ C such that

⟨F (x), x− x⟩ ≥ 0, for all x ∈ C, (1)

where ⟨ · , · ⟩ denotes the usual inner product in Rn.
Without loss of generality, we assume that C = {x ∈ Rn : gi(x) ≤ 0, i =

1, . . . ,m}, where gi : Rn → R, (i = 1, . . . ,m) are continuously differentiable
convex functions.

Throughout this paper, we denote by S the solutions set of V IP (F,C).

In these last decades, the general variational inequalities problem, especially
the class with nonlinear constraints, has become a very useful subject in many



(2 of 20) H. GRAR AND Z. KEBAILI

areas of mathematical programming. This development includes a rich theory,
a variety of efficient resolution algorithms and lot of important applications in
engineering, economy, transportation, signal processing, structural analysis...
Interested reader may refer to the survey paper of Harker and Pang [8] and the
paper of Ferris and Pang [2]. Many researchers have studied various numerical
methods. The most popular ones are the projection methods which are mainly
based on the reformulation of V IP (F,C) as fixed point problem.

The first proposed projection methods suffered from significant theoretical
and algorithmic difficulties [9, 11]. Later, several studies were completed, in
particular [10, 15, 17] in order to overcome these difficulties. Consequently,
many developments were brought to improve the algorithmic behavior of this
type of methods. The principal achievement in this framework was to reduce
to only two the number of projections onto C to be calculate at each iteration.

In the same spirit as the previous cited algorithms and under the same
convergence assumptions (continuity and the pseudomonotonicity of F ), we
have proposed in [7] an algorithm with a new step size satisfying a certain
condition. This last one ensures a faster convergence towards a solution. Our
preliminary and comparative computational experience using this algorithm for
many classes of V IP (F,C) was very encouraging. This is particularly true for
the class of linear constraints which is considered to be more difficult than the
other cases of C. This is clear in examples as nonnegative orthant and boxes
where the projection is given by an explicit expression. In this paper, we extend
the applicability of the algorithm introduced in [7] to another class of (V IP )
where we consider the constraints to be nonlinear. The problem that arises in
this case is how to compute the projection onto the constraints set? We know
that if C is given by nonlinear constraints, the expression of the projection
is given explicitly only in the case of spheres. To overcome this numerical
obstacle, we propose to approximate C at each iteration in the neighbourhood
of xk by the set of the linearized constraints at this point. Using this well-known
mathematical programming technique, we can transform the computation of
the projection onto the nonlinear constraints to their computation onto the
linear ones; the case where our algorithm has proven its efficiency. The principal
idea to establish the convergence for this type of algorithms is to construct a
hyper-plane Hk of normal F (yk) passing through yk and separating strictly
xk and the solutions set. This hyper-plane is defined by Hk = {x ∈ Rn :
⟨F (yk), x − yk⟩ = 0}. The computation of yk depends essentially on the first
step size αk which is determined in turn by a line search step of Armijo type
ensuring the separation condition. The next iterate xk+1 is then, the projection
of the vector xk −λkF (yk) onto C where the second step size λk is determined
according to chosen algorithm. If we denote by Dk = {x ∈ Rn : ⟨F (yk), x −
yk⟩ ≤ 0}, the half-space containing the solutions set S and whose boundary
is Hk, we remark that in all algorithms cited above, the iterate xk+1 belongs



PROJECTION METHOD FOR VIP (3 of 20)

to the complement of Dk. Peculiarly, in the best case which coincides with
Solodov’s algorithm, this iterate is on the boundary Hk. To be closer to the
set S, we have proposed in [7] to introduce a condition that xk+1 must belong
to Dk. This modification allowed us to establish a new version of projection
algorithm with faster convergence compared to the ones of the same family. In
this study, we are able to demonstrate that this algorithm which can be applied
to any class of V IP (F,C), converges under a condition that is weaker than the
pseudomonotonicity as we will see later.

The rest of this paper is structured as follows. In Section 2, we summarize
some basic notions and properties that are necessary in this work. In Section
3, we give a detailed presentation of the proposed algorithm, and we prove the
global convergence results under weak assumptions on the mapping F . Fur-
thermore, to test the efficiency of this new algorithm on the class of V IP (F,C)
with nonlinear constraints, we have carried out its implementation on many
examples in Section 4. The results reported in this part are very promising.
The last section draws an overall conclusion.

2. Preliminaries

ProjC : Rn −→ C, is the orthogonal projection mapping onto C, where
ProjC (x) = argmin {∥y − x∥ /y ∈ C}. We give some properties and results
for projection mapping in the lemmas below.

Lemma 2.1 ([16]). Let D be a nonempty closed and convex subset in Rn. Then,
for any x, y ∈ Rn and z ∈ D, the following statements hold

1. ⟨ProjD (x)− x, z − ProjD (x)⟩ ≥ 0.

2. ∥ProjD (x)− z∥2 ≤ ∥x− z∥2 − ∥ProjD (x)− x∥2 .

