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A natural basis for intersection numbers

Bertrand Eynard and Danilo Lewański

Abstract. We advertise elementary symmetric polynomials ei as the
natural basis for generating series Ag,n of intersection numbers of ψ-
classes on the moduli space of stable curves of genus g with n marked
points. Closed formulae for Ag,n are known for genera 0 and 1 — this
approach provides formulae for g = 2, 3, 4, together with an algorithm
to compute the formula for any g.
The claimed naturality of the ei basis relies in the unexpected vanish-
ing of some coefficients with a clear pattern. As an application of the
conjecture, we find new integral representations of Ag,n, which recover
expressions for the Weil-Petersson volumes in terms of Bessel func-
tions.
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1. Introduction

Over the last 30 years, research in mathematics and in theoretical physics have
unveiled a deep interaction between the following fields:

1. models in theoretical physics (mainly arising from string theory and ran-
dom matrix models),

2. the algebraic geometry of moduli spaces of curves,

3. the mathematical physics of integrable systems and integrable hierarchies.

Let us present the core idea of this interaction. Consider correlators

⟨ηd1
· · · ηdn

⟩Mg

of some theoretical physics modelM as above depending on a genus parameter
g and on a certain number n of insertions. On the other hand, consider a
partition function Z(ℏ, t) depending on a formal parameter ℏ and infinitely
many parameters ti in such a way that it makes sense to define its correlators

⟨σd1
· · ·σdn

⟩Zg :=

[
ℏ2g−2+n

n!
td1

· · · tdn

]
. logZ(ℏ, t)
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where [xd].f(x) is the formal operator which extracts the coefficient of xd in
f(x). Assume moreover that Z is the tau-function of some integrable hierarchy
(e.g. KdV, KP, 2D Toda, BKP, . . . ), that is, it satisfies a determined infinite
list of PDEs in the infinite set of times ti. Finally, define the correlators

⟨τd1
· · · τdn

⟩Ωg :=

ˆ
Mg,n

Ωg,nψ
d1
1 · · ·ψdn

n , Ωg,n ∈ H∗(Mg,n),

where Mg,n is the 3g − 3 + n complex dimensional moduli space of stable
curves (C; p1, . . . , pn) of genus g, with n distinct labeled marked points and
the cohomology classes ψi := c1(Li) are the first Chern classes of the line
bundle Li cotangent at the i-th marked point. Here Ω is a whole collection
of classes Ωg,n for every (g, n) satisfying 2g − 2 + n > 0. In practice, these
collections Ω form Cohomological Field Theories (CohFTs), which means that
several compatibility conditions between different Ωgi,ni

in the same collection
hold.

The interaction we are talking about can be thought as triples (M,Z,Ω)
such that

⟨ηd1
· · · ηdn

⟩Mg ∼ ⟨σd1
· · ·σdn

⟩Zg ∼ ⟨τd1
· · · τdn

⟩Ωg ,

where the symbol ∼ in principle means proportionality up to the multiplication
of some combinatorial prefactor which is di-dependent, but in some cases is a
straightforward equality.

Let us make an example of this interaction. In fact, this example is the
simplest possible instance, historically arose first, and in a way can be thought
as the generic-local model for all other examples of such interaction. In 1991
two different approaches to 2-dimensional quantum gravity, used as an easier
model to understand the theory in higher dimension, existed. Both had to deal
with the problematic integration over infinite dimensional spaces. The first was
based on triangulation of surfaces, the second on the integration over the space
of conformal metrics, which translates to the computation of correlators

⟨τd1 · · · τdn⟩g :=

ˆ
Mg,n

ψd1
1 · · ·ψdn

n ,

that is, Ωg,n = 1 is the fundamental class of the moduli space, for every (g, n).
Witten conjectured these two approaches were the same. More precisely, as
the first approach was known to obey the KdV integrable hierarchy, the initial
conditions of both approaches were known to coincide, and both approaches
were known to satisfy the so-called string equation, Witten conjectured that
the second approach obey (and therefore is completely determined by) the KdV
integrable hierarchy.
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Theorem 1.1 (Witten conjecture [39], Kontsevich theorem [26]). The gener-
ating function

U =
∂2F

∂t20
, F (t0, t1, . . .) =

∞∑
g=0

∞∑
d0,d1,···=0

⟨τd0
0 τd1

1 · · · ⟩g
∏
i=0

tdi
i

di!

satisfies the classical KdV equation

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
.

