Rend. Istit. Mat. Univ. Trieste Vol. 56 (2024), Art. No. 4, 7 pages DOI: 10.13137/2464-8728/36464

Characterizations of strongly star-Rothberger spaces by means of sequential singletonic intersection property and selection principles.

PRASENJIT BAL AND SUSMITA SARKAR

ABSTRACT. In this paper, using families of closed sets and a few modifications to the finite intersection features, we characterize the Rothberger Space and the Star-Rothberger Space. We also provide the selection principles that, in a reversed approach, can represent the Rothberger spaces and the star-Rothberger Spaces.

Keywords: Rothberger property, Selection principles, finite intersection property.. MS Classification 2020: 54D20, 54D30.

1. Introduction and Preliminaries

Rothberger property and Menger property are the most fascinating sequential covering features for the topologists worldwide.

DEFINITION 1.1. A space X is said have Rothberger covering property [12] if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there exists a sequence $\{V_n : n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}, V_n \in \mathcal{U}_n$ and $\bigcup_{n \in \mathbb{N}} (V_n) = X$.

The term "Rothbergerness" or "Rothberger covering property" was first used by Rothberger in 1938 [12]. In literature, there are a lot of generalizations about Rothbergerness. The St-Rothbergerness, which Kočinac introduced in 1999 [9, 10], strikes us as the most intriguing.

If M is a subset of a set X and \mathcal{U} is a collection of subsets of X, then the star of M with respect to \mathcal{U} is the set $St(M,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap M \neq \emptyset \}$ [7].

In 1991, Douwen utilized the star operator for the first time to generalize the ideas of compactness and Lindelöfness. Then Kočinac [9] used it to generalize selection principles, Rothberger space, and Menger space. Some examples of current St-operator usage can be found in [1, 2, 3, 4, 5, 6, 13, 14].

DEFINITION 1.2. A space X is said to have star-Rothberger property [9] if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of X, there exists a sequence $\{V_n : n \in \mathbb{N}\}$ such that for each $n \in \mathbb{N}, V_n \in \mathcal{U}_n$ and $X = \bigcup_{n \in \mathbb{N}} St(V_n, \mathcal{U}_n)$. Although many scholars have examined these sequential covering properties in-depth [12, 13], there hasn't been much focus on how to express them using a family of closed sets. Recall that a collection \mathcal{F} of subsets of a set X has the finite intersection property(FIP) if the intersection of any finite sub collection of \mathcal{F} is non empty. A topological space is compact if and only if every collection of closed subsets meeting the FIP has a non empty intersection itself. The use of the FIP makes this alternative notion of compactness achievable [8].

In our research, we find such type of representations for Rothbergerness and St-Rothbergerness with a little variation in finite intersection property(FI property).

Throughout the paper, a space X denotes a topological space X equipped with the corresponding topology τ . For a space X we adopt the following symbols:

 \mathcal{O} : the collection of all open covers of X.

 \mathcal{C}_X : the collection of all family \mathcal{F} of closed sets for which $\cap \mathcal{F} = \emptyset$.

 \mathcal{A}, \mathcal{B} : represents collections of families of subsets of a space X.

Selection principles are other ways to describe sequential covering properties.

DEFINITION 1.3. The symbol $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(V_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $V_n \in \mathcal{U}_n$ and $\{V_n : n \in \mathbb{N}\}$ is also an element of \mathcal{B} [15].

DEFINITION 1.4. The symbol $S_1^*(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(V_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}, V_n \in \mathcal{U}_n$ and $\{St(V_n, \mathcal{U}_n) : n \in \mathbb{N}\}$ is also an element of \mathcal{B} [11].

It is important to keep in mind that the selection principle type of characterization for Rothberger and St-Rothberger is given by the expressions $S_1(\mathcal{O}, \mathcal{O})$ and $S_1^*(\mathcal{O}, \mathcal{O})$, respectively.

