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Abstract. Let X be an arbitrary set. Then a topology t on X is
said to be completely useful if every upper semicontinuous linear (to-
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1. Introduction

Let X be an arbitrary set. A linear (total) preorder ≾ on X is a reflexive,
transitive and linear (total) binary relation on X. In Bosi and Herden [4], a
topology t on X is said to be completely useful if every upper semicontinuous
linear (total) preorder ≾ on X can be represented by an upper semicontinuous
real-valued order preserving function f on the topological linearly preordered
space (X, t,≾).

We recall that a linear preorder ≾ on X is said to be upper semicontinuous
if, for every point x ∈ X, the set L(x) := {y ∈ X : y ≺ x} is an open subset
of X (clearly, ≺ is the strict (asymmetric) part of ≾).
Further, a function f : (X,≾) → (R,≤) is said to be order preserving if x ≾ y is
equivalent to f(x) ≤ f(y) for all x, y ∈ X. In correspondence to the definition
of an upper semicontinuous linear preorder ≾ on X, the function f : (X, t) →
(R, tnat) is said to be upper semicontinuous if {f < r} := {z ∈ X : f(z) < r} is
an open subset of X for every real number r (here, tnat is the natural topology
on X). Since perfectly analogous considerations hold for lower semicontin-
uous linear preorders and lower semicontinuous real-valued order preserving
functions, respectively, we shall simply refer to semicontinuous linear (total)
preorders and semicontinuous real-valued order preserving functions.

In Bosi and Herden [4] the particular relevance of semicontinuous linear
preorders and their representability by a semicontinuous real-valued order pre-
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serving function for the study of the interrelations between order and topology,
and the foundations of mathematical utility theory has been motivated and
underlined by many examples. Furthermore, in the same paper the funda-
mental problem of characterizing all completely useful topologies t on X has
been solved to some satisfactory degree. Thus, the reader is referred to Bosi
and Herden [4] for a first discussion of this characterization problem. It is
known that a completely useful topology t on X is in particular useful, in the
sense that every continuous linear preorder admits a continuous order preserv-
ing function. It is worth noticing that the concept of a useful topology, which
was introduced by Herden [10], has received some attention in the literature in
recent years (see, e.g., Bosi and Herden [5] and Bosi and Zuanon [6, 7]). On the
contrary, the notion of a completely useful topology was not studied, despite
for a characterization by second countability of lower preorderable topologies,
which was presented in Theorem 5.1 by Campión et al. [8], and the discussion,
presented by Bosi and Franzoi [3], about the possibility of generalizing such
concept to the case of non-total preorders.

A fundamental result (see [4, Lemma 4.1]) states that a completely useful
topology t onX must be short, i.e. there cannot exist any uncountable ordinal α
that can be order embedded into any of the ordered sets (t,⫋) or (t,⫌). The
shortness of a topology t on X is equivalent to two fundamental properties of t.
Indeed, t is short if and only if t is a hereditarily Lindelöf topology, i.e. for
every subset A of X and every open covering C of A there exists some countable
subcovering C′ ⊂ C of A, and hereditarily separable, i.e. every subspace

(
A, t|A

)
of (X, t) of some subset A of X is separable (see [4, Proposition 4.2]).

Unfortunately, shortness does not characterize completely useful topolo-
gies t on X. Indeed, there exist (at least) two different types of counterex-
amples which show that a short topology t on X is not necessarily completely
useful.

Example 1.1. Let X := [0, 1] × {0, 1}. Then we consider the natural lexico-
graphic order ≤L on X and choose the topology t on X that is generated by
the sets

d(r, i) := {(s, j) ∈ X : (s, j) ≤L (r, i)}
for r ∈ [0, 1] and i ∈ {0, 1} and

G(k, 1) := {(s, j) ∈ X : (k, 1) <L (s, j)} = (k, 1]× {0, 1}

for k ∈ [0, 1].
The definition of t implies that t is short. On the other hand, t is not

completely useful. Let, therefore, ≤L be the natural lexicographic order on X.
Then the definition of t implies that ≤L is a semicontinuous linear order on X.
Since ≤L has uncountably many jumps it cannot be representable by a semicon-
tinuous real-valued order preserving function f on X. We refer to [6, Section 2]
for the definition of jumps.
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The chain ({L(x)}x∈X ,⊂) of open subsets of X induces ≤L by setting

x ≤L y ⇐⇒ ∀z ∈ X, (y ∈ L(z) =⇒ x ∈ L(z)) .