One can think of this instance, in terms of the interaction presented above, as
of the triple

(M = 2D quantum gravity,Z = string solution of KdV,Ωg,n = 1).

This interaction is just the tip of an entire iceberg of such triples: many are
discovered, and yet the depth of the iceberg is still far from being assessed.

What is known about the explicit generating series of ⟨τd1
· · · τdn

⟩g? The
goal of this paper is two-fold: on the one hand it provides new closed formulae,
on the other it notices (and it conjectures) an unexpected vanishing of the
coefficients with a precise pattern, providing the proof for several cases.

1.1. Low genus cases: g = 0 and g = 1

Let us start by the low genus cases. The simplest equations these correlators
satisfy are the string and dilaton equations:

⟨ τd1
. . . τdn

τ0 ⟩g =

n∑
i=1

⟨ τd1
. . . τdi−1 . . . τdn

⟩g,

⟨ τd1
. . . τdn

τ1 ⟩g = (2g − 2 + n)⟨ τd1
. . . τdn

⟩g.

In genus zero, as the dimension of M0,n is n − 3 and τi corresponds to
cohomological degree i, insertions τ0 must appear, so it is customary to exploit
string equation to prove

ˆ
M0,n

ψd1
1 · · ·ψdn

n =

(
n− 3

d1, . . . , dn

)
.

Definition 1.2. Define for x = (x1, . . . , xn) the amplitudes Ag,n as

Ag,n(x) =

ˆ
Mg,n

1∏
i=1(1− xiψi)

=
∑

d1,...,dn=0

⟨ τd1 . . . τdn ⟩g x
d1
1 · · ·xdn

n ,
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and 1 the normalized amplitudes as

Ãg,n = 24gg!Ag,n.

Equation (1.1) translates into A0,n(x) = (x1 + · · · + xn)
n−3, and rewriting it

in terms of symmetric elementary polynomials ei gives

A0,n = Ã0,n = en−3
1 .

Notice that only factors of the type e1 appear in genus zero, and that there
is no obvious reason a priori why factors ej , j > 1, wouldn’t show up. The
formula in genus one is also known (the first appearance to the best of our
knowledge is in [27], then rederived in [3]), and it reads

ˆ
M1,n

ψd1
1 · · ·ψdn

n =

=
1

24

((
n

d1, . . . , dn

)
−

∑
b1,...,bn
bi∈{0,1}

(
n− (b1 + · · ·+ bn)

d1 − b1, . . . , dn − bn

)
(b1 + · · ·+ bn − 2)!

)
,

where the convention that negative factorials vanish is used. In terms of the
normalized amplitudes it becomes

Ã1,n = en1 −
n∑

k=2

(k − 2)!ek e
n−k
1 .

Again, the factors ej , j > 1, are strangely scarce in the expansion above: the
formula holds for every n, therefore the dimension of the moduli space could
be as big as desired.

1.2. Results of the paper and main conjecture

For 2g− 2+n > 0, the amplitudes Ag,n are manifestly symmetric polynomials
of homogeneous degree 3g−3+n. They can therefore be expressed in the basis
of elementary symmetric polynomials eΛ = eΛ1

· · · eΛℓ(Λ)
with partitions Λ of

size |Λ| = 3g − 3 + n:

Ag,n(x) =
∑

|Λ|=3g−3+n

Dg,n(Λ)eΛ(x)

1summations without upper bound in this paper refer to all indices being summed up to,
in principle, infinity. Although in some cases, like in this one, the sum is finite for dimension
reasons.



A NATURAL BASIS FOR INTERSECTION NUMBERS (5 of 47)

for some coefficients Dg,n(Λ). Observe that any Λi > n implies the vanishing
of the whole summand, hence we can consider partitions with parts bounded
by n.

