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On generating functions of extended
Jacobi polynomials
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Abstract. In this paper we have obtained some novel generating func-
tions of Fn(α, β−α;x) – a modified form of the extended Jacobi polyno-
mial Fn(α, β;x) – by means of Weisner’s group-theoretic method with
the suitable interpretation of the parameter α of the polynomial under
consideration. Moreover, we have shown that the generating functions
involving the extended Jacobi polynomial Fn(α, β;x) derived in [2], ob-
tained by using the same Weisner’s group-theoretic method with the
suitable interpretation of (α, β), can be easily obtained from our results.
Finally, a group-theoretic method of obtaining general bilateral generat-
ing relation from general unilateral generating relation is also discussed.
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1. Introduction

Various methods viz classical, theory of Lie groups (usually known as group-
theoretic method) etc. are adopted in the investigation of generating functions
for the special functions. But the group-theoretic method in the study of
problems on generating functions is much more important than the analytic
method, because of the fact that a completely new generating function can
only be discovered by the group-theoretic method, whereas a relation involving
generating function can be verified and the corresponding natural extension
can be made by analytic method.

The group-theoretic method in the investigation of generating functions was
originally introduced by L. Weisner [9, 10, 11] while investigating hypergeomet-
ric function, Hermite function and Bessel function. Weisner’s method is lucidly
presented in the monograph “Obtaining generating functions” written by E. B.
McBride [5].

The unified presentation for the classical orthogonal polynomials was origi-
nally introduced by I. Fujiwara [3]. This was subsequently designated by N. K.
Thakare [8] as extended Jacobi polynomial, denoted by Fn(α, β;x) and defined
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by

Fn(α, β;x) =
(−1)n

n!
(x− a)−α(b− x)−β

(
λ

b− a

)n

×Dn
[
(x− a)n+α(b− x)n+β

]
, D ≡ d

dx ,

satisfying the following ordinary differential equation:

(x− a)(b− x) d
2y

dx2 +
{
(α+ 1)(b− x)− (β + 1)(x− a)

}
dy
dx

+ n(1 + α+ β + n)y = 0 .

The aims of the present article are the following:

(i) to investigate Fn(α, β − α;x), a modified form of the extended Jacobi
polynomial, satisfying the following ordinary differential equation:

(x− a)(b− x) d
2y

dx2 +
{
(α+ 1)(b− x)− (β − α+ 1)(x− a)

}
dy
dx

+ n(1 + β + n)y = 0 (1)

by the Weisner’s group-theoretic method, with the single interpretation
of the parameter α of the polynomial, for obtaining some novel generating
functions,

(ii) to show that the generating functions derived in [2], while investigating
Fn(α, β;x) by the Weisner’s group-theoretic method with the double in-
terpretation of the parameters (α, β), can be immediately obtained from
our results by the mere replacement of β by β + α,

(iii) to obtain some novel results involving Laguerre and Jacobi polynomials
as special cases of our results, and finally

(iv) to discuss a group-theoretic method of obtaining general bilateral gener-
ating relation from the general unilateral generating relation.

For previous works related to extended Jacobi polynomial one can see [1, 6, 7].

2. Group-theoretic discussion and Lie algebra

Replacing d
dx by ∂

∂x , α by y ∂
∂y and y by v(x, y) in (1), we get the following

partial differential equation:[
(x− a)(b− x) ∂2

∂x2 +
{(

y ∂
∂y + 1

)
(b− x)−

(
β − y ∂

∂y + 1
)
(x− a)

}
∂
∂x

+ n(1 + β + n)

]
v(x, y) = 0. (2)
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Thus v1(x, y) = Fn(α, β − α;x)yα is a solution of (2), since Fn(α, β − α;x) is
a solution of (1).

We now define the infinitesimal operators Ai (i = 1, 2, 3),

Ai = A
(1)
i

∂
∂x +A

(2)
i

∂
∂y +A

(0)
i , i = 1, 2, 3

as follows:

A1 = y ∂
∂y ,

A2 = (x− b)y ∂
∂x − y2 ∂

∂y + βy ,

A3 = (x− a)y−1 ∂
∂x + ∂

∂y ,

such that

A1(Fn(α, β − α;x)yα) = αFn(α, β − α;x)yα ,

A2(Fn(α, β − α;x)yα) = (β − α+ n)Fn(α+ 1, β − α− 1;x)yα+1 , (3)

A3(Fn(α, β − α;x)yα) = (n+ α)Fn(α− 1, β − α+ 1;x)yα−1.