We look for new selection principles in our research that can describe Rothberger spaces and star Rothberger spaces using the family C_X .

2. Main Results

DEFINITION 2.1. Let $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a sequence of family of subsets of X. This sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ is said to have sequential singletonic intersection property (SSI property) if for every sequence $\{E_n : n \in \mathbb{N}\}$ where $E_n \in \mathcal{F}_n$, we have $\bigcap_{n \in \mathbb{N}} (E_n) \neq \emptyset$

THEOREM 2.2. The following conditions are equivalent.

(i) X is a Rothberger space.

(2 of 7)

(ii) For every sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of family of closed sets with sequential singletonic intersection property (SSI property), there exists a $n_0 \in \mathbb{N}$ such that $\bigcap \mathcal{F}_{n_0} = \bigcap_{F \in \mathcal{F}_{n_0}} F \neq \emptyset$.

Proof. $(i) \Rightarrow (ii)$. Let X be a Rothberger space; $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a family of closed sets having the sequential singletonic intersection property (SSI property) and let $\cap \mathcal{F}_n = \emptyset$, for all $n \in \mathbb{N}$.

We take, $\mathcal{G}_n = \{X \setminus F : F \in \mathcal{F}_n\}$, for all $n \in \mathbb{N}$. Therefore, for all $n \in \mathbb{N}$,

$$\bigcup \mathcal{G}_n = \bigcup \{ X \setminus F : F \in \mathcal{F}_n \}$$

= $X \setminus \cap_{F \in \mathcal{F}_n} (F) = X \setminus \cap \mathcal{F}_n = X \setminus \emptyset = X .$

Therefore $\{\mathcal{G}_n : n \in \mathbb{N}\}$ is a sequence of open covers. But X is a Rothberger space. Therefore there exists a sequence $\{H_n : n \in \mathbb{N}\}$ such that $H_n \in \mathcal{G}_n$ for all $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} (H_n) = X$.

Now, we construct the sequence $\{E_n : n \in \mathbb{N}\}$ where $E_n = X \setminus H_n$ for all $n \in \mathbb{N}$. Clearly $E_n \in \mathcal{F}_n$ for all $n \in \mathbb{N}$ and

$$\cap_{n\in\mathbb{N}}(E_n)=\cap_{n\in\mathbb{N}}(\{X\setminus H_n\})=X\setminus (\cup_{n\in\mathbb{N}}(H_n))=X\setminus X=\emptyset.$$

Therefore $\{E_n : n \in \mathbb{N}\}$ is a sequence such that $E_n \in \mathcal{F}_n$ for all $n \in \mathbb{N}$ but $\bigcap_{n \in \mathbb{N}} (E_n) = \emptyset$, contradicts the fact that $\{\mathcal{F}_n : n \in \mathbb{N}\}$ has sequential singletonic intersection property (SSI property). Therefore there must exists a $n_0 \in \mathbb{N}$ such that $\mathcal{F}_{n_0} \neq \emptyset$.

 $(ii) \Rightarrow (i)$. Let the condition (ii) holds and assume that $\{\mathcal{G}_n : n \in \mathbb{N}\}$ be a arbitrary sequence of open covers for a topological space X. Therefore $\cup \mathcal{G}_n = X$ for all $n \in \mathbb{N}$.

If we take, $\mathcal{F}_n = \{X \setminus G : G \in \mathcal{G}_n\}$ for all $n \in \mathbb{N}$, then $\bigcap \mathcal{F}_n = \emptyset$ for all $n \in \mathbb{N}$. Therefore $\{\mathcal{F}_n : n \in \mathbb{N}\}$ is a sequence of family of closed sets such that $\cap \mathcal{F}_n = \emptyset$ for all $n \in \mathbb{N}$.

So by contra-positivity of the statement (*ii*), $\{\mathcal{F}_n : n \in \mathbb{N}\}$ must not have the sequential singletonic intersection property (SSI property).