Lemma 2.2 ([1, 3]). Let D be a nonempty closed and convex subset in Rn.

1. For x, d ∈ Rn, and λ ≥ 0, we define x (λ) = ProjD (x− λd) ,

then ⟨d, x− x (λ)⟩ is nondecreasing for λ ≥ 0.

2. For x ∈ D, d ∈ Rn, and λ > 0, we define

ψ (λ) = min
{
∥y − x+ λd∥2 / y ∈ D

}
,

then
ψ′ (λ) = 2 ⟨d, x (λ)− x+ λd⟩ .

It’s well-known that

x ∈ S if and only if − F (x) ∈ NC(x) . (2)
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We use NC(x) to denote the normal cone to C at x. We have also,

x ∈ S if and only if x = ProjC (x− βF (x)) ,∀β > 0 . (3)

The purpose of the following proposition is to show how we can transform the
nonlinear constraints C to linear ones. This is done by linearizing them locally
in the neighbourhood of the point x ∈ C.

Proposition 2.3. Given any point x ∈ Rn, we define the following polyhedral
closed convex set

C(x) = {y ∈ Rn : gi(x) + ⟨∇gi(x), y − x⟩ ≤ 0, i = 1, . . . ,m}. (4)

Suppose that the Abadie’s constraints qualification holds at x ∈ C, then the
tangent cone to C at x, denoted by TC(x) can be written as

TC(x) = {v ∈ Rn : ⟨∇gi(x), v⟩ ≤ 0, i ∈ I(x)} , (5)

where I(x) is the set of the active constraints gi at x.
Then, we have

1. C ⊂ C(x).

2. x ∈ C(x) if and only if x ∈ C.

3. Furthermore, we have TC(x) = TC(x)(x).

We recall that Abadie’s constraints qualification holds at a feasible point x if

TC(x) = LC(x),

where LC(x) represents the linearized cone of C at x. Since the tangent cone
is difficult to handle, we replace it with the linearized cone which is easier to
use.

Proof. 1. We just use the definition of convexity of the functions gi expressed
by their gradients.

2. For the first implication, we have x ∈ C(x), this means gi(x)+⟨∇gi(x), x−
x⟩ ≤ 0, i = 1, . . . ,m, we get x ∈ C.

The second implication follows from 1, in the particular case where x ∈ C.

3. It is not difficult to check this result. Indeed, we have C(x) = {y ∈ Rn :
hi(y) = gi(x) + ⟨∇gi(x), y − x⟩ ≤ 0, i = 1, . . . ,m}. Suppose that the
constraints qualification holds at y ∈ C(x), then TC(x)(y) = {v ∈ Rn :
⟨∇hi(y), v⟩ ≤ 0, i ∈ J(y)}, where J(y) is the set of the active constraints
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hi at y. Thus we get, TC(x)(y) = {v ∈ Rn : ⟨∇gi(x), v⟩ ≤ 0, i ∈ J(y)}.
(Because, when we calculate the gradient of ∇hi with respect to y, we
find ∇hi(y) = ∇gi(x)). In the particular case where y = x ∈ C(x),
TC(x)(x) = {v ∈ Rn : ⟨∇gi(x), v⟩ ≤ 0, i ∈ J(x)}, and we have hi(x) =
gi(x), then J(x) = I(x). Consequently, the active constraints in the two
sets C and C(x) at x are the same and at last we obtain the wanted
result.

Now, we state the assumptions which are necessary for our method.

(A1) S is nonempty.

(A2) For all x ∈ S, y ∈ Rn, we have ⟨F (y), y − x⟩ ≥ 0.

Remark 2.4. If the mapping F is pseudomonotone on Rn i.e.,

⟨F (x) , y − x⟩ ≥ 0 ⇒ ⟨F (y) , y − x⟩ ≥ 0, for all x, y ∈ Rn.

If this property holds, then for any x ∈ S ⊂ Rn, we have

⟨F (y), y − x⟩ ≥ 0, for all y ∈ Rn.

In our case, the assumption (A2), is weaker than the condition of the pseu-
domonotonicity of F on Rn.

3. Algorithm and its convergence

In this part, we will present our algorithm for solving V IP (F,C) with nonlinear
constraints. For x ∈ C and β > 0, the projection residual function is defined
as follows

r (x, β) = x− ProjC(x) (x− βF (x)) , β > 0.

It’s clear that the algorithm terminates at a point x if this last one coincides
with zeros of the function r

r (x, β) = 0, ∀β > 0 . (8)

Also, it is easy to see that (8) holds if and only if

−F (x) ∈ NC(x)(x) . (9)

We denote by NC(x)(x) is the normal cone to the set C(x) at the point x.
The following proposition relates (8) to the problem (1), and shows that the
algorithm terminates if and only if it finds a solution to this problem.
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Algorithm 1 New projection algorithm

Require: x0 ∈ Rn, σ, γ ∈ (0, 1) , β > 0 and let ϵ be a given tolerance.
1: k = 0, compute zk = ProjC(xk)

(
xk − βF

(
xk

))
.