The jumps of ≤L are defined by the uncountable family of open sets

L(s, 0) =
⋃

(r,i)<L(s,1)

L(r, i) ⫋ L(s, 1) ⫋
⋂

(s,1)<L(k,i)

L(k, i) = d(s, 1) ,

where s runs through [0, 1], which have the property that their topological
closures, that means

L(s, 0) =
⋃

(r,i)<L(s,1)

L(r, i) , L(s, 1) , and
⋂

(s,1)<L(k,i)

L(k, i) = d(s, 1) ,

coincide. This property characterizes the first type of a short topology that is
not completely useful.

Example 1.2. A chain (Z,≤) is said to be short if there exists no uncountable
ordinal α that can be order-embedded into (Z,<) or (Z,>). An uncountable
short chain (A,≤) is said to be an Aronszajn chain if every subchain (S,≤)
of (A,≤) that is representable by a real-valued order preserving function must
be countable. Aronszajn chains have been discussed by Beardon et al. [2] in
connection with the general utility representation problem. The properties of
Aronszajn chains or, equivalently, Specker types are discussed in Baumgart-
ner [1]. Let now (A,≤) be an arbitrarily chosen Aronszajn chain that only has
countably many jumps. Then we consider the upper order topology t≤u on A
that is generated by the sets L(a), where a runs through A. The shortness of
≤ implies that t≤u is a short topology on A. Clearly, ≤ is a semicontinuous
linear (total) preorder on X that can be defined with help of the sets L(a) in
the same way as ≤L in Example 1.1. Since (A,≤) only has countably many
jumps it follows that t≤u cannot contain uncountably many (open) sets L(x)
such that ⋃

L(y)⫋L(x)

L(y) ⫋ L(x) ⫋
⋂

L(x)⫋L(z)

L(z)

and ⋃
L(y)⫋L(x)

L(y) = L(x) =
⋂

L(x)⫋L(z)

L(z) .

This means that t≤u is of a different type than the topology that has been
considered in Example 1.1. Moreover, the definition of an Aronszajn chain
implies that ≤ cannot be represented by some semicontinuous real-valued or-
der preserving function. In this counterexample the topological closure O of
any non-empty open subset O of A is too thick. Indeed, it coincides with A.
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This means that there exist open subsets O of A for which there exists some
Aronszajn chain that can be order-embedded into the partially ordered set
(t(O,O),⊂) of all open subsets O ⊂ O′ ⊂ O of A. This property characterizes

the second type of a short topology that is not completely useful. The reader
may notice that the topology that has been considered in Example 1.1 is not
too thick.

Because of these considerations, the problem arises if the afore-presented
counterexamples are typical for short topologies t on X that are not completely
useful. We, thus, conjecture, that a topology t on X is completely useful if and
only if t is short and the afore-presented types of counterexamples cannot hold.
In the main Theorem 3.1 (see below) of this paper, we shall show that this
conjecture is actually true. This means that the results in Bosi and Herden [4]
on completely useful topologies t on X can be completed by, in some sense, the
best possible characterizations of completely useful topologies t on X.

The paper is structured as follows. Section 2 contains the definitions and
some lemmas showing the interrelations among the axioms. Section 3 is devoted
to the main theorem, containing the new characterizations of completely useful
topologies. Section 4 concludes the paper and presents future directions of
research.

2. Preliminaries

We introduce here the main notation and definitions which will be used through-
out the whole paper. First, given the topological space (X, t), denote by O the
collection of all chains (O,⊂) of (t,⊂).

Definition 2.1. Let X be some arbitrarily but fixed chosen set and let t be an
arbitrary topology on X.

(a) For every set O ∈ t, we denote by O(O,O) the set of all chains (O,⊂) ∈ O
such that O ⊂ O′ ⊂ O for every set O′ ∈ O.