Let us first distinguish without loss of generality the elements Λi = 1 in the
sum above:

Ag,n(x) =
∑

|λ|≤3g−3+n
2≤λi≤n

Cg,n(λ) eλ e
3g−3+n−|λ|
1

where we can set without ambiguity

Cg,n(λ) := Dg,n(λ ⊔ (1)3g−3+n−|λ|),

with λ⊔ (1) := (λ1, . . . , λn, 1). We first show in Section 3 (see corollary 3.4 and
equation 3.3) the following property.

Proposition 1.3. The coefficients Cg,n(λ) are independent of n.

We can therefore drop the corresponding index. Then, computing the co-
efficients Cg(λ) we observed that all coefficients with ℓ(λ) > g happen to be
vanishing:

Conjecture 1.4 (Main conjecture). For g ≥ 0, n ≥ 1 and 2g − 2 + n > 0 we
have

Cg(λ) = 0, for ℓ(λ) > g.

Equivalently,

Ag,n(x) =
∑

|λ|≤3g−3+n
λi≥2
l(λ)≤g

Cg(λ) eλ e
3g−3+n−|λ|
1 .

We prove the conjecture up to g ≤ 7, for any n, and up to n ≤ 3, for any g.
We then apply the Virasoro constraints to the Ag,n obtaining a recursion for the
coefficients Cg(λ) in Section 3. It is an important point that the recursion does
not rely on the conjecture; on the opposite, it allows to verify the conjecture
up to g ≤ 7, by checking that all expected vanishings do hold. In addition, the
recursion can be employed to obtain explicit formulae for the amplitudes Ag,n

for higher genera. As an illustrative example, we give in the following the two
new formulae for g = 2 and g = 3. The formula for g = 4 takes several pages
and is given in the supporting files of the article.

Remark 1.5. Let us remark that these formulae at the practical level allow
for fast computations for large n, in genus 2, 3 and 4, compared to the existing
softwares exploiting Virasoro constraints. One could argue that our methods
simply employ Virasoro constraints applied to the basis of the ei. However,
by polynomial considerations, we only need to compute up to n = 6g − 3 (see
remark 3.3) in order to fix unambiguously all needed coefficients — after that
the intersection numbers can be computed for any given n.
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Proposition 1.6. The genus two formula reads:

Ã2,n =en+3
1 − 2e2e

n+1
1 − 18

5
e3e

n
1

−
n+3∑
k=4

(k3 + 21k2 − 70k + 96)(k − 3)!

30
eke

n+3−k
1

+
9

5
e22e

n−1
1 +

18

5
e3e2e

n−1
1

+

n+1∑
k=4

(k + 16) (k − 1)!

10
eke2e

n+1−k
1 −

n∑
k=4

k!

10
eke3e

n−k
1 .

The convention that em1 = 0 if m < 0 is used.

Proposition 1.7. The genus three formula reads:

Ã3,n =

n+4∑
k=7

(17k4+814k3+9391k2−12142k+53904)(k−2)!

8400 e−k+n+4
1 e2ek

−
n+3∑
k=7

(2k3+39k2−1523k−480)(k−1)!

2100 e−k+n+3
1 e3ek

−
n+2∑
k=5

(5k2+199k+2282)k!
1400 e−k+n+2

1 e22ek −
n+2∑
k=7

(3k2+79k+596)k!
700 e−k+n+2

1 e4ek

+

n+1∑
k=7

(k+37)(k+1)!
350 e−k+n+1

1 e5ek +

n+1∑
k=5

(5k+102)(k+1)!
700 e−k+n+1

1 e2e3ek

+

n∑
k=4

(k+2)!
175 e−k+n

1 e2e4ek −
n∑

k=3

9(k+2)!
1400 e−k+n

1 e23ek −
n∑

k=6

(k+2)!
350 e−k+n

1 e6ek

−
n+6∑
k=7

(17k6+885k5+9347k4−83577k3+338972k2−912492k+970272)(k−4)!