2: while
∥∥r (xk, β) = xk − zk

∥∥ > ϵ do
3: yk = (1− αk)x

k + αkz
k,

4: where αk = γj with j being the smallest nonnegative integer satisfying〈
F (xk − γjr(xk, β)), r(xk, β)

〉
≥ (σ/β)

∥∥r(xk, β)∥∥2 (6)

5: Let xk+1 = ProjC(xk)

(
xk − λkF

(
yk

))
, where λk must satisfy〈

F
(
yk

)
,ProjC(xk)

(
xk − λkF

(
yk

))
− yk

〉
≤ 0 (7)

6: k = k + 1.
7: end while

Proposition 3.1. If x belongs to S and constraints qualification holds at this
point, then (8) holds for any β > 0.

Conversely, if a point x ∈ Rn satisfies (8), then it is a solution for the
problem (1).

Proof. First, we suppose that x is a solution for (1) at which constraints qual-
ification holds. Using the first result or the second one of Proposition 1, x ∈ C
implies that x ∈ C(x). From the third result of the same proposition, we have
TC(x) = TC(x)(x), so it follows that NC(x) = NC(x)(x). Since x solves (1), the
vector −F (x) ∈ NC(x), then it belongs also to NC(x)(x). Then, x satisfies (9)
and consequently (8).

For the converse direction, we suppose that x satisfies (8). This implies
that x belongs to C(x) since it is a projection onto C(x), and from (9) we have
−F (x) ∈ NC(x)(x). The fact that x ∈ C(x) implies that x ∈ C. Also, the fact
that C(x) contains C implies that NC(x) contains NC(x)(x), thus −F (x) ∈
NC(x). Finally, from (2) we get x ∈ S.

Next, we show that the line search step in Algorithm 1 is well-defined.

Lemma 3.2. If xk is not a solution of problem (1), then there exists a smallest
nonnegative integer j satisfying the line search step (7).

Proof. Assume that for some k, the line search step (7) is not satisfied for any
nonnegative integer j, i.e., that〈

F (xk − γjr(xk, β)), r(xk, β)
〉
< (σ/β)

∥∥r(xk, β)∥∥2 . (10)
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Combining the fact that F is continuous and taking the limit in (10) as j goes
to ∞, so since γ ∈ (0, 1), we get〈

F (xk), r(xk, β)
〉
≤ (σ/β)

∥∥r(xk, β)∥∥2 . (11)

On the other hand, using the first result of Lemma 2.1, we obtain〈
PC

(
xk − βF (xk)

)
−
(
xk − βF (xk)

)
, xk − PC

(
xk − βF (xk)

)〉
≥ 0,

which implies

β
〈
tk, r

(
xk, β

)〉
≥

∥∥r (xk, β)∥∥2 . (12)

From (11) and (12), we get that

(1/β)
∥∥r (xk, β)∥∥2 ≤

〈
F (xk), r

(
xk, β

)〉
≤ (σ/β)

∥∥r (xk, β)∥∥2 ,
then,

(1/β)(1− σ)
∥∥r (xk, β)∥∥2 ≤ 0.

We get a contradiction because β > 0, 0 < σ < 1 and
∥∥r (xk, β, tk)∥∥ > 0.

In the lemma below, we will ensure that the hyper-plane Hk separates
effectively the iterate xk from the set S.

Lemma 3.3. Assume that F satisfies (A2) on C and
{
xk

}
be a sequence gener-

ated by Algorithm 1. If Dk =
{
x ∈ Rn :

〈
F (yk), x− yk

〉
≤ 0

}
is the half-space

whose boundary is Hk, then S ⊂ Dk and xk /∈ Dk.

Proof. From the expression of yk and the line search step used in Algorithm 1,
we have

⟨F (yk), xk − zk⟩ = ⟨F (xk − γjr(xk, β)), r(xk, β)⟩ ≥ σ∥r(xk, β)∥2 > 0

(because xk isn’t a solution for V IP (F,C)) ,

⟨F (yk), αkx
k − αkz

k⟩ > 0 ,

⟨F (yk), xk − ((1− αk)x
k + αkz

k)⟩ > 0 ,

⟨F (yk), xk − yk⟩ > 0.

On the other hand, the second part of this separation follows directly from (A2).

In what follows, we will give the theoretical analysis of the convergence of
this algorithm under the assumptions (A1) and (A2).

In this algorithm, if
∥∥r (xk, β)∥∥ = 0, then xk is a solution of V IP (F,C) .

