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Eglantina Kalluçi and Bujar Xh. Fejzullahu
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1. Introduction and main results

The confluent hypergeometric function, which is defined as

1F1(a; b;x) =

∞∑
n=0

(a)n
(b)n

xn

n!

for b ̸= 0,−1, ..., has been studied in great detail from its mathematical point of
view (see, for instance, [4, 12, 20]). In particular, the estimate of the confluent
hypergeometric function 1F1(a; b;x), as well as for its particular cases, has been
considered in several papers from different point of views (see [1, 2, 5, 8, 9, 10,
11, 13, 16, 18, 19, 21], and references therein). For instance, Luke [11] and
Carlson [5] proved the following inequalities, respectively,

1F1(a; b;x) <
(b− 1)ex

(b− a− 1)(1 + x)
, x > 0, b− 1 > a > 0, (1)

1F1(a; b;x) < 1− a

b
+

a

b
ex, x > 0, b > a > 0, (2)

whereas in [8] it has been showed that

|1F1(a; b;x)| ≤ ex, (3)

where a < 0, b > 1, x ≥ 0, and equality holds only when x = 0.
On the other hand, the estimate of the cumulative gamma distribution

F (x;α, λ), which in terms of the confluent hypergeometric functions can be
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written as

F (x;α, λ) =
(λx)αe−λx

αΓ(α)
1F1(1;α+ 1;λx), x, α, λ > 0,

has been studied, among others, in [9, 13, 16, 18, 19]. In particular, in [9] the
sharper inequality than (2) has been obtained when a = 1, i.e.

1F1(1; b;x) ≤ min


1− 1

b + 1
b e

x − (b−1)x2

2b(b+1) ,

1

(1− x
b )

+ ,
x > 0, b > 1. (4)

As has been remarked in [8], from the asymptotics

1F1(a; b;x) =
Γ(b)

Γ(a)
xa−bex[1 +O(x−1)], x → +∞, (5)

where a is not a negative integer or zero, it follows that ex in (3) cannot be
replaced by any ecx, 0 ≤ c < 1, when x → ∞. In the case when a is a negative
integer or zero, we have

max
x≥0

e−
x
2 |1F1(a; b;x)| = 1, b > 1. (6)

On the other hand, it is well known that, for a < 0 and b > 0, there are
precisely −⌊a⌋ positive zeros of 1F1(a; b;x) (see [14, §13.9]). All these real zeros
of 1F1(a; b;x), except at most one, lie in the oscillatory interval I = (0, x+),
where (see Appendix A)

x+ =

2(b− 2a) if 0 < b ≤ 2,

b− 2a+
√

(b− 2a)2 + b(2− b) if b ≥ 2.

When x ∈
(
0, (2b−1)(b−2a)

b

)
, the following sharp inequality has been established

in [8]:

|1F1(a; b;x)| ≤ e
x
2 ,

where a < 0 and b > 2. Obviously, for large b we have x+ < (2b−1)(b−2a)
b .

We note that, according to (5), inequalities (1), (2), (3) and (4) are not
sharp when x becomes large. In this paper we obtain some new inequalities
for the confluent hypergeometric function which, at least for large x, improve
inequalities (1), (2), (3) and (4).
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Here is our results.

Theorem 1.1. (i) For x > 0, a < 0 and ℜe(b) > 1

xℜe(b)−1e−x−π
2 |ℑm(b)| |1F1(a; b;x)| ≤

|Γ(b)|
2π

B

(
1

2
,
ℜe(b)− 1

2

)
, (7)

where B(·, ·) is beta function.
(ii) For x > 0, a > 0 and ℜe(b)− a > 1

xℜe(b)−a−1e−x−1−π
2 |ℑm(b)| |1F1(a; b;x)| ≤

|Γ(b)|
2π

B

(
1

2
,
ℜe(b)− a− 1

2

)
. (8)

(iii) For x > 0, 2a < b and b > 0

x
b
2 e−x |1F1(a; b;x)| ≤

Γ(b)

2Γ(b− a)

√
22a−b(b− 2a+ 1)Γ(b− 2a). (9)

Next, for some special cases of parameters and argument, we compare our
results with (1), (2), (3) and (4).

