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Inequalities for the arithmetic mean of
the first n prime numbers

Horst Alzer and Mehdi Hassani

Abstract. Let An be the (unweighted) arithmetic mean of the first n
prime numbers. We prove that for n ≥ 2,

A
1+ α

n log(n)
n ≤ An+1 ≤ A

1+ β
n log(n)

n

with the best possible constants α ≈ 0.43525 and β ≈ 1.22596. The
right-hand side improves a result given by Z.-W. Sun in 2013.
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1. Introduction and statement of the main results

I. In this paper, we study the unweighted arithmetic mean of the first n prime
numbers, that is,

An =
1

n

n∑
k=1

pk,

where pk denotes the k-th prime number. Several mathematicians presented
interesting inequalities involving An. Mandl’s conjecture states that

An <
1

2
pn (n ≥ 9). (1)

The following companion to (1) is due to Robin,

p[n/2] ≤ An (n ≥ 2). (2)

Proofs for (1) and (2) were given by Dusart [3, Section 1.9]. He used the elegant
integral formula

An = pn − 1

n

∫ pn

2

π(x)dx

to settle (1). Here, π(x) denotes the number of primes less than or equal to x.
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In search of the order of the magnitude of An, Hassani [4] offered new upper
and lower bounds for An,

1

2
pn − 9

4
n < An <

1

2
pn − 1

12
n. (3)

The left-hand side of (3) holds for n ≥ 2. The right-hand side of (3) provides
a refinement of (1). It is valid for n ≥ 10.

A simple inequality involving An, An+1 and pn+1 was published by Popovi-
ciu:

pn+1 <
An+1

n+1

An
n

(n ≥ 1).

The following related result is due to Klamkin. If A∗
n denotes the arithmetic

mean of 1/p1, . . . , 1/pn, then

1 < (n+ 1)
√

An+1A∗
n+1 − n

√
AnA∗

n (n ≥ 1);

see Bullen et al. [2, Section II.3.1].
Inequalities for the ratio of the arithmetic and geometric means of the first

n primes were given by Hassani [4]. Axler [1] provided an asymptotic formula
for An and Matomäki [5] studied the set of natural numbers n such that A(n)
is an integer.

II. Our work has been inspired by a remarkable paper published by Sun [8]
in 2013. Motivated by the open Firoozbakht conjecture, which states that the

sequence (p
1/n
n )n≥1 is strictly decreasing (see Ribenboim [6, p. 185]), he proved

(among others) that
(
A

1/n
n

)
n≥1

is strictly decreasing. This leads to

An+1 < A1+1/n
n (n ≥ 1). (4)

Is it possible to improve (4)? More precisely, we ask: does there exist a real
number c < 1 such that

An+1 ≤ A1+c/n
n (5)

is valid for n ≥ 1? Numerous calculations led us to the conjecture that (5) holds
with c ≈ 0.76257. Here, we present the following refinement and converse of
this result.

Theorem 1.1. For all integers n ≥ 2, we have

A
1+ α

n log(n)
n ≤ An+1 ≤ A

1+ β
n log(n)

n (6)

with the best possible constants

α = 2 log(2)
log(4/3)

log(5/2)
= 0.43524... (7)
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and

β = 18 log(3)
log(1161/1000)

log(100/9)
= 1.22596.... (8)

Remark 1.2. The sign of equality holds on the left-hand side of (6) if and only
if n = 2, and on the right-hand side if and only if n = 9.

An application of the second inequality in (6) leads to the following mono-
tonicity results.

Corollary 1.3. The sequences

(
A

√
log(n)

n
n

)
n≥5

,
(
A

1+log(n)
n

n

)
n≥5

,
(
A

1√
n

n

)
n≥12

are strictly decreasing. Moreover, for each integer k ≥ 1 there exists a positive
integer nk such that the sequence

(
A

logk(n)
n

n

)
n≥nk

is strictly decreasing. In particular, we have

k 1 2 3 4 5
nk 10 22 57 151 395

III. In the next section, we introduce some helpful notation and in Section
3, we collect seven lemmas. The proofs of Theorem 1.1 and Corollary 1.3 are
presented in Section 4. We have used Maple 17 to verify the validity of three
inequalities for a finite number of integers. The three computer programs are
given in the supporting file “CAS-Supplement”.

2. Notation

Throughout, α and β are the constants given in (7) and (8). Moreover, x and
n denote a real number and a natural number, respectively. In order to prove
Theorem 1.1 we need the following functions and constants.

v(x) =
x2

2

[
log(x) + log(log(x))− 1.4], w(x) =

x

x+ 1

[0.99x log(x)
v(x)

+ 1
]
,

g(x) =
x2

2

[
log(x) + log(log(x))− 1.5

]
,

h(x) = g(x) +
x2

2 log(x)

[
log(log(x))− 2.5

]
,
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T (x) = h(x)
[x+ 1

x

(h(x)
x

) α
x log(x) − 1

]
,

B(x, c) = x
[
log(x) + log(log(x))− c

]
,

u(x) = log(x) + log(log(x))− 1.5, R(x) = g(x)
[x+ 1

x

(g(x)
x

) β
x log(x) − 1

]
,

n0 = 305494, c0 = 1 +
1

n0
, c1 =

1379

2500
+ 2 log(2),

c2 = 2c0

(
1 +

c1
u(26n0)

)
= 2.25..., c3 =

c2 − 1

β
= 0.99999616...,

c4 = 0.9999962, c5 =
3c4 − 1

2
.