So, there exists a sequence $\{E_n : n \in \mathbb{N}\}$ such that $E_n \in \mathcal{F}_n$ and for all $n \in \mathbb{N}$ with $\bigcap_{n \in \mathbb{N}} (E_n) = \emptyset$. Suppose $H_n = X \setminus E_n$ for all $n \in \mathbb{N}$. Clearly $H_n \in \mathcal{G}_n$, for all $n \in \mathbb{N}$.

Therefore,

$$\bigcup_{n\in\mathbb{N}}(H_n)=\bigcup_{n\in\mathbb{N}}(\{X\setminus E_n\})=X\setminus(\cap_{n\in\mathbb{N}}(E_n))=X\setminus\emptyset=X.$$

Therefore $\{H_n : n \in \mathbb{N}\}$ is a sequence such that $H_n \in \mathcal{G}_n$ for all $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} (H_n) = X$. Therefore X is a Rothberger space.

COROLLARY 2.3. $S_1(\mathcal{O}, \mathcal{O})$ and $S_1(\mathcal{C}_X, \mathcal{C}_X)$ are equivalent.

Proof. Similar to the proof of above theorem. Hence omitted.

DEFINITION 2.4. A sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of family of subsets of X is said to have modified sequential singletonic intersection property (MSSI property) if for all sequences $\{E_n : n \in \mathbb{N}\}$ and $\{\mathcal{H}_n : n \in \mathbb{N}\}$ such that $E_n \in \mathcal{F}_n$ and $\mathcal{H}_n \subseteq \mathcal{F}_n$, for all $n \in \mathbb{N}$ either

 $E_n \cup F = X$ for some $F \in \mathcal{H}_n$ and for all $n \in \mathbb{N}$ or

$$\bigcap_{n\in\mathbb{N}}\left(\bigcap\mathcal{H}_n\right)\neq\emptyset.$$

THEOREM 2.5. The following conditions are equivalent.

- (i) (X, τ) is St-Rothberger space.
- (ii) If the sequence of closed sets $\{\mathcal{F}_n : n \in \mathbb{N}\}$ has modified sequential singletonic intersection property (MSSI property) then there exists a $n_0 \in \mathbb{N}$ such that $\bigcap \mathcal{F}_{n_0} = \bigcap_{F \in \mathcal{F}_{n_0}} F \neq \emptyset$.

Proof. $(i) \Rightarrow (ii)$. Let (X, τ) be a St-Rothberger space; $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a family of closed sets having modified sequential singletonic intersection property (MSSI property) and $\cap \mathcal{F}_n = \emptyset$, for all $n \in \mathbb{N}$.

Now we assume $\mathcal{G}_n = \{X \setminus F : F \in \mathcal{F}_n\}$ for all $n \in \mathbb{N}$.

Therefore, $\bigcup \mathcal{G}_n = \bigcup \{X \setminus F : F \in \mathcal{F}_n\} = X$, for all $n \in \mathbb{N}$.

Therefore, $\{\mathcal{G}_n : n \in \mathbb{N}\}$ is a sequence of open covers. But (X, τ) is a St-Rothberger space therefore there exists a sequence $\{G'_n : n \in \mathbb{N}\}$ where $G'_n \in \mathcal{G}_n$ for all $n \in \mathbb{N}$ such that