50400 e−k+n+6
1 ek

+ a3,n

where a3,n is the collection of initial terms which do not naturally arise in
k-families:

a3,n = − 27
7 e

n
1 e

3
2 +

1692
35 en1 e2e4 +

153
35 e

n
1 e

2
3 − 1872

5 en1 e6 +
3024
5 en−5

1 e5e6

+ 432
5 en−4

1 e25 +
108
5 en−3

1 e2e3e4 +
15552
35 en−3

1 e3e6 − 5904
35 en−3

1 e4e5 − 54en−2
1 e22e4

+ 27
7 e

n−2
1 e2e

2
3 +

51696
35 en−2

1 e2e6 +
2844
35 en−2

1 e3e5 − 1152
35 en−2

1 e24 − 81
7 e

n−1
1 e22e3

+ 8532
35 en−1

1 e2e5 +
324
35 e

n−1
1 e3e4 +

594
35 e

n+1
1 e2e3 − 2286

35 en+1
1 e5 +

27
5 e

n+2
1 e22

− 8496
7 en−4

1 e4e6 − 594
35 e

n+2
1 e4 − 39

5 e
n+3
1 e3 − 3en+4

1 e2 + en+6
1 .
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Proposition 1.8. The genus four formula is given in the supporting files of
the article.

1.3. Applications of the conjecture

As an application of conjecture 1.4, we obtain in section 6 formulae for the
amplitudes Ag,n as g+1 dimensional integrals. In the following we rewrite the
result in the residue form:

Proposition 1.9. Conjecture 1.4 implies that

Ag,n(x) = [u0v01 . . . v
0
g ]
B−

g,n(u,v)

udg,n

∏
i,m

euxi(1 + vmxi),

or 2, equivalently,

⟨ τd1 . . . τdn ⟩g = [u0v01 . . . v
0
g ]B

−
g,n(u,v)

∏
i

di∑
r=0

er(v)

ur
1

(di − r)!
,

where dg,n = 3g − 3 + n, the operator [xk] extracts the coefficient of xk in
the expression to which it is applied, and B−

g,n(u,v) is a polynomial in u and
in the 1/vi given by the coefficients Cg(λ) in the elementary symmetric basis
decomposition of Ag,n:

B−
g,n(ξ, v1, . . . , vg) =

∑
|λ|≤dg,n

λi≥2
l(λ)≤g

(dg,n − |λ|)! Cg(λ)

g!
m̃λ(1/v)ξ

|λ|.

Here m̃λ are the augmented monomial symmetric polynomials. This formu-
lation allows one to express the generating series in terms of residues. We
employ the same argument to extend the integral representation to expressions
of correlators of the form 〈

e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

.

In particular, we can apply our results to Weil-Petersson polynomials

Vg,n(L) :=

ˆ
Mg,n

exp

(
2π2κ1 +

n∑
i=1

L2
iψi

2

)
,

finding the following expression.

2Compared to the expression in equation 1.4, this formulation has the advantage of being
packaged in generating series and suggests a reformulation in terms of residues.
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Theorem 1.10. Conjecture 1.4 implies that

Vg,n(L) =
∑

α1,...,αn

〈
e2π

2κ1

n∏
i=1

τdi

〉
g

∏
i

L2di

2didi!

= Res
v=0

g∏
j=1

dvj
vj

Res
u=0

du
B−

g,n(F (u,v),v)

F (u,v)3g−2+n

n∏
i=1

(∑
k

ek(v)

(
Li√
2u

)k

Ik(Li

√
2u)

)

= [u−1v01 . . . v
0
g ]
B−

g,n(F (u,v),v)

F (u,v)3g−2+n

n∏
i=1

(∑
k

ek(v)

(
Li√
2u

)k

Ik(Li

√
2u)

)
,

where Ik, Jk are standard notations for Bessel functions, and

F (u,v) =
∑
k≥0

[(
−π

√
2√
u

)k−1

Jk−1(2π
√
2u)− δk,1

]
ek(v).