3. Lemmas

We use the notation introduced in Section 2. The following lemmas play an
important role in the proof of our main result.

Lemma 3.1. (i) For x ≥ e, we have

α

log(x)
log

(v(x)
x

)
<

3

4
. (9)

(ii) For x ≥ 61279, we have

3

4
< x log(w(x)). (10)

Proof. (i) The function

δ(x) = 2e0.7x − x− log(x) + 1.4

is convex on [1,∞) with δ′(1) = 0.8... and δ(1) = 4.4.... It follows that δ is
positive on [1,∞). Since 3/(4α) = 1.72..., we obtain for x ≥ e,

x3/(4α) > x1.7 > x1.7 − x

2
δ(log(x)) =

v(x)

x
.

This leads to (9).
(ii) Let

µ(x) = x− (x+ 1)e3/(4x) and ϕ(x) =
x

x+ log(x)− 1.4
.
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Then

(x+ 1)
[
w(x)− e3/(4x)

]
= µ(x) +

99

50
ϕ(log(x)) = Λ(x), say. (11)

We have
e−3/(4x)µ′(x) = κ(1/x),

where

κ(x) = −1 +
3

4
x+

3

4
x2 + e−3x/4.

The function κ is strictly convex on [0,∞) with κ′(0) = κ(0) = 0. It follows
that κ is positive on (0,∞). Thus, µ′(x) > 0 for x > 0. Moreover, we have for
x ≥ exp(12/5),

1

25
ϕ′(x) =

log(x)− 12/5

(5x+ 5 log(x)− 7)2
≥ 0.

From (11) we obtain that Λ is increasing for x ≥ exp(exp(12/5)) = 61278.01....
This implies that for x ≥ 61279,

Λ(x) ≥ Λ(61279) = 0.065....

Applying (11) we conclude that (10) holds.

Lemma 3.2. For x ≥ 61279, we have

T (x) < 0.99x log(x). (12)

Proof. Since
log(log(x))− 2.5

log(x)
<

1

10
(x > 1),

we obtain

h(x) < g(x) +
x2

20
= v(x).

This implies

T (x) ≤ v(x)
[x+ 1

x

(v(x)
x

) α
x log(x) − 1

]
. (13)

Using (9) and (10) gives for x ≥ 61279,

α

x log(x)
log

(v(x)
x

)
< log(w(x)),

which is equivalent to

v(x)
[x+ 1

x

(v(x)
x

) α
x log(x) − 1

]
< 0.99x log(x). (14)

Combining (13) and (14) yields (12).
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Lemma 3.3. For x ≥ 640, we have

0.99x log(x) < B(x+ 1, 1.5). (15)

Proof. Let

θ(x) =
B(x+ 1, 1.5)− 0.99x log(x)

x+ 1
and σ(x) = x+ 1− 99 log(x).

Since σ is positive on [640,∞), we obtain

100(x+ 1)2 log(x+ 1)θ′(x) = log(x+ 1)σ(x) + 100(x+ 1) > 0.

Thus
θ(x) ≥ θ(640) = 0.44... (x ≥ 640).

This implies (15).

Lemma 3.4. For x ≥ 13, we have

x+ c2 < (x+ 1)
(xu(x)

2

) β
x log(x)

. (16)

Proof. We define for x ≥ 13,

q(x) = x1−c4u(x).

Since

xc4q′(x) = (1− c4)
(
log(x) + log(log(x))

)
+ c5 +

1

log(x)
> 0

and q(13) = 2.006..., we conclude that q(x) > 2. This leads to

xc4 <
xu(x)

2
. (17)

Using
1 + t < et (t ̸= 0)

with t = (c2 − 1)/(x+ 1) gives(x+ c2
x+ 1

) (x+1) log(x)
β

< xc3 . (18)

Since c3 < c4, we conclude from (17) and (18) that (16) holds.