Otherwise, for any x ∈ S, and according to the iterative scheme of Algo-
rithm 1, we have
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∥∥xk+1 − x
∥∥2 =

∥∥∥ProjC(xk)

(
xk − λkF

(
yk

))
− x

∥∥∥2
≤

∥∥xk − x− λkF
(
yk

)∥∥2 − ∥∥xk − xk+1 − λkF
(
yk

)∥∥2
≤

∥∥xk − x
∥∥2 + λ2k

∥∥F (
yk

)∥∥2 − 2λk
〈
F
(
yk

)
, xk − yk

〉
−
∥∥xk − xk+1 − λkF

(
yk

)∥∥2 ,
where the first inequality follows from the second result of Lemma 2.1, and for
the second inequality we use the assumption (A2).

We apply the same idea used in [7], but we will apply it locally on the
linearized constraints on the neighbourhood of the iterate xk. We replace at
each iteration, the projection region C by the set C(xk).

For any λ ≥ 0, we define

xk+1 = x (λ) = ProjC(xk)

(
xk − λF

(
yk

))
,

and the function

ϕk (λ) = 2λ
〈
F
(
yk

)
, xk−yk

〉
+

∥∥xk−xk (λ)−λF (
yk

)∥∥2−λ2 ∥∥F (
yk

)∥∥2 , (13)

where its derivative is

ϕ′k (λ) = 2
〈
F
(
yk

)
, xk (λ)− yk

〉
. (14)

Using the second result of Lemma 2.2, we can find easily the expression of ϕ′k.

We denote by λk2 the step size associated to the Isuem’s algorithm [10],
given as follows

λk2 =
⟨F (yk), xk − yk⟩

∥F (yk)∥2
,

and λk1 the step size associated to the Solodov’s algorithm [15], where it is
proven in [17] that

xk+1 = ProjC
(
xk − λk1F

(
yk

))
= ProjC∩Hk

(
xk − λk2F

(
xk

))
,

and we have that λk1 > λk2.
Also from [17], we recall that ϕk is a positive function for all values λ ∈

[0, λk1] . We can see the same thing for the function ϕ′k i.e.,

ϕ
′

k (λ) = 2
〈
F
(
yk

)
, xk (λ)− yk

〉
≥ 0, for λ ∈ [0, λk1] , (15)

and the function ϕk reaches its maximum on [0, λk1] at λk1.
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Then, for ϕ′k, we have

ϕ′k (λk1) = 2
〈
F
(
yk

)
, xk (λk1)− yk

〉
= 0,

and we get 〈
F
(
yk

)
, xk (λk1)− yk

〉
= 0 . (16)

Geometrically, we see that the iterate xk+1 computed by the algorithm of
Solodov is xk+1 = ProjC(xk)

(
xk − λk1F

(
yk

))
= x (λk1) is on the boundary

of Dk (belongs to Hk).
For our new algorithm, the step size must satisfy the following inequality〈

F
(
yk

)
,ProjC(xk)

(
xk − λkF

(
yk

))
− yk

〉
≤ 0 . (17)

This condition ensures the properties below:
The iterate xk+1 computed by Algorithm 1 given by

xk+1 = ProjC(xk)

(
xk − λkF

(
yk

))
= x (λk)

belongs to Dk and

ϕ′k (λk) = 2
〈
F
(
yk

)
, x (λk)− yk

〉
≤ 0.

Consequently, the step size λk > λk1, (λk /∈ [0, λk1]) since the function ϕ′k
is positive on [0, λk1].

To clarify the last characterization of λk, we give the proposition below
to show that the algorithm corresponding to this step size guarantees a large
decrease of the generated sequence towards the solutions set.

Proposition 3.4. Let xk (λk1) and x
k (λk) be the following iterates correspond-

ing to the iteration (k+1) computed by the Solodov’s algorithm [15] and Algo-
rithm 1, respectively. Then, we have

1.
∥∥xk − xk (λk)

∥∥2 − ∥∥xk − xk (λk1)
∥∥2 ≥ 0.

2. Furthermore, if∥∥xk − xk(λk)
∥∥2 − ∥∥xk − xk (λk1)

∥∥2 ≥ 2λk
〈
F (yk), yk − xk(λk)

〉
,

then ϕk (λk) ≥ ϕk (λk1) .

Proof. In this paper, we are able to prove the first point of this proposition
without needing the condition given in the second one as in the reference [7].
Indeed, we have
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∥xk − xk(λk)∥2 = ∥xk − xk(λk)− xk(λk1) + xk(λk1)∥2

= ∥xk − xk(λk1)∥2 + ∥xk(λk)− xk(λk1)∥2

− 2⟨xk − xk(λk1), x
k(λk)− xk(λk1)⟩

= ∥xk − xk(λk1)∥2 + ∥xk(λk)− xk(λk1)∥2

− 2⟨xk−λk1F (yk)+λk1F (yk)−xk(λk1), xk(λk)−xk(λk1)⟩
= ∥xk − xk(λk1)∥2 + ∥xk(λk)− xk(λk1)∥2

+ 2⟨xk(λk1)− (xk − λk1F (y
k)), xk(λk)− xk(λk1)⟩

+ 2λk1⟨F (yk), yk − xk(λk)⟩+ 2λk1⟨F (yk), xk(λk1)− yk⟩
≥ ∥xk − xk(λk1)∥2.