Structure of the paper

In Section 2 we summarise the state-of-the-art for generating series of inter-
section numbers. In Section 3 we exploit the information carried by Virasoro
constraints to refine our conjecture, derive a recursion of the coefficients of
the generating series, and give some restatements of the main conjecture. Sec-
tion 4.1 is dedicated to the proof of the main conjecture for n = 1, 2, 3. In
Section 5 we analyse the ELSV formula for one-part Hurwitz numbers and
give a different restatement of our conjecture in terms of the Ω-CohFT. Sec-
tion 6 contains applications of the main conjecture as new formulae for Ag,n

and Weil-Petersson polynomials as g-dimensional integral representations. Sec-
tion 7 contains a few examples of non-trivial cohomological field theories Ωg,n

which show similar behaviour to Ωg,n = 1 when their amplitudes are expanded
in elementary symmetric polynomials. Finally, we include two appendices with
numerics in the supporting files: the first tests the simplifications given both
by our recursion and by the main conjecture, the second provides the formula
of Ag,n for g = 4.

2. Known formulas for the n-point functions

The n-point function

Fn(x) :=
∑
g=0

Ag,n(x) =

ˆ
Mg,n

1∏n
i=1(1− xiψi)

is an alternative way to encode all information of intersection numbers of ψ
classes. In the expression above the genus is determined by the cohomological
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degree D taken as g = D+3−n
3 , and the expression vanishes whenever the

fraction is not an integer. In the following we summarise the state-of-the-art
about the Fn.

Okounkov [36] obtains an analytic expression of the n-point functions in
terms of n-dimensional error-function-type integrals, based on his work of ran-
dom permutations. Buryak (appeared in [6], see also [2]) obtains another inte-
gral representation of the Fn formula from the semi-infinite wedge formalism.
Brézin and Hikami [5] apply correlation functions of GUE ensemble to find
explicit formulae of n-point functions. Liu and Xu [32] exploit the information
carried by the Virasoro constraints to derive a recursive formula for the Fn.

2.1. Buryak formula

Define the function Pn(a1, . . . , an;x1, . . . , xn) by P1(a1;x1) := 1
x1

for n = 1,
and for n ≥ 2 by

Pn(a;x) :=
∑

τ∈Sn

τ(1)=1

n−1∏
j=2

xτ(j)
n−1∏
j=1

ζ

((
j∑

k=1

aτ(k)

)
xτ(j+1) − aτ(j+1)

(
j∑

k=1

xτ(k)

))
n−1∏
j=1

(
aτ(j)xτ(j+1) − aτ(j+1)xτ(j)

) ,

where ς(z) = 2 sinh(z/2). In fact Pn turns out to be a formal power series in
all its variables, invariant with respect to the simultaneous action of the sym-
metric group Sn on (a1, . . . , an) and (x1, . . . , xn), see [7, Remarks 1.5 and 1.6].
Buryak finds that the n-point functions Fn have the following Gaussian-integral
representation:

Fn(x) =
e

p3(x)
24

e1(x)
∏n

j=1

√
2πxj

ˆ
Rn

 n∏
j=1

e
−

a2
j

2xj daj

Pn(ia;x),

where ia = (
√
−1a1, . . . ,

√
−1an). and pi are power sums. Let us recall that the

usual convention for the unstable cases (g, n) = (0, 1) and (0, 2) is the following:
ˆ
M0,1

1

1− xψ1
=

1

x2
,

ˆ
M0,2

1

(1− xψ1)(1− yψ2)
=

1

(x+ y)
.

2.2. Okounkov formula

Define the function E(x1, . . . , xn) as

e
p3(x)

12∏n
j=1

√
4πxj

ˆ
Rn

≥0

 n∏
j=1

dsj

 exp

−
n∑

j=1

(
(sj − sj+1)

2

4xj
+

(sj + sj+1)xj
2

) ,
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where sn+1 denotes s1. Define the Sn-invariant function

E⟲(x1, . . . , xn) :=
∑

σ∈Sn/Zn

E(xσ(1), . . . , xσ(n)).

Let Πn be the set of all partitions of {1, . . . , n} into a disjoint union of unordered
subsets ⊔ℓ

j=1Ij , for all ℓ = 1, 2 . . . , n. Let xI :=
∑

j∈I xj , I ⊂ {1, . . . , n}.
Finally, define

G(x) :=
∑

⊔ℓ
j=1Ij∈Πn

(−1)ℓ+1E⟲(xI1 , . . . , xIℓ), Fn(x) :=
(2π)n/2∏n
j=1

√
xj

G
( x

21/3

)
.