(b) For every chain (O,⊂) ∈ O, we denote by P (O) the set of all pairs O′ ⫋
O ∈ O for which there exists some set O′′ ∈ O such that O′ ⫋ O′′ ⫋ O.

(c) t is said to be strongly separable if for every chain (O,⊂) ∈ O there exists
some countable subset Y of X such that (Y ∩O) \ O′ ̸= ∅ for every pair
of sets O′ ⫋ O ∈ P (O).

(d) t is said to be strongly thin if there exists no chain (O,⊂) ∈ O that
contains uncountably many sets O such that⋃

O∋O′⫋O

O′ ⫋ O ⫋
⋂

O⫋O′′∈O

O′′
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and ⋃
O∋O′⫋O

O′ = O =
⋂

O⫋O′′∈O

O′′

(e) t is said to be locally thin if there exists no open subset O of X for which
there exists some chain (O,⊂) ∈ O(O,O) that is order-isomorphic to
some Aronszajn chain.

(f) A collection {xi}i∈I of points xi ∈ X is said to be weakly isolated if
the cardinality of I is not greater than the cardinality of the real line
and if there exist some chain (O,⊂) belonging to O and some function
φ : {xi}i∈I → O such that⋃

O∋O′⫋φ(xi)

O′ ⫋ φ(xi) ⫋
⋂

φ(xi)⫋O′′∈O

O′′ ,

⋃
O∋O′⫋φ(xi)

O′ = φ(xi) =
⋂

φ(xi)⫋O′′∈O

O′′ ,

φ(xi) ̸= φ(xj), if i ̸= j and xi ∈ φ(xi) \
⋃

O∋O′⫋φ(xi)

O′ .

Remark 2.2. Our main Theorem 3.1 (see below) implies, in particular, that
a strongly separable topology t on X is separable. The converse does not
hold (see Examples 1.1 and 1.2). This consideration justifies the concept of a
strongly separable topology t on X given in the previous definition.

Let now (O,⊂) ∈ O be arbitrarily chosen. Then a gap of O is a pair (O,B)
of subsets of X that satisfies the following conditions:

G1: O =
⋃

O∋O′⊂O

O′ and B =
⋂

O⫋O′′∈O

O′′.

G2: There exists an open set O+ ∈ t \O such that O ⫋ O+ ⫋ B.

We say that (O,⊂) ∈ O is gap free if it has no gaps.

At this point, we give the definition of a thin topology.

Definition 2.3. A topology t on X is said to be thin if it satisfies the following
conditions:

T1: For every weakly isolated collection {xi}i∈I of points xi ∈ X, there exists
some open covering C of {xi}i∈I such that every set O ∈ C contains at
most countably many points xi.
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T2: There exists no open subset O of X for which there exists some chain
(O,⊂) ∈ O(O,O) the cardinality of which is not greater than the cardi-
nality of the real line and that has uncountably many gaps.

Remark 2.4. It is worth noting that, the topology t on X that has been
considered in Example 1.2 is thin but not locally thin. On the other hand, the
topology t on X that has been considered in Example 1.1 is locally thin but
not thin.

Now the following lemma holds.

Lemma 2.5. Let t be a short topology on X. Then in order for t to be thin it
is necessary and sufficient that t is strongly thin.

Proof. The sufficiency part of the lemma is trivial. The proof of the necessity
part is based upon the results in Herden and Pallack [11] that, in particular,
imply that a short topology t on X cannot contain chains (O,⊂) ∈ O the
cardinality of which is greater than the cardinality of the real line. Applying
this result and our assumption that t is a hereditarily Lindelöf topology on X,
condition T1 implies, with help of the transfinite induction argument as it has
been used, for instance, in the first part of the proof of Proposition 4.2 in Bosi
and Herden [4], that every weakly isolated collection {xi}i∈I of points xi ∈ X
must be countable. In addition, we may conclude from condition T2 with help
of this result that, for every open subset O of X, each chain (O,⊂) ∈ O

(
O,O

)
has at most countably many gaps. Summarizing these conclusions it follows
that t must be strongly thin.