We get directly the last inequality using the first result of Lemma 2.1 and the
two inequalities (16), (17) satisfied by the step sizes λk1, λk respectively.

For the second point, we use the definition of the function ϕk

ϕk (λk)− ϕk (λk1) = 2λk
〈
F
(
yk

)
, xk − yk

〉
+
∥∥xk − xk (λk)− λkF

(
yk

)∥∥2
− λ2k

∥∥F (
yk

)∥∥2 − 2λk1
〈
F
(
yk

)
, xk − yk

〉
−
∥∥xk − xk (λk1)− λk1F

(
yk

)∥∥2 + λ2k1
∥∥F (

yk
)∥∥2

= 2λk
〈
F
(
yk

)
, xk − yk

〉
+
∥∥xk − xk (λk)

∥∥2
+ λ2k

∥∥F (
yk

)∥∥2 − 2λk
〈
F
(
yk

)
, xk − xk (λk)

〉
− λ2k

∥∥F (
yk

)∥∥2 − 2λk1
〈
F
(
yk

)
, xk − yk

〉
−
∥∥xk − xk (λk3)

∥∥2 − λ2k1
∥∥F (

yk
)∥∥2

+ 2λk1
〈
F
(
yk

)
, xk − xk (λk1)

〉
+ λ2k1

∥∥F (
yk

)∥∥2
=

∥∥xk − xk (λk)
∥∥2 − ∥∥xk − xk (λk1)

∥∥2
− 2λk

〈
F
(
yk

)
, yk − xk (λk)

〉
− 2λk1

〈
F
(
yk

)
, xk (λk1)− yk

〉
.

Using the given condition in second point and the inequality (16), we obtain
the desired result.

Now, let us give the proposition and the theorem establishing the conver-
gence of Algorithm 1.

Proposition 3.5. Let
{
xk

}
be the sequence generated by Algorithm 1 and sup-

pose that the assumptions (A1)and (A2) are satisfied, then
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1. The sequence
{
xk

}
is bounded.

2. lim
k→∞

〈
F
(
yk

)
, xk − yk

〉
= 0.

3. If a cluster point of the sequence
{
xk

}
belongs to S, then

{
xk

}
converges

to a solution in S.

Proof. Let be λk2 the step size used in the algorithm of Iusem [9], we con-
sider here that the projection is computed on the set C(xk) at each itera-
tion. From Proposition 3.4, we have ϕk (λk) ≥ ϕk (λk1) and consequently
ϕk (λk) ≥ ϕk (λk2). This is because the function ϕk reaches its maximum on
[0, λk1] at λk1 and we have λk2 ∈ ]0, λk1].

1. Furthermore, for all x ∈ S we have from what precedes the following
inequality∥∥xk+1 − x

∥∥2 ≤
∥∥xk − x

∥∥2 − ϕk(λk)

≤
∥∥xk − x

∥∥2 − ϕk(λk2)

=
∥∥xk − x

∥∥2 + λ2k2
∥∥F (yk)∥∥2 − 2λk2

〈
F (yk), xk − yk

〉
−
∥∥xk − xk (λk2)− λk2F (y

k)
∥∥2

=
∥∥xk − x

∥∥2 + 〈
F (yk), xk − yk

〉2
∥F (yk)∥2

− 2

〈
F (yk), xk − yk

〉2
∥F (yk)∥2

−
∥∥xk − xk (λk2)− λk2F (y

k)
∥∥2

=
∥∥xk − x

∥∥2 − λ2k2
∥∥F (yk)∥∥2 − ∥∥xk − xk (λk2)− λk2F (y

k)
∥∥2

≤
∥∥xk − x

∥∥2 − λ2k2
∥∥F (yk)∥∥2 .

It’s obvious that the sequence
{∥∥xk − x

∥∥2} is nonincreasing. In addition, it

is positive, then it converges and correspondingly
{
xk

}
is bounded.

2. Using the first point, we deduce that the sequence
{
λ2k2

∥∥F (
yk

)∥∥2}
converges to 0, when k → ∞.

It yields

lim
k→∞

〈
F
(
yk

)
, xk − yk

〉
∥F (yk)∥

= lim
k→∞

λk2
∥∥F (

yk
)∥∥ = 0.

Since
{
xk

}
is bounded, the same for

{
yk

}
and F is a continuous mapping, then

the sequence {F (yk)} is also bounded.
Using the boundedness of {F (yk)}, we obtain lim

k→∞

〈
F
(
yk

)
, xk − yk

〉
= 0.
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3. Let x a cluster point of the sequence
{
xk

}
belonging to S and

{
xik

}
a

subsequence
{
xk

}
such that lim

k→∞
xik = x, then lim

k→∞

∥∥xik − x
∥∥ = 0.