2.3. Relation between Buryak and Okounkov formulae

There is no obvious equality between the two formulae for Fn obtained by
Buryak and by Okounkov. A technical combinatorial argument proving their
equality directly was achieved in [2].

2.4. Brezin-Hikami formula

It is worth mentioning that Brezin and Hikami [5] derive formulae for the n-

point functions F
(p)
n for the intersection numbers of the moduli space of curves

with a (p−1)-spin structure via Gaussian random matrix theory in the presence
of an external matrix source, which restricts to Fn for p = 2, although their
work focuses on the explicit investigation of higher p for n = 1, 2.

2.5. Liu-Xu formula

Dijkgraaf-Verlinde-Verlinde [12] have recast Theorem 1.1 in terms of Virasoro
constraints applied to the partition function and shown that the two state-
ments are in fact equivalent (which is in general not the case). Liu and Xu
[32, Theorem 1.2, Corollary 2.2], exploiting the structure of the Virasoro con-
straints, have constructed recursively a solution of the n-point function (and
its normalized version), which we now recall.

Theorem 2.1. For n ≥ 2, the n-point function takes the form

Fn(x1, . . . , xn) =

∞∑
g=0

g∑
r=0

(2r + n− 3)!!

12g−r(2g + n− 1)!!
Sr(x1, . . . , xn)e

3g−3r
1 ,

where Sr is the homogeneous symmetric polynomial of degree 3r−3+n defined
recursively by

Sr(x1, . . . , xn) =
1

2e1

∑
n=I

∐
J

e1(I)
2e1(J)

2
r∑

r′=0

Ar′,|I|(xI)Ar−r′,|J|(xJ),
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where I, J ̸= ∅ and e1(I) is e1 evaluated in the variables xi for i ∈ I. Equiva-
lently, the normalized n-point function takes the form

Gn(x1, . . . , xn) =
∑
g=0

g∑
r=0

(2r + n− 3)!!

12g−r(2g + n− 1)!!
Pr(x1, . . . , xn)(e

3
1 − p3)

g−r

=
∑
g=0

g∑
r=0

(2r + n− 3)!!

4g−r(2g + n− 1)!!
Pr(x1, . . . , xn)(e1e2 − e3)

g−r

where Pr is the homogeneous symmetric polynomials of degree 3r−3+n defined
recursively by

Pr(x1, . . . , xn) =
1

2e1

∑
n=I

∐
J

e1(I)
2e1(J)

2
r∑

r′=0

Br′,|I|(xI)Br−r′,|J|(xJ),

where I, J ̸= ∅, n = {1, 2, . . . , n} and Bg(xI) denotes the degree 3g + |I| − 3
homogeneous component of the normalized |I|-point function Gn(xk1

, . . . , xk|I|),
where kj ∈ I.

3. Structure imposed by Virasoro constraints

In this section we discuss the implications of the first two Virasoro constraints,
the so called string and dilaton equations, on the coefficients Cg,n(λ) appearing
in the elementary symmetric polynomial decomposition of Ag,n (1.2). We show
how the string equation allows one to drop the index n and define uniquely
coefficients Cg(λ) that appear in the formula of Ag,n for any n.

A careful analysis also puts a constraint on the size of the partition, after
the first row of the partition is excluded. Then we use the dilaton equation to
show the polynomiality behaviour of Cg(λ) in terms of the length of the first
row λ1. This is enough to compute all coefficients Cg for fixed g by computing
the case in which n is sufficiently large. In particular, this allows us to check
the expected vanishing up to genus 7, and therefore prove the conjecture in
those cases. Also, the recursion of the Cg obtained by the dilaton equation
provides new formulae for Ag,n in genus 2, 3, 4.

For higher Virasoro, we analyse the formula of Liu and Xu in light of our
conjecture, providing a restatement of Conjecture 1.4 used in the section to
prove small n cases.
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3.1. Elementary symmetric functions

For a set of variables x = {x1, . . . , xn}, let ei indicate the elementary symmetric
polynomials. Observe that:

ek(x1, . . . , xn+1)
∣∣
xn+1=0

=

{
0 if k = n+ 1

ek(x1, . . . , xn) otherwise.