Let us now consider an open subset O of X and some chain (O,⊂) ∈
O(O,O). Then the definition of a strongly thin topology t on X immediately
implies the following lemma, whose proof is omitted.

Lemma 2.6. Let t be a strongly thin topology on X. Then (O,⊂) has at most
countably many gaps.

Now, we recall that t is said to satisfy TIP (Transfinite Induction Proce-
dure) if, for every open subset O of X and every pair of open subsets O ⊂ O′

0 ⫋
O0 ⊂ O of X, the following construction by transfinite induction always leads
to a countable subchain of O(O,O):

• In the first step we set O0 := {O′

0, O0}.

• At non-limit steps α we choose an arbitrary gap (O,B) of Oα−1 and some
open set O+ ∈ t \Oα−1 such that O ⫋ O+ ⫋ B. Then Oα is the union
of Oα−1 with {O+}. In case that Oα−1 has no gaps we set O := Oα−1

and this finishes the transfinite induction process.

• At limit steps α we set Oα :=
⋃

β<α

Oβ .
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Let now ≤ be an arbitrary semicontinuous linear (total) preorder on X and
consider for every point x ∈ X the corresponding open subset L(x). Finally,
Lemma 2.6 implies, with help of a transfinite induction argument (that is sim-
ilar to the construction in the appendix of Beardon et al. [2]), the validity of
the following lemma.

Lemma 2.7. Let t be a strongly thin topology on X. Then in order for t to be
locally thin it is necessary and sufficient that t satisfies TIP.

3. The characterization theorem

Theorem 3.1. Let t be an arbitrary topology on X. Then the following asser-
tions are equivalent:

(i) t is completely useful.

(ii) t is strongly separable.

(iii) t is short, thin and locally thin.

(iv) t is a hereditarily separable, thin, locally thin and hereditarily Lindelöf
topology.

Proof. (i) ⇐⇒ (ii) : This equivalence corresponds to the equivalence of the
assertions (i) and (iv) of Theorem 4.11 in Bosi and Herden [4].

(i) ∧ (ii) =⇒ (iii) : The implication “(v) =⇒ (vi)” of Theorem 4.11 or,
alternatively, Lemma 4.1 in Bosi and Herden [4] imply that t is short. In addi-
tion, the afore-presented transfinite induction procedure, in combination with
the arguments of the proof of the implication “(i) =⇒ (ii)” of Theorem 4.11 in
Bosi and Herden [4], allow us to conclude that t must be locally thin. Finally,
it is an easy task to verify that a strongly separable topology t on X is strongly
thin and, thus, also thin.

(iii) ⇐⇒ (iv) : This equivalence is an immediate consequence of Proposi-
tion 4.2 in Bosi and Herden [4].

(iii) ∧ (iv) =⇒ (ii) : Let (O,⊂) ∈ O be an arbitrarily chosen chain. Then
two sets O′, O ∈ O are said to be equivalent if O′ = O. The corresponding
equivalence classes are abbreviated as usual by [O]. Now we choose in every
equivalence class [O] some fixed set O. The subchain of (O,⊂) that consists
of these sets O is denoted by (O′,⊂). In a first step we show that there exists
some countable subset Y ′ of X such that Y ′ ∩ (O \ O′) ̸= ∅ for every pair of
sets O′ ⫋ O ∈ O′. Therefore, we have to distinguish the following four cases:

(1) (O′,⊂) has a first and a last element;

(2) (O′,⊂) has a first but no last element;
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(3) (O′,⊂) has no first but a last element;

(4) (O′,⊂) has neither a first nor a last element.

Since all these cases can be settled by analogous arguments we concentrate
on the case (O′,⊂) to neither have a first nor a last element. Let (Z,≤)
be the chain of integers. The shortness of t implies the existence of some
countable subchain (O′

0,⊂) := ({Oz}z∈Z,⊂) of (O′,⊂) such that for every
set O ∈ O′ there exist sets Oz, Oz′ ∈ O′

0 such that Oz ⊂ O ⊂ Oz′ and
Oz ⊂ Oz′ ⇐⇒ z ≤ z′. Now we set Uz := Oz \ Oz−1 for every z ∈ Z. The
definition of O′ implies that Uz ̸= ∅ for every z ∈ Z and that Uz ∩ Uz′ = ∅
for every pair of different integers z, z′. In this way we, thus, have obtained
a countable set T0 := {Uz : z ∈ Z} of pairwise disjoint open subsets of X.
Starting with O′

0 and T0 we now construct by transfinite induction a tree (T,⊃)
that at each level γ consists of pairwise disjoint (non-empty) open subsets of X.