$$\begin{split} &\bigcup_{n\in\mathbb{N}} \left\{ St(G'_n, \mathcal{G}_n) \right\} = X \\ \implies &\bigcup_{n\in\mathbb{N}} \bigcup \left\{ G\in\mathcal{G}_n: G'_n \bigcap G\neq \emptyset \right\} = X \\ \implies &\bigcup_{n\in\mathbb{N}} \bigcup \left\{ (X\setminus F)\in\mathcal{G}_n: G'_n \bigcap (X\setminus F)\neq \emptyset \right\} = X \\ \implies &\bigcup_{n\in\mathbb{N}} \bigcup \left\{ (X\setminus F): F\in\mathcal{F}_n \text{ and } G'_n \bigcap (X\setminus F)\neq \emptyset \right\} = X \\ \implies &X\setminus \bigcap_{n\in\mathbb{N}} \bigcap \left\{ F\in\mathcal{F}_n: (X\setminus E_n) \bigcap (X\setminus F)\neq \emptyset \right\} = X, \\ & \text{ where } G'_n = X\setminus E_n \text{ for all } n\in\mathbb{N} \\ \implies &\bigcap_{n\in\mathbb{N}} \bigcap \left\{ F\in\mathcal{F}_n: X\setminus \left(E_n\bigcup F \right)\neq \emptyset \right\} = \emptyset \\ \implies &\bigcap_{n\in\mathbb{N}} \bigcap \left\{ F\in\mathcal{F}_n: \left(E_n\bigcup F \right)\neq X \right\} = \emptyset. \end{split}$$

Now let $\mathcal{H}_n = \{F \in \mathcal{F}_n : (E_n \bigcup F) \neq X\}$ for all $n \in \mathbb{N}$. Therefore, $\{E_n : n \in \mathbb{N}\}$ and $\{\mathcal{H}_n : n \in \mathbb{N}\}$ are two sequences such that $E_n \in \mathcal{F}_n$ $\mathcal{H}_n \subseteq \mathcal{F}_n$, for all $n \in \mathbb{N}$.

Here $E_n \cup F \neq X$ for all $F \in \mathcal{H}_n$ and for all $n \in \mathbb{N}$ and $\bigcap_{n \in \mathbb{N}} (\bigcap \mathcal{H}_n) =$ \emptyset . Which contradicts the fact that $\{\mathcal{F}_n : n \in \mathbb{N}\}$ has Modified sequential singletonic intersection property (MSSI property). Therefore there exists a $n_0 \in \mathbb{N}$ such that $\mathcal{F}_{n_0} \neq \emptyset$.

 $(ii) \Rightarrow (i)$. Let condition (ii) holds and assume that $\{\mathcal{G}_n : n \in \mathbb{N}\}$ be a arbitrary sequence of open covers of a topological space (X, τ) . Therefore $\cup \mathcal{G}_n = X, \text{ for all } n \in \mathbb{N}. \text{ Let } \mathcal{F}_n = \{X \setminus G : G \in \mathcal{G}_n\}, \text{ for all } n \in \mathbb{N}.$ Therefore $\cap \mathcal{F}_n = \cap \{X \setminus G : G \in \mathcal{G}_n\} = \emptyset$ for all $n \in \mathbb{N}.$

So, $\{\mathcal{F}_n : n \in \mathbb{N}\}$ is a sequence of family of closed sets such that $\cap \mathcal{F}_n = \emptyset$, for all $n \in \mathbb{N}$. By contra positivity of the statement $(ii), \{\mathcal{F}_n : n \in \mathbb{N}\}$ must not have modified sequential singletonic intersection property (MSSI property).

So, there exist sequences $\{E_n : n \in \mathbb{N}\}$ and $\{\mathcal{H}_n : n \in \mathbb{N}\}$ such that $E_n \in \mathcal{F}_n$ and $\mathcal{H}_n \subseteq \mathcal{F}_n$, for all $n \in \mathbb{N}$ with $E_n \cup F \neq X$ for all $F \in \mathcal{H}_n$ and for all $n \in \mathbb{N}$ or

$$\bigcap_{n\in\mathbb{N}}\left(\bigcap\mathcal{H}_n\right)=\emptyset.$$

Consider the sequences $\{G'_n = X \setminus E_n : n \in \mathbb{N}\}$ and $\mathcal{M}_n = \{M = X \setminus F :$ $F \in \mathcal{H}_n$. Therefore, $G'_n \in \mathcal{G}_n$ and $\mathcal{M}_n \subseteq \mathcal{G}_n$ for all $n \in \mathbb{N}$. Now,