We now proceed to find the commutator relations. Using the notation:

[A,B]u = (AB −BA)u,

we have

[A1, A2] = A2, [A1, A3] = −A3, [A2, A3] = 2A1 − β. (4)

From the above commutator relations, we state the following theorem:

Theorem 2.1. The set of operators {1, Ai : i = 1, 2, 3}, where 1 stands for the
identity operator, generates a Lie algebra L .

It is easy to verify that the partial differential operator L, given by

Lv = (x− a)(b− x)
∂2v

∂x2
+ (b− x)y

∂2v

∂y∂x
+ (b− x)

∂v

∂x

− (β + 1)(x− a)
∂v

∂x
+ (x− a)y

∂2v

∂y∂x
+ n(1 + β + n)v,

can be expressed in terms of Ai (i = 1, 2, 3) as follows:

L = −A2A3 −A2
1 + (1 + β)A1 + n(1 + β + n). (5)

From (4) and (5), one can easily verify that L commutes with eachAi(i = 1, 2, 3)
i.e.,

[L,Ai] = 0, i = 1, 2, 3. (6)
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The extended form of the groups generated by Ai(i = 1, 2, 3) are as follows:

ea1A1f(x, y) = f(x, ea1y),

ea2A2f(x, y) = (1 + a2y)
βf

(
x+ (x− b)a2y,

y

1 + a2y

)
, (7)

ea3A3f(x, y) = f

(
x+ a3

x− a

y
, y + a3

)
.

Therefore, from above, we get

ea3A3ea2A2ea1A1f(x, y) =
{
1 + a2y

(
1 + a3

y

)}β

(8)

× f

({
x+ a3

y (x−a)
}{

1+a2y
(
1+ a3

y

)}
− ba2y

(
1+ a3

y

)
,

y
(
1+

a3

y

)
{
1+a2y

(
1+

a3

y

)}
)
.

3. Generating functions

From (2), v(x, y) = Fn(α, β − α;x)yα is a solution of the system:

Lv = 0

(A1 − α)v = 0.

From (6), we easily get

SL (Fn(α, β − α;x)yα) = LS(Fn(α, β − α;x)yα) = 0,

where

S = ea3A3ea2A2ea1A1 .

Therefore, the transformation S(Fn(α, β − α;x)yα) is also annulled by L.
Putting a1 = 0 and replacing f(x, y) by Fn(α, β − α;x)yα in (8), we get

ea3A3ea2A2(Fn(α, β−α;x)yα) =
{
1+a2y

(
1+ a3

y

)}β−α (
1+ a3

y

)α
yα (9)

× Fn

(
α, β−α;

{
x+ a3

y (x−a)
}{

1+a2y
(
1+ a3

y

)}
− ba2y

(
1+ a3

y

))
.

On the other hand

ea3A3ea2A2(Fn(α, β − α;x)yα)

=

∞∑
k=0

∞∑
p=0

(−a2y)
k

k!

(−a3/y)
p

p!
(−α− n− k)p(α− β − n)k

× Fn(α+ k − p, β − α+ p− k;x)yα. (10)



ON EXTENDED JACOBI POLYNOMIALS (5 of 10)

Equating (9) and (10), we get{
1+a2y

(
1+ a3

y

)}β−α (
1+ a3

y

)α
× Fn

(
α, β−α;

{
x+ a3

y (x−a)
}{

1+a2y
(
1 + a3

y

)}
− ba2y

(
1+ a3

y

))
=

∞∑
k=0

∞∑
p=0

(−a2y)
k

k!

(−a3/y)
p

p!
(−α− n− k)p(α− β − n)k

× Fn(α+ k − p, β − α+ p− k;x). (11)

The above generating relation does not seem to appear in the earlier works
and this, in turn, yields some particular novel generating relations for different
values of a2 and a3.