On the other hand, we have x ∈ S and the whole sequence
{∥∥xk − x

∥∥}
converges to some limit from the first point, but since one of its subsequences
converges to 0, we then get lim

k→∞

∥∥xk − x
∥∥ = 0, i.e., lim

k→∞
xk = x.

Theorem 3.6. Suppose that F is a continuous mapping and the assumptions
(A1) and (A2) are satisfied. Then, the sequence generated by Algorithm 1
converges to a solution of V IP (F,C).

Proof. The parameter β in Algorithm 1 is taken strictly positive and not only
in ]0, 1] as in [7]. Numerically, this suggestion allows us to have a large interval
for the values of this parameter in order to improve the results obtained by
Algorithm 1. The steps of the convergence’s proof remain the same as in [7],
however, at each iteration we must change the projection onto the set C by the
projection onto the set C(xk).

Remark 3.7. We notice that we are not sure that the sequence {xk} is entirely
contained in C in fact its terms xk are computed as projection onto C(xk−1),
however the solution x is certainly in C from (8) and the second point of
Proposition 2.3. The same holds for the sequence {yk}, which is not entirely
contained in C, because its terms are computed as a combination of xk ∈
C(xk−1) and zk ∈ C(xk). For this reason, in assumption (A2), we have taken
y ∈ Rn.

3.1. Determination of the iterate xk+1

As proposed in [7], xk+1 can be calculated as a convex combination of xk(λk1) ∈
C(xk) and zk ∈ C(xk),

xk+1 = θxk(λk1) + (1− θ)zk, (θ ∈ [0, 1]).

From this form, we see that xk+1 belongs to C(xk) and satisfies the condition
(17), indeed we have at first

⟨F (yk), zk − yk⟩ = (1− αk)⟨F (yk), zk − xk⟩
≤ −(1− αk)σ∥r(xk, β)∥ .

Thus, we get

⟨F (yk), zk − yk⟩ < 0 . (18)
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We obtain,

⟨F (yk), θxk(λk1) + (1− θ)zk − yk⟩
= ⟨F (yk), θxk(λk1) + (1− θ)zk − (θ + (1− θ))yk⟩
= θ⟨F (yk), xk(λk1)− yk⟩+ (1− θ)⟨F (yk), zk − yk⟩ ≤ 0.

The last equality follows from (18) and the fact that λk1 satisfies (16).

We note that Solodov’s iterate can be obtained as a particular case of our
iteration, when θ = 1.

4. Computational experience

In this section, we provide some numerical results of Algorithm 1 denoted as
Alg1 and tested on a set of problems described below. All codes are written
in Matlab 2015 and run on a personal computer (with the following charac-
teristics: Windows 11 professional, Intel(R) Core (TM)i7-9850CPU @2.60GHz
and RAM 16,0 Go). For the Alg1, we choose γ = 0.9, σ = 0.9, we use also
∥r(xk, β)∥ ≤ 10−6 as the stopping criteria for all our numerical tests. To eval-
uate the effectiveness of the proposed method, a comparative numerical study
was carried out with the method presented in [6]. This method is introduced
by Ge & al. where its principle is to reformulate the variational inequality
problem as a parameterized smooth system of equations based on Fischer-
Burmeister function. The corresponding linear system is approximately solved
at each iteration by an inexact Newton-GMRES method which aims to reduce
the computational cost. The authors have been able to establish the global and
local quadratic convergence of their algorithm under some mild conditions.

For their associated algorithm denoted as Alg2, we choose µ = 0.2, γ =
0.001, and we denote also by Iter, the number of iterations, T , the computation
time.

It is not easy to find proper test examples for the variational inequalities
with nonlinear constraints. Hence, we applied our algorithm on some modified
test examples available in the literature.

To better understand the inexact Newton method which includes GMRES
(Generalized Minimal Residual method), used in particular to solve large-scale
problems, let us first recall Newton’s method.

Consider the following system of equations

F (x) = 0 .

The iterative scheme of Newton’s method, is given by

▽F (xk)△k
x +F (xk) = 0 and xk+1 = xk +△k

x.
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where ▽F (xk) is the jacobian matrix at the iterate xk.
The basic idea of the inexact Newton-GMRES method is the same as for the

classical one, the only difference is when solving the linear system, the vector
of Newton’s direction △k

x is an approximation of the solution of this system
under some conditions. The accuracy level of this approximation is controlled
by the so called forcing term which links the norm of residual vector to the
norm of the mapping F at the current iteration. Since the inexact direction
△k

x of the combined method is still a descent direction, a sufficient reduction
of the merit function can be always guaranteed.

Example 4.1 ([14]). Let F : R2 −→ R2

F (x) =

(
3x1 + 4x2 + 5
2x1 + 5x2 − 4

)
,

and let the set C be

C =

 x21 + 4x22 ≤ 4
x ∈ R4 : 2x21 + x22 ≤ 6

2x1 + x2 ≥ −1

 .

The solution of this problem is x = (−0.9412, 0.8824).