 $\implies E_n \cup F \neq X$, for all $F \in \mathcal{H}_n$ and $E_n \in \mathcal{F}_n$, for all $n \in \mathbb{N}$ $\implies X \setminus \{(E_n) \cup F\} \neq \emptyset, \quad \text{for all } F \in \mathcal{H}_n \text{ and } \quad E_n \in \mathcal{F}_n, \text{ for all } n \in \mathbb{N}$ $\implies (X \setminus E_n) \bigcap (X \setminus F) \neq \emptyset$, for all $F \in \mathcal{H}_n$ and $E_n \in \mathcal{F}_n$, for all $n \in \mathbb{N}$ $\implies (G'_n) \bigcap M \neq \emptyset$, for all $M \in \mathcal{M}_n$, for all $n \in \mathbb{N}$.

And

$$\bigcup_{n\in\mathbb{N}} St(G'_n, \mathcal{G}_n) = \bigcup_{n\in\mathbb{N}} \bigcup \{G \in \mathcal{G} : G \cap G'_n \neq \emptyset\}$$
$$\supseteq \bigcup_{n\in\mathbb{N}} \bigcup \{M \in \mathcal{M} : M \cap G'_n \neq \emptyset\} = \bigcup_{n\in\mathbb{N}} \bigcup \mathcal{M}_n$$
$$= \bigcup_{n\in\mathbb{N}} \bigcup \{X \setminus F : F \in \mathcal{H}_n\} = X \setminus \bigcap_{n\in\mathbb{N}} \bigcap \mathcal{H}_n = X \setminus \emptyset = X .$$

Therefore, $\bigcup_{n \to \infty} St(G'_n, \mathcal{G}_n) = X$. So, (X, τ) is star-Rothberger space.

EXAMPLE 2.6. There exists a T₀-space in which selection principles $S_1^*(\mathcal{O}, \mathcal{O})$ and $S_1^*(\mathcal{C}_X, \mathcal{C}_X)$ are not equivalent.

Let X = [a, b), where $a, b \in \mathbb{R}$ and b-a = 1. $\tau = \{\emptyset, X\} \cup \{[a, \alpha) : \alpha \in [a, b]\}$. So (X, τ) forms a T₀ space.

Let $\{\mathcal{U}_n : n \in \mathbb{N}\}$ be an arbitrary sequence of open covers. Clearly, there exits an $U_n \in \mathcal{U}_n$ such that $0 \in U_n$, for all $n \in \mathbb{N}$ then $St(U_n, \mathcal{U}_n) = \bigcup \mathcal{U}_n = X$, for all $n \in \mathbb{N}$. But X is open. Thus $\{St(U_n, \mathcal{U}_n) : n \in N\} = \{X\} \in \mathcal{O}$. Thus the space X follows the Selection Principle $S_1^*(\mathcal{O}, \mathcal{O})$.

Now consider a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of family of closed sets such that

 $\mathcal{F}_n = \{F_{n_m} : m \in N\}, \text{ for all } n \in \mathbb{N} \text{ and } F_{n_m} = [b - \frac{1}{m}, b).$ Clearly $\bigcap \mathcal{F}_n = \bigcap_{m=1}^{\infty} F_{n_m} = \bigcap_{m=1}^{\infty} [b - \frac{1}{m}, b] = \emptyset, \mathcal{F}_n \in \mathcal{C}_X, \text{ for all } n \in N.$ Now for every selection $F_n \in \mathcal{F}_n,$

$$St(F_n, \mathcal{F}_n) = [a, b) = X, \quad \{St(F_n, \mathcal{F}_n) : n \in \mathbb{N}\} = \{X\}$$

but $\bigcap \{St(F_n, \mathcal{F}_n) : n \in \mathbb{N}\} = X \neq \emptyset, \quad \{St(F_n, \mathcal{F}_n) : n \in \mathbb{N}\} \notin \mathcal{C}_X.$

So, the space X doesn't follow the selection principle $S_1^*(\mathcal{C}_X, \mathcal{C}_X)$. So, $S_1^*(\mathcal{O}, \mathcal{O})$ and $S_1^*(\mathcal{C}_X, \mathcal{C}_X)$ are not equivalent.