Let, therefore, 0 < α be not a limit ordinal. Then we consider the set
G(O′

α−1) of all pairs (O,B) that satisfy with respect to O′
α−1 condition G1 of

the definition of a gap. In case that G(O′
α−1) = ∅ we set (T,⊃) := (Tα−1,⊃)

and this finishes the transfinite induction process. Otherwise, we choose, for
every pair (O,B) ∈ G(O′

α−1), an arbitrary pair of sets O′′ ⫋ O′ ∈ O′ such
that O ⊂ O′′ ⫋ O′ ⊂ B in order to then consider in this way the obtained
additional open sets O′ \O′′. Because of the definition of O′ no additional set
O′ \O′′ is empty. This conclusion allows us to define O′

α as the union of O′
α−1

with all new sets O′′ and O′ and Tα as the union of Tα−1 with all additional
open subsets O′ \O′′of X that have been obtained in the afore-described way.
Obviously, (Tα,⊃) is a tree that at each level γ consists of pairwise disjoint
(non-empty) open subsets of X.

In case that α is a limit ordinal we set O′
α :=

⋃
β<α

O′
β and Tα :=

⋃
β<α

Tβ .

Also in this case (Tα,⊃), clearly, is a tree that at each level γ consists of pairwise
disjoint (non-empty) open subsets of X.

Since t is short, T cannot contain uncountably many pairwise disjoint open
sets. Because of the construction of (T,⊃) we have, in particular, that (T,⊃)
cannot contain branches of uncountable length and that (T,⊃) at each level γ
only contains countably many branches. The reader may notice that γ does
not necessarily correspond to the ordinal α that has been considered in the
construction of (T,⊃). Of course, the construction of (T,⊃) does not exclude
that (T,⊃) is an Aronszajn tree (see, for instance, Jech [13]), because the
previous observations only imply that the least upper bound of the lengths
of all branches of (T,⊃) is ℵ1. We now show that the least upper bound of
the lengths of all branches of (T,⊃) cannot be greater than the first infinite
cardinal ℵ0. Indeed, the separability of t implies the existence of some countable
subset S of X such that S = X. The countability of S implies with help of



COMPLETELY USEFUL TOPOLOGIES (9 of 12)

the construction of (T,⊃) that there exists some countable ordinal α such
that S ∩ U = ∅ for every ordinal ξ > α and every open set U ∈ Tξ \ Tα,
which contradicts the property that S is a dense subset of X. Hence, we may
actually conclude that the least upper bound of the lengths of all branches
of (T,⊃) cannot be greater than ℵ0. We recall that an analogous argument
implies that a separable chain does not allow the construction of an Aronszajn
tree (T,⊃) that consists of non-empty open intervals that at each level of (T,⊃)
are pairwise disjoint. Since (T,⊃) is not an Aronszajn tree, we may summarize
our considerations in order to conclude that T is a countable set. By choosing
in every open set U ∈ T some point y we, thus, obtain a countable subset Y ′

of X. Let now some pair O′ ⫋ O ∈ O′ of sets be arbitrarily chosen. At this
point, we have to prove that (Y ′ ∩O) \O′ ̸= ∅. The construction of T0 implies
that there exists some set Uz ∈ T0 such that (Uz ∩ O) \ O′ ̸= ∅. Hence, an
analysis of the construction of (T,⊃) allows us to conclude that there exists
some ordinal α and some set U ∈ Tα such that U ⊂ (O \O′), which means that
(Y ′ ∩O) \O′ ̸= ∅.