Alg1 Alg2
x0 Iter T Iter T
(0, 0) 2 0.0131 36 0.0056
(1, 1) 3 0.0148 40 0.0075
(−1,−1) 4 0.0355 41 0.0080
(10, 10) 4 0.0234 47 0.0092
(100, 100) 9 0.0633 1471 0.2475

Table 1: Numerical results for Example 4.1 with Alg1 and Alg2 with different
initial points.

Example 4.2 ([5]). The mapping F : R3 −→ R3 is as follows

F (x) =

 2x1 + 0.2x1
3 − 0.5x2 + 0.1x3 − 4

−0.5x1 + x2 + 0.1x2
3 + 0.5

0.5x1 − 0.2x2 + 2x3 − 0.5


and

C =
{
x ∈ R3 : 0.6x21 + 0.4x22 + x23 ≤ 1

}
.

The solution of this problem is x = (1, 0, 0).
Since the number of iterations obtained for this example is quite small, then

we can see how the sequence of the iterates {xk} converges towards the solution
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Alg1
k xk1 xk2 xk3

∥∥r (xk, β)∥∥
1 1.5246 0.4456 0.5495 0.6065
2 1.1699 0.2592 −0.1130 0.0644
3 1.0188 0.1034 0.0158 0.0060
4 1.0011 0.0304 −0.0005 5.1105× 10−4

5 1.0001 0.0082 0.0021 4.1359× 10−5

6 1.0000 0.0022 −0.0000 2.6660× 10−6

7 1.0000 0.0006 0.0002 2.1154× 10−7

Table 2: Numerical results for Example 4.2 with Alg1 and x0 = (0, 1, 1)T .

Alg2
k xk1 xk2 xk3

∥∥H (
µk, wk

)∥∥
1 1.9655 0.6384 −0.1170 6.2950
2 1.7018 0.3748 −0.1120 2.5670
3 1.2760 0.0401 −0.0354 0.5497
4 1.0906 0.0207 −0.0097 0.1809
5 1.0174 0.0029 −0.0017 0.0417
6 1.0022 0.0003 −0.0002 0.0054
7 1.0002 0.0000 −0.0000 5.5887× 10−4

8 1.0000 0.0000 −0.0000 5.6082× 10−5

9 1.0000 0.0000 −0.0000 5.6102× 10−6

10 1.0000 0.0000 −0.0000 5.6104× 10−7

Table 3: Numerical results for Example 4.2 with Alg2 and x0 = (0, 1, 1)T .

x, and also see how the error decreases towards 0 for both algorithms Alg1 and
Alg2. We consider the same initial point chosen in [6], x0 = (0, 1, 1).

Next, we give in Table 4, the numerical results for Example 4.2 with Alg1
and Alg2 with different initial points to see the choice influence of this point.

Example 4.3. This example is derived from [4], where the original problem is
an optimization one. We give its form of variational inequalities by writing the
corresponding optimality conditions, i.e., let F : R4 −→ R4

F (x) =


2x1 − 5
2x2 − 5
4x3 − 21
2x4 + 7

 ,
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Alg1 Alg2
x0 Iter T Iter T
(0, 0, 0) 4 0.0345 10 0.0028
(1, 1, 1) 5 0.0656 10 0.0032
(−1,−1,−1) 5 0.0353 10 0.0030
(10, 10, 10) 12 0.1446 12 0.0954

Table 4: Numerical results for Example 4.2 with Alg1 and Alg2 with different
initial points.

and let the set C be

C =

 x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 ≤ 8
x ∈ R2 : x21 + 2x22 + x23 + 2x24 − x1 − x4 ≤ 10

2x21 + x22 + x23 + 2x1 − x2 − x4 ≤ 5

 .

The solution of this problem is x = (0, 1, 2,−1).

Similarly, we test both algorithms Alg1 and Alg2 for this example from the
initial point (0, 0, 0, 0), then we get the results shown in the Tables 5 and 6.

Alg1
k xk1 xk2 xk3 xk4

∥∥r (xk, β)∥∥
1 0.5004 0.5004 2.0968 −0.7006 0.3826
2 0.0590 0.8999 2.1593 −0.8557 0.0416
3 −0.0283 0.9842 2.0339 −0.9718 0.0023
4 −0.0017 0.9966 2.0029 −0.9977 1.9127× 10−5

5 0.0004 1.0004 1.9996 −1.0004 4.7834× 10−7

Table 5: Numerical results for Example 4.3 with Alg1 and x0 = (0, 0, 0.0)T

.

We give also in Table 7, the numerical results for Example 4.3 with Alg1
and Alg2 and with different initial points to see the influence of this point
choice.

In order to more evaluate the efficiency of our algorithm, we give in the last
part of this section two examples where the dimension of the problems is from
100 to 1000.

Example 4.4. This problem is derived from [12]. The original problem is
based on the boxes constraints and in our case we have changed them by the
nonlinear constraints written below.