Now we want a selection principle that can act on \mathcal{C}_X and produce an equivalent condition to the selection Principle $S_1^*(\mathcal{O}, \mathcal{O})$.

DEFINITION 2.7. The symbol $S_{1,S}(\mathcal{A},\mathcal{B})$ denotes the selection hypothesis that for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of elements of \mathcal{A} there exist sequences $(E_n : n \in \mathbb{N})$ \mathbb{N}) and $(\mathcal{H}_n : n \in \mathbb{N})$ such that $E_n \in \mathcal{U}_n$ and $\mathcal{H}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $(E_n) \cup F \neq X$ for any $F \in \mathcal{H}_n$ and $\{\bigcap \mathcal{H}_n : n \in \mathbb{N}\} \in \mathcal{B}$.

COROLLARY 2.8. $S_1^*(\mathcal{O}, \mathcal{O})$ and $S_{1,S}(\mathcal{C}_X, \mathcal{C}_X)$ are equivalent.

Proof. The proof is similar to the proof of Theorem 2.5, hence omitted.

References

- [1] P. BAL, A countable intersection like characterization of star-Lindelöf spaces, Res. Math. **31** (2023), 3–7.
- [2] P. BAL, On the class of i- γ -open cover and i-st- γ -open cover, Hacet. J. Math. Stat. 53 (2023), 630–639.
- [3] P. BAL AND R. DE, On strongly star semi-compactness of topological spaces, Khayyam J. Math. 9 (2023), 54-60.
- [4] P. BAL AND D. RAKSHIT, A variation of the class of statistical γ covers, Topol. Algebra Appl. 11 (2023), 20230101.
- [5] P. BAL, D. RAKSHIT, AND S. SARKAR, Countable compactness modulo an ideal of natural numbers, Ural Math. J. 9 (2023), 28-35.
- P. BAL AND S. SARKAR, On strongly star g-compactness of topological spaces, Tatra Mt. Math. Publ. 85 (2023), 89–100.
- [7] E.K.V. DOUWEN, G.M. REED, A.W. ROSCOE, AND I.J. TREE, Star covering properties, Topology Appl. **39** (1991), 71–103.

(6 of 7)

- [8] R. ENGELKING, *General Topology*, Sigma Series in Pure Mathematics, Revised and complete ed. Berlin: Heldermann., 1989.
- [9] L.D.R. KOČINAC, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421–431.
- [10] L.D.R. KOČINAC, Star-Menger and related spaces II, Filomat 13 (1999), 129– 140.
- [11] L.D.R. KOČINAC, Star selection principles: A survey, Khayyam J. Math 1 (2015), 82–106.
- [12] F. ROTHBERGER, Eine Verschärfung der Eigenschaft, Fund. Math. 30 (1938), 50–55.
- [13] M. SAKAI, Star covering versions of the rothberger property, Topology Appl. 176 (2014), 22–34.
- [14] S. SARKAR, P. BAL, AND D. RAKSHIT, On topological covering properties by means of generalized open sets, Topol. Algebra Appl. 11 (2023), 20230109.
- [15] M. SCHEEPERS, Combinatorics of open covers, Topology Appl. 69 (1996), 31-62.

Authors' addresses:

Prasenjit Bal Department of Mathematics, ICFAI University Tripura, Agartala, 799210,India, E-mail: balprasenjit177@gmail.com

Susmita Sarkar Department of Mathematics, ICFAI University Tripura, Agartala, 799210,India, E-mail: susmitamsc94@gmail.com

> Received May 16, 2024 Revised July 22, 2024 Accepted July 30, 2024