Now, since t is locally thin we may apply the chain “(ii) =⇒ (iii) =⇒ (v)”
of implications of the proof of Theorem 4.11 in Herden and Bosi [4]. It follows
that for every equivalence class [O] there exists some countable subset YO

of X such that (YO ∩ O′) \ O′′ ̸= ∅ for every pair of sets O′′ ⫋ O′ ∈ P ([O]).
Therefore, the proof of the desired implication will be finished if we are able
to show that there exist at most countably many equivalence classes [O] that
contain pairs of sets O′′ ⫋ O ⫋ O′ ∈ O. Let E be the set of these crucial
equivalence classes. Indeed, in case that E is a countable set we may take

Y := Y ′ ∪
⋃

[O]∈E

YO and nothing remains to be shown. In order to prove that E

is a countable set we choose in every equivalence class [O] ∈ E arbitrary but
fixed sets O′′ ⫋ O ⫋ O′ ∈ O and consider the subchain (O′′,⊂) of (O,⊂) that
consists of these sets O′′ ⫋ O ⫋ O′. Since t is thin and, due to Lemma 2.5
also strongly thin, we may conclude that (O′′,⊂) is a countable chain, which
implies that E actually is a countable set. This last conclusion completes the
proof of the theorem.

Throughout the literature, the only theorem on completely useful topolo-
gies that is well known is the Rader’s theorem [15], which states that every
second countable topology t on X is completely useful. Unfortunately Rader’s
proof of this theorem contained the same mistake as the first proof of De-
breu [9] of his famous Open Gap Lemma. This mistake has been discovered
by Mehta [14]. Meanwhile, there exist several correct proofs of Rader’s theo-
rem (see, for instance, Isler [12] or Richter [16]). In this context, Theorem 3.1
widely generalizes Rader’s theorem. Indeed, there may even exist completely
useful Hausdorff-topologies t on X that are not first countable (see Example 3.2
below).
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Example 3.2. Let, therefore, X := [0, 1] where [0, 1] denotes the standard
real interval. Then we consider the topology t on X that is generated by the
closed, respectively half open half closed, intervals [0, r] and ]s, 1], where r
runs through all reals that are greater than 0 but not greater than 1 and s
runs through all reals that are smaller than 1 but not smaller than 0. Clearly,
Theorem 3.1 implies that t is a completely useful topology on X. Furthermore,
the definition of t implies that t is a Hausdorff-topology on X that is not first
countable.

It seems that Theorem 3.1 hardly can be improved. The assumption that t
must be thin cannot be weakened. Indeed, there exist even compact Hausdorff-
spaces that are short and locally thin but not thin as the following example
shows.

Example 3.3. Let [0, 1] be the set of all reals that are not smaller than 0 and
not greater than 1. Then we choose the set X := [0, 1] × {0, 1} endowed with
its natural (linear) lexicographic order ≤L. In a similar way as in Example 1.1
we consider the topology t on X that is generated by the sets

d(r, i) := {(s, j) ∈ X : (s, j) ≤L (r, i)}

for r ∈ [0, 1] and i ∈ {0, 1},

G(k, 1) := {(s, j) ∈ X : (k, 1) <L (s, j)} = (k, 1]× {0, 1}

for k ∈ [0, 1],
U0 := {(r, 0) : r ∈ [0, 1]}

and
U1 := {(r, 1) : r ∈ [0, 1]} .

With help of the definition of t and the standard argument that proves
the compactness of the real interval [0, 1] it follows that t∣∣U0

as well as t∣∣U1

are compact Hausdorff-topologies on U0 and U1 respectively. Since U0 and U1

define a partition of X into two disjoint open subsets of X we, thus, may con-
clude that (X, t) is a compact Hausdorff-space. In addition, we may conclude
as in Example 1.1 that t is short, locally thin but not thin. This concludes the
example.

4. Conclusions

In this paper we have presented several characterizations of completely useful
topologies, i.e. topologies for which every upper semicontinuous linear (total)
preorder admits an upper semicontinuous order preserving function. Such char-
acterizations are based on the types of non-representability of chains. Results
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of this kind are interesting not only from a purely theoretical point of view, but
also for their (well-known) applications to Economics and Decision Theory. In
a future paper, we shall consider the possibility of incorporating the Souslin
Hypothesis (see [17]), in order to simplify the characterizations.
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