Before discussing the particular cases of (11), it may be pointed out that
the operators A2 and A3 being non-commutative, the relation (11) will change
if we change the order of the element ea3A3ea2A2 . In fact, by this change, we
get the following generating relation

(1+a2y)
β−α

(
1+ a3

y (1+a2y)
)α

× Fn

(
α, β−α; {x+(x−b)a2y}

{
1+ a3

y (1+a2y)
}
− aa3

y (1+a2y)
)

=

∞∑
k=0

∞∑
p=0

(−a2y)
k

k!

(−a3/y)
p

p!
(−n− α)p(α− β − p− n)k

× Fn(α+ k − p, β − α− k + p;x). (12)

The above pair of generating relations, given by (11) and (12) does not seem
to appear before.

We now consider the following particular cases of the relation (11):

Case 1. Putting a3 = 0 and then replacing (−a2y) by t in (11), we get

(1− t)β−αFn(α, β − α;x− (x− b)t)

=

∞∑
k=0

tk

k!
(α− β − n)kFn(α+ k, β − α− k;x). (13)

Case 2. Putting a2 = 0 and replacing (−a3/y) by t in (11), we get

(1− t)αFn(α, β − α;x− (x− a)t)

=

∞∑
p=0

(−n− α)p
p!

Fn(α− p, β − α+ p;x)tp. (14)
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Case 3. Putting a2 = 1
w , a3 = 1, y = t in (11), we get

{
1 + 1

wt (1 + t)
}β−α

(1 + t)α

× Fn

(
α, β − α; {x+ t(x− a)}

{
1 + 1

wt (1 + t)
}
− b

wt (1 + t)
)

=

∞∑
k=0

∞∑
p=0

(−1/w)k

k!

(−1)p

p!
(−α− n− k)p(α− β − n)k

× Fn(α+ k − p, β − α+ p− k;x)tp−k. (15)

The above results do not seem to appear in the earlier works.

Here we would like to remark that if one investigates Fn(α−β, β;x) in place
of Fn(α, β−α;x) by the same method of Weisner with the interpretation of β,
the same results given by (13)–(15) will be obtained by virtue of the following
relation

Fn(α, β; a+ b− x) = (−1)nFn(β, α;x). (16)

Furthermore, it may be of interest to note that the mere replacement of β by
β + α on both sides of (13)–(15) yields all the results obtained in [2] while
investigating generating functions of Fn(α, β;x) by Weisner’s group theoretic
method with the double interpretation of the parameters (α, β) simultaneously.

Thus, while investigating Fn(α, β;x) for obtaining the results derived in [2]
by Weisner’s group theoretic method, we observe that the double interpretation
(of the parameters (α, β)) seems to be a little bit harder as well as lengthy and
may be replaced by the single interpretation of any of the parameters α or β
while investigating Fn(α, β − α;x) or Fn(α− β, β;x) by the same technique of
Weisner for obtaining the same results derived in [2] in a straightforward way
- making the original problem simple and easier.

Some special cases:

Special case 1. Putting a = 0, λ = 1 and β = b in (13) and (14) and then
simplifying and finally taking limit as b → ∞, we get the following results on
generating functions involving Laguerre polynomials:

et1L(α)
n (x− t1) =

∞∑
k=0

L(α+k)
n (x)

tk1
k!

,

(1− t)αL(α)
n (x(1− t)) =

∞∑
p=0

(−n− α)p
p!

L(α−p)
n (x)tp.
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Special case 2. Putting −a = b = 1 and λ = 1 in (13), (14) and (15), we
get the following results involving Jacobi polynomials:

(1−t)α−βP (α−β,β)
n (x+(1−x)t) =

∞∑
k=0

tk

k!
(β − α− n)kP

(α−β−k,β+k)
n (x), (17)

(1−t)βP (α−β,β)
n (x−(1+x)t) =

∞∑
p=0

(−n− β)p
p!

P (α−β+p,β−p)
n (x)tp, (18)

{
1+ 1

wt (1+t)
}α−β

(1+t)βP (α−β,β)
n

(
{x(1+t)+t}

{
1+ 1

wt (1+t)
}
− 1

wt (1+t)
)

=

∞∑
k=0

∞∑
p=0

(−1/w)k

k!
(−1)p

p! (−β−n−k)p(β−α−n)kP
(α−β+p−k,β+k−p)
n (x)tp−k.