(i) For a < 0, b > 1 and

x >

[
Γ(b)

2π
B

(
1

2
,
b− 1

2

)] 1
b−1

,

the inequality (7) is sharper than the inequality (3).

(ii) When a > 0, b > a+ 2 and x is large, the inequality (8) is sharper than
the inequality (1).

(iii) For a > 0, b− a > 1 and

x >

[
Γ(b+ 1)

2aπ
B

(
1

2
,
b− a− 1

2

)] 1
b−a−1

,

the inequality (8) is sharper than the upper bound of (2).

(iv) At least when x is large and

• a > 1, b > 2a;

• a > 0, b > 2a;

• a < 0, b > 0;

the inequality (9) is sharper than the inequality (1), the upper bound
of (2), and the inequality (3), respectively.
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(v) At least when x is large and a = 1, b > 2 the inequalities (8) and (9) are
sharper than the inequality (4).

Remark 1.2. Using inequalities for Pochhammer symbol (see [7])

|(α)n| ≤ (|α|)n ,

|(α)n| ≥
(
cos

θ

2

)n−1

(|α|)n , θ = arg(α), |θ| < π, n ∈ N

we obtain

|1F1(a; b;x)| ≤ cos
θ

2
1F1

(
|a|; |b|; |x| sec θ

2
)

)
, θ = arg(b), |θ| < π.

With the help of this observation, we can obtain the complex extensions of
inequalities (1), (2), (7), and (8) for a > 0.

2. Proof of Theorem 1.1

(i) The proof is based on the well-known inverse Laplace transform of 1F1 (see
[12, p. 60])

1F1(a; b;x) =
Γ(b)

2πi

∫ γ+i∞

γ−i∞
ett−b

(
1− x

t

)−a

dt,

where x > 0, ℜe(b) > 0 and γ > x, which can be transformed to the integral
over the real axis

1F1(a; b;x) =
Γ(b)

2π

∫ +∞

−∞
eγ+iδ(γ + iδ)−b

(
1− x

γ + iδ

)−a

dδ. (10)

Taking absolute values in (10) we get

e−γ−π
2 |ℑm(b)| |1F1(a; b;x)| ≤

|Γ(b)|
2π

∫ +∞

−∞
(γ2 + δ2)−

ℜe(b)
2 dδ

=
|Γ(b)|
π

∫ +∞

0

(γ2 + δ2)−
ℜe(b)

2 dδ

<
|Γ(b)|
π

∫ +∞

0

(x2 + δ2)−
ℜe(b)

2 dδ,

where a < 0 and we implement inequalities

|zc| = |z|ℜe(c)e−ℑm(c)·arg(z) ≤ |z|ℜe(c)e
π
2 |ℑm(c)|, ℜe(z) > 0.∣∣∣∣1− x

γ + iδ

∣∣∣∣ < 1, x < 2γ.
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Now, taking into account the integral (see [17, p. 295])∫ +∞

0

(z2 + t2)−ρdt =
z1−2ρ

2
B

(
1

2
, ρ− 1

2

)
,

where ℜe(z) > 0 and ℜe(ρ) > 1
2 , we have

xℜe(b)−1e−γ−π
2 |ℑm(b)| |1F1(a; b;x)| <

|Γ(b)|
2π

B

(
1

2
,
ℜe(b)− 1

2

)
.

If for any finite x > 0 we choose γ such that γ = x+ ϵ, ϵ > 0, we get

xℜe(b)−1e−x−π
2 |ℑm(b)| |1F1(a; b;x)| < eϵ

|Γ(b)|
2π

B

(
1

2
,
ℜe(b)− 1

2

)
.

Since the above inequality holds for any ϵ > 0, we get the desired result (7) for
any finite x > 0.