Lemma 3.5. For n ≥ 30, we have

B(n+ 1, 0.9484) < R(n). (19)
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Proof. We consider two cases.
Case 1. n ≥ 26n0. Since u is increasing, we obtain u(n) ≥ u(26n0). It follows
that

nu(n)
(n
2
+ c0

)
+ c0c1n ≤ nu(n)

(n
2
+ c0

)
+

c0c1
u(26n0)

nu(n)

=
nu(n)

2
(n+ c2). (20)

Combining (16) and (20) yields

nu(n)

2
(n+ 2c0) + c0c1n < (n+ 1)

(nu(n)
2

)1+ β
n log(n)

. (21)

Since g(n) = n2u(n)/2, we obtain that (21) is equivalent to

c0n
(
u(n) + c1

)
< R(n). (22)

We have

B(n+ 1, 0.9484) < (n+ 1)
(
log(2n) + log(log(n2))− 0.9484

)
= (n+ 1)

(
u(n) + c1

)
≤

(
1 +

1

n0

)
n
(
u(n) + c1

)
= c0n

(
u(n) + c1

)
. (23)

From (22) and (23) we conclude that (19) holds.
Case 2. 30 ≤ n ≤ 26n0 − 1. By using Maple 17 we obtain that (19) is valid for
these finite numbers.

The next lemma provides upper and lower bounds for the sum of the first
n primes. These results are due to Axler [1] and Dusart [3, p. 51]. Let

S(n) =

n∑
k=1

pk.

Lemma 3.6. (i) For n ≥ 115149, we have S(n) ≤ h(n).
(ii) For n ≥ 305494, we have g(n) ≤ S(n).

We conclude this section with two inequalities for pn proved by Rosser and
Schoenfeld [7] and Dusart [3, p. 32].

Lemma 3.7. (i) For n ≥ 2, we have

B(n, 1.5) < pn.

(ii) For n ≥ 39017, we have

pn ≤ B(n, 0.9484).
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4. Proofs of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1. A short calculation gives that (6) is equivalent to

Z(n, α) ≤ pn+1 ≤ Z(n, β) (24)

with

Z(n, x) = S(n)
[n+ 1

n

(S(n)
n

) x
n log(n) − 1

]
.

First, we prove the left-hand side of (24).
Case 1. n ≥ 115149. Applying Lemma 3.6 (i) gives

Z(n, α) < T (n), (25)

and from Lemma 3.2, Lemma 3.3 and Lemma 3.7 (i) we get

T (n) < 0.99n log(n) < B(n+ 1, 1.5) < pn+1. (26)

Combining (25) and (26) leads to the left-hand side of (24) with “<” instead
of “≤”.
Case 2. 2 ≤ n ≤ 115148. If n = 2, then equality holds. We apply Maple 17
and obtain that if 3 ≤ n ≤ 115148, then the left-hand side of (24) holds with
“<” instead of “≤”.

Now, we prove the right-hand side of (24).
Case 1. n ≥ 305494. From Lemma 3.6 (ii), Lemma 3.5 and Lemma 3.7 (ii) we
obtain

Z(n, β) ≥ R(n) > B(n+ 1, 0.9484) ≥ pn+1.

This settles the right-hand side with “<” instead of “≤”.
Case 2. 2 ≤ n ≤ 305493. By direct computation, we find that for n ∈
{2, 3, ..., 9} we have pn+1 ≤ Z(n, β) with equality if and only if n = 9. Next,
we use Maple 17. We find that if 10 ≤ n ≤ 305493, then the right-hand side of
(24) holds with “<” instead of “≤”.

Proof of Corollary 1.3. The proofs of the monotonicity of the sequences pre-
sented in Corollary 1.3 are similar, so that we provide the details only for(
A

logk(n)
n

n

)
, k ∈ {1, 2, 3, 4, 5}. Let

fk(x) =
logk(x)

x
, Fk(x) =

fk(x)

fk(x+ 1)
− β

x log(x)

and

Qk(x) = log(x)− k − k

log(x+ 1)
log

(
1 +

1

x

)x

− β
1 + log(x)

log(x+ 1)

( log(x+ 1)

log(x)

)k+1

.
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By differentiation, we obtain

−x2 log(x)
( log(x+ 1)

log(x)

)k

F ′
k(x) = Qk(x).

Since Qk(x) tends to ∞ as x → ∞, there exists a number nk such that F ′
k(x) <

0 for x ≥ nk. Using
lim
x→∞

Fk(x) = 1

we conclude that Fk(x) > 1 for x ≥ nk. This leads to

1 +
β

x log(x)
<

fk(x)

fk(x+ 1)
. (27)

From (6) and (27) we get for n ≥ nk,

An+1 ≤ A
1+ β

n log(n)
n < A

fk(n)

fk(n+1)

n ,

which implies that
(
A

logk(n)
n

n

)
n≥nk

is strictly decreasing. For k ∈ {1, 2, 3, 4, 5}
and x ≥ 1250, we obtain

Qk(x) ≥ log(1250)− 5− 5

log(1251)
− β

1 + log(1250)

log(1251)

( log(1251)
log(1250)

)6

= 0.03....

It follows that
(
A

logk(n)
n

n

)
n≥1250

is strictly decreasing. More precisely, by direct

computation, we find that
(
A

logk(n)
n

n

)
n≥nk

is strictly decreasing, where nk is

exactly as given in the table.
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