(19)

Now replacing α by α + β in (17), (18) and (19), we get the results (1.2),
(1.3) and the correct version of (1.4) found in [4] while investigating Jacobi
polynomials by Weisner’s method with the double interpretation of (α, β).

4. Transformation of general unilateral generating
relation into a general bilateral generating relation

Let us first consider a unilateral generating relation of the form:

G(x,w) =

∞∑
α=0

aαFn(α, β − α;x)wα. (20)

Now replacing w by wyv in (20) and then operating exp(wR) on both sides of
the derived equation, where R = (x− b)y ∂

∂x − y2 ∂
∂y + βy, and finally using (3)

and (7) we obtain

(1 + wy)βG

(
x+ (x− b)wy,

wyv

1 + wy

)
=

∞∑
α=0

(−wy)α
( α∑

k=0

ak
(k − β − n)α−k

(α− k)!
(−v)k

)
Fn(α, β − α;x). (21)

Now replacing wy by (−t) and v by (−v) on both sides of (21), we obtain

(1− t)βG

(
x− (x− b)t,

tv

1− t

)
=

∞∑
α=0

(t)ασα(v)Fn(α, β − α;x)

where σα(v) =

α∑
k=0

ak
(k − β − n)α−k

(α− k)!
(v)k. (22)
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From the above discussion, we can state the following theorem.

Theorem 4.1. If there exists a unilateral generating relation of the form:

G(x,w) =

∞∑
α=0

aαFn(α, β − α;x)wα,

then

(1− t)βG

(
x− (x− b)t,

tv

1− t

)
=

∞∑
α=0

Fn(α, β − α;x)σα(v)t
α,

where σα(v) =

α∑
k=0

ak
(k − β − n)α−k

(α− k)!
(v)k.

Remark 4.2. Here it is easy to observe that the above theorem is not only
very important but also of general interest for its usefulness in generalizing the
known results.

In fact, the importance of the above theorem lies in the fact that whenever
one knows a unilateral generating relation of the form (20) for a particular value
of aα, the corresponding bilateral generating relation can at once be written
down from (22). Thus one can get a large number of bilateral generating
relations from (22) by attributing different values to aα in (20).

Here we would like to mention that the above theorem, by virtue of the
symmetry relation (16), yields the following analogous result.

Theorem 4.3. If there exists a unilateral generating relation of the form:

G(x, t) =

∞∑
β=0

aβFn(α− β, β;x)tβ ,

then

(1− t)αG

(
x+ (a− x)t,

tv

1− t

)
=

∞∑
β=0

Fn(α− β, β;x)σβ(v)t
β ,

where σβ(v) =

β∑
k=0

ak
(k − α− n)β−k

(β − k)!
(v)k.

4.0.1. Some special cases of Theorem 4.1

Case 1. Putting a = 0, β = b, λ = 1 in Theorem 4.1 and then taking limit
when b → ∞, we get the following theorem involving Laguerre polynomials:
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Theorem 4.4. If there exists a unilateral generating relation of the form

G(x,w) =

∞∑
α=0

aα
α!

L(α)
n (x)wα,

then

et1G(x− t1, t1w) =

∞∑
α=0

t1
α

α!
L(α)
n (x)σα(w)

where σα(w) =

α∑
k=0

ak

(
α
k

)
wk.

Case 2. Putting −a = b = 1, λ = 1 in Theorem 4.1, we get the following
theorem involving Jacobi polynomials:

Theorem 4.5. If

G(x,w) =

∞∑
β=0

aβP
(α−β,β)
n (x)wβ ,

then

(1− t)αG

(
x+ (1− x)t,

tv

1− t

)
=

∞∑
β=0

tβP (α−β,β)
n (x)σβ(v)

where σβ(v) =

β∑
k=0

ak
(k − α− n)β−k

(β − k)!
vk.

The three Theorems 4.3, 4.4, 4.5 are of the same importance as the previous
Theorem 4.1, as mentioned in Remark 4.2.
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