On the other hand, according to (5) and (6), we have for large x > 0

xℜe(b)−1e−x−π
2 |ℑm(b)| |1F1(a; b;x)| = o(1),

where a < 0 and ℜe(b) > 1. This completes the proof of case (i).
(ii) By making use of (10) and the fact that for x < γ − 1

|(γ − x) + iδ| > 1,

the proof of (8) can be completed by following the proof of (7).
(iii) For the proof of (9), we shall use the Mellin–Barnes integral represen-

tation (see [15, §3.4.1])

1F1(a; b;−x) =
Γ(b)

2πiΓ(a)

∫ γ+i∞

γ−i∞

Γ(a+ s)Γ(−s)xs

Γ(b+ s)
ds,

where ℜe(x) > 0 and 0 > γ > −ℜe(a), which can be transformed to the integral
over the real axis

1F1(a; b;−x) =
Γ(b)

2πΓ(a)

∫ +∞

−∞

Γ(a+ γ + iδ)Γ(−γ − iδ)xγ+iδ

Γ(b+ γ + iδ)
dδ.

In particular, for γ = − b
2 we have

1F1(a; b;−x) =
Γ(b)

2πΓ(a)

∫ +∞

−∞

Γ
(
a− b

2 + iδ
)
Γ
(
b
2 − iδ

)
x− b

2+iδ

Γ
(
b
2 + iδ

) dδ.

Since
Γ(z) = Γ(z),
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it follows that
|Γ(z)| = |Γ(z)| .

Thus, for 0 < b < 2a and x > 0

|1F1(a; b;−x)| ≤ Γ(b)x− b
2

2πΓ(a)

∫ +∞

−∞

∣∣∣∣Γ(
a− b

2
+ iδ

)∣∣∣∣ dδ.
On the other hand, applying Ramanujan’s remarkable integrals involving gamma
functions, it is easily observed that (see Appendix B for details)∫ +∞

−∞
|Γ(x+ iy)| dy ≤ π

√
Γ(2x+ 2)

22x+1x
. (11)

Thus,

|1F1(a; b;−x)| ≤ Γ(b)x− b
2

2Γ(a)

√
2b−2a(2a− b+ 1)Γ(2a− b).

Finally, based on the Kummer transformation

1F1(a; b;−x) = e−x
1F1(b− a; b;x),

we obtain, after some algebraic operations, the proof of inequality (9).

A. The oscillatory interval

A remarkable result established by Tricomi (see [22]) states that the positive
zeros of 1F1(a; b;x), possibly with the exception of the largest, have the upper
bound

x+ = b− 2a+
√
(b− 2a)2 + b(2− b).

Later on, this result has been proved by several authors by using different
approaches (see, for instance, [6, 23], and references therein).

Here we improve the Tricomi result when 0 < b ≤ 2. For this, we need the
following result due to Picone (see [23]):
Let p and q be two functions with first and second derivatives in some interval
(x1, x2). Consider the self-adjoint linear second order differential equation

[p(x)y′(x)]′ + q(x)y(x) = 0. (12)

If p and q have different signs in (x1, x2), then the solutions y can vanish at
most once in that interval.

It is straightforward to check that the function y(x) = e−
x
2 1F1(a; b;x) sat-

isfies the following self-adjoint linear second order differential equation (see, for
instance, [8])

(xby′(x))′ +
2b− 4a− x

4
xb−1y(x) = 0,
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which corresponds to equation (12) with

p(x) = xb, q(x) =
2b− 4a− x

4
xb−1.

Thus, for a < 0 and b > 0, the functions p and q have different signs in
(2b−4a,∞). Now, by Picone’s result, we conclude that the function 1F1(a; b;x)
has at most one zero on the interval (2b− 4a,+∞).

B. Proof of inequality (11)

By using different estimates of gamma function, next we present several in-
equalities for the integral ∫ +∞

−∞
|Γ(x+ iy)| dy.

(i) Taking into account Ramanujan’s integrals involving gamma functions
(see, for instance, [3])∫ +∞

−∞

∣∣∣∣ Γ(x+ iy)

Γ(z + 1 + iy)

∣∣∣∣2 dy
=

√
πΓ(x)Γ

(
x+ 1

2

)
Γ
(
z − x+ 1

2

)
Γ(z + 1)Γ

(
z + 1

2

)
Γ(z − x+ 1)

, 0 < x < z +
1

2
,

∫ +∞

−∞
|Γ(x+ iy)|2 dy = π21−2xΓ(2x), x > 0,

and using Cauchy–Schwarz inequality we have(∫ +∞

−∞
|Γ(x+ iy)| dy

)2

≤
∫ +∞

−∞
|Γ(x+ 1 + iy)|2 dy

×
∫ +∞

−∞

∣∣∣∣ Γ(x+ iy)