PROJECTION METHOD FOR VIP (17 of 20)

Alg2
k xk1 xk2 xk3 xk4

∥∥H (
µk, wk

)∥∥
1 2.4622 2.4769 5.1971 −3.4631 276.5066
2 1.8530 1.8430 4.7238 −2.7727 70.3578
3 0.4009 1.3817 3.1040 −1.1109 16.1805
4 0.2116 1.0152 2.1546 −1.0333 3.2871
5 −0.0106 1.0279 2.0411 −0.9511 0.7829
6 0.0003 0.9991 2.0009 −1.0007 0.0337
7 0.0000 1.0000 2.0000 −1.0000 3.4910× 10−4

8 0.0000 1.0000 2.0000 −1.0000 3.4924× 10−6

9 0.0000 1.0000 2.0000 −1.0000 3.4924× 10−8

Table 6: Numerical results for Example 4.3 with Alg2 and x0 = (0, 0, 0.0)T .

Alg1 Alg2
x0 Iter T Iter T
(0, 0, 0, 0) 5 0.0245 9 0.0022
(1, 1, 1, 1) 6 0.0455 8 0.0018
(−1,−1 − 1,−1) 6 0.0442 10 0.0027
(10, 10, 10, 10) 10 0.0693 12 0.0031

Table 7: Numerical results for Example 4.3 with Alg1 and Alg1 with different
initial points.

Let F (x) = Ax+ b where A is the following (n× n) nonsymmetric matrix

A =



4 −1
−1 4 −1

4 −1
. . .

. . .

4 −1
4


, b =



−1
−1
−1
...

−1
−1


,

and

C =

{
x ∈ Rn :

∑n
i=1(xi − 0.3)2 − 25 ≤ 0∑n
i=1(xi − 0.5)2 − 22 ≤ 0

}
.

All the results are obtained by taking the same initial point x0 = (1, 1, · · · , 1)T
for different sizes.

Example 4.5 ([6]). Similarly as in the previous example, the author has trans-
formed the original problem based on linear constraints given in [1] by adding
some nonlinear constraints. In this example, F (x) = Ax + b where A and b
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Alg1 Alg2
n Iter T Iter T
100 6 0.0621 10 0.0781
200 6 0.1131 11 0.1599
400 7 0.2755 12 0.3879
600 8 0.5765 12 0.7619
800 6 0.6744 12 0.9597
1000 7 0.8897 11 1.2459

Table 8: Numerical results for Example 4.4 obtained by Alg1, Alg2 and with
different sizes.

are given as follows

A =



4 −2
1 4 −2

1 4 −2
. . .

. . .
. . .

1 4 −2
1 4


, b =



−1
−1
−1
...
−1
−1


,

and

C =

{
x ∈ Rn, i = 1, . . . , n :

−xi − 10 ≤ 0
−100 + x2i ≤ 0

}
.

In this case also, we used the same initial point x0 = (5, 5, · · · , 5)T for all
numerical tests of this example.

Alg1 Alg2
n Iter T Iter T
100 8 0.1349 8 0.3071
200 9 0.2860 8 0.4547
400 9 0.6030 9 1.8581
600 9 1.0601 9 4.3098
800 9 1.4200 9 7.0898
1000 9 1.8655 9 10.4849

Table 9: Numerical results for Example 4.5 obtained by Alg1, Alg2 and with
different sizes.

4.1. Comments

For the Examples 4.1, 4.2 and 4.3, we notice that the number of iterations ob-
tained by Alg1 is better than that of Alg2, but the computation time recorded
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for Alg2 is lower than that of Alg1. Concerning large-scale examples (Example
4.4 and 4.5), it is clear that Alg1 and Alg2 have very close number of iterations,
but there is a significant reduction in the computation time obtained by Alg1
compared with Alg2. We observe also that Alg1 converges to a solution what-
ever the initial point is (feasible or not). On the other hand, for Alg2 which is
characterized by a global and quadratic convergence; the number of iterations
exceeds 1400 to be able to achieve an approximate solution for certain initial
points. The numerical performance of our algorithm to solve different classes
of (V IP ) notably with nonlinear constraints, is largely due to the relevant role
played by the imposed condition (17) and the choice of β > 0. This is not lim-
ited to only in the interval ]0, 1] as it is case in the other algorithms proposed
in [7, 10, 15, 17]. We recall that these two assumptions represent the main
algorithmic modifications introduced in this work.

5. Conclusion

Based on the framework of last projection methods as [10, 15, 17], we have
proposed a new algorithm of the same type and we have tested it for varia-
tional inequalities with nonlinear constraints. Under the condition (A2) that is
weaker than the pseudomonotonicity of the underling mapping, we have estab-
lished the theoretical results to prove the global convergence for this algorithm.
Furthermore, we have also presented some preliminary numerical results which
show and confirm the efficiency of our method for this class of problems. As
future perspective, we plan to analyze new procedures to determine the step
size λk in order to improve further the convergence of the proposed algorithm.
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