Γ(x+ 1 + iy)

∣∣∣∣2 dy =
π2Γ(2x+ 2)

22x+1x
,

which proves inequality (11).
(ii) Taking into account inequalities (see [7])

|Γ(x+ iy)| < e2Γ(x+ 1)

|x+ iy|
e−

π
2 |y|, x > 0, |y| ≤ 2

π
,

|Γ(x+ iy)| < 2
1
2−x e

√
Γ(2x+ 2)

|x+ iy|

(π
2
|y|

)x+ 1
2

e−
π
2 |y|, x > 0, |y| ≥ 2

π
,
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it is straightforward to show that∫
|y|≤ 2

π

|Γ(x+ iy)| dy <
4e(e− 1)

π
Γ(x),

∫
|y|≥ 2

π

|Γ(x+ iy)| dy < 2
1
2−x eπ

2
√
Γ(2x+ 2)√

(πx)2 + 4
Γ

(
x+

3

2
, 1

)
,

where Γ(·, ·) is incomplete gamma function.

As consequence,

∫ +∞

−∞
|Γ(x+ iy)| dy <

4e(e− 1)

π
Γ(x)

+
eπ2

√
Γ(2x+ 2)

2x−
1
2

√
(πx)2 + 4

Γ

(
x+

3

2
, 1

)
. (13)

(iii) Using inequality (see [14, §5.6])

|Γ(x+ iy)| ≤
√
2π(x2 + y2)

2x−1
4 e−

π
2 |y|e

1
6|x+iy| , x > 0,

≤
√
2π(x2 + y2)

2x−1
4 e−

π
2 |y|e

1
6x

we get ∫ +∞

−∞
|Γ(x+ iy)| dy ≤ 2

√
2πe

1
6x

∫ +∞

0

(x2 + y2)
2x−1

4 e−
π
2 |y|

Now we can apply equation (see [14, (11.2.5)] and [17, p. 323])

∫ +∞

0

(x2 + y2)νe−µydy =

√
π

2

(
2x

µ

)ν+ 1
2

Γ(ν + 1)Kν+ 1
2
(µx),

where | arg(x)| < π, ℜe(µ) > 0 and Kν(·) is Struve function of the second kind,
to yield

∫ +∞

−∞
|Γ(x+ iy)| dy ≤ π

√
2e

1
6x

(
4x

π

) 2x+1
4

Γ

(
2x+ 3

4

)
×K 2x+1

4

(πx
2

)
. (14)

In our opinion inequality (11) is to be preferred over inequalities (13) and (14),
because the upper bound of (11) is given in terms of simplest functions.
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[2] Á. Baricz, A. Laforgia, and Pogány T.K., Van der Corput inequalities for
bessel functions, Integral Transforms Spec. Funct. 26 (2015), 78–87.

[3] N. Berisha, F. Berisha, and B. Xh. Fejzullahu, Some Fourier transforms
involving confluent hypergeometric functions, Integral Transforms Spec. Funct.
(2024), (In Press). https://doi.org/10.1080/10652469.2024.2325429.

[4] Herbert Buchholz, The confluent hypergeometric function, Springer, Berlin,
1969.

[5] B. C. Carlson, Some inequalities for hypergeometric functions, Proc. Amer.
Math. Soc. 17 (1966), 32–39.

[6] A. Deaño, A. Gil, and J. Segura, Computation of the real zeros of the Kum-
mer function M(a; c;x), Mathematical Software-ICMS 2006, Lecture Notes in
Comput. Sci., vol. 4151, Springer, Berlin, 2006, pp. 296–307.

[7] T. Erber, Inequalities for hypergeometric functions, Arch. Rational Mech. Anal.
4 (1960), 341–351.

[8] B. Xh. Fejzullahu, On the maximum value of a confluent hypergeometric func-
tion, C. R. Math. Acad. Sci. Paris 359 (2021), 1217–1224.
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(10 of 10) E. KALLUÇI AND B. FEJZULLAHU

Press, Cambridge, 1960.
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