Moreover

∂

∂xn+1
ek(x1, . . . , xn+1) =

∂

∂xn+1
ek(x1, . . . , xn+1)

∣∣
xn+1=0

= ek−1(x1, . . . , xn).

3.2. The Virasoro contraints

A careful analysis of the KdV hierarchy allows to restate Theorem 1.1 in
terms of the Virasoro algebra, as it was shown by Dijkgraaf, Verlinde and
Verlinde [12]. More precisely, Theorem 1.1 is equivalent to the data of certain
particular infinite sequence of operators Lm in the t, at most quadratic, such
that

ZWK := eF
WK

, Lm.ZWK = 0, m ≥ −1, [Lm,Ln] = (m− n)Lm+n.

The first and the second Virasoro constraints, respectively, translate into string
and dilaton equations:

L−1.ZWK = 0 ⇐⇒ ⟨ τd1 . . . τdnτ0 ⟩g =

n∑
i=1

⟨ τd1 . . . τdi−1 . . . τdn ⟩g,

L0.ZWK = 0 ⇐⇒ ⟨ τd1 . . . τdnτ1 ⟩g = (2g − 2 + n)⟨ τd1 . . . τdn ⟩g.

For m > 0, the Virasoro constraint Lm.ZWK = 0 takes the form

(2m+ 3)!!⟨ τd1
. . . τdn

τm+1 ⟩g

=
∑
i

(2di + 2m+ 1)!!

(2di − 1)!!
⟨ τd1 . . . τdi+m . . . τdn ⟩

+
1

2

∑
a+b=m−1

(2a+ 1)!!(2b+ 1)!!⟨ τd1 . . . τdnτaτb ⟩g−1

+
1

2

∑
a+b=m−1

I⊔J={1,...,n}
g1+g2=g

(2a+ 1)!!(2b+ 1)!!⟨ τdI
τa ⟩g1⟨ τdJ

τb ⟩g2
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3.3. String equation

In the following we study the information string equation provides on the co-
efficients Cg,n(λ). It is straightforward to rewrite the string equation (3.2) in
terms of the amplitudes, which reads:

Ag,n+1(x1, . . . , xn+1)
∣∣
xn+1=0

= e1Ag,n(x1, . . . , xn).

Let us substitute our decomposition for Ag,n (1.2) into the string equation
(3.3), and apply (3.1), obtaining∑

|λ|≤3g−2+n
2≤λi≤n

Cg,n+1(λ)eλe
3g−2+n−|λ|
1 =

∑
|λ|≤3g−3+n

2≤λi≤n

Cg,n(λ)eλe
3g−3+n−|λ|+1
1 .

We then split the LHS in partitions with |λ| = 3g − 2 + n and partitions with
|λ| ≤ 3g − 3 + n, we obtain∑

|λ|=3g−2+n
2≤λi≤n

Cg,n+1(λ)eλ +
∑

|λ|≤3g−3+n
2≤λi≤n

Cg,n+1(λ)eλe
3g−2+n−|λ|
1

=
∑

|λ|≤3g−3+n
2≤λi≤n

Cg,n(λ)eλe
3g−2+n−|λ|
1 .

We can match coefficients term by term:

∀n ≥ 1 Cg,n+1(λ) = Cg,n(λ)

if |λ| ≤ 3g − 3 + n and 2 ≤ λi ≤ n i = 1, . . . , ℓ(λ).

∀n ≥ 2 Cg,n(λ) = 0

if |λ| = 3g − 3 + n and 2 ≤ λi < n i = 1, . . . , ℓ(λ).

As a consequence, we have the following lemma.

Lemma 3.1. For all partitions λ ̸= ∅ with |λ| ≤ 3g − 3 + n and 2 ≤ λi ≤ n,
i = 1, . . . , ℓ(λ),

Cg,n(λ) = 0 if |λ| − λ1 > 3g − 3 .

Proof. Let us fix g and n and pick any nonempty partition λ with λi ≥ 2
and in which λ1 ≤ n. We want to apply several times equation (3.3), each
time decreasing the value of n down to some n′ ≤ n, either reaching down to
|λ| = 3g− 3+n′ or λ1 = n′. The first case requires ∆1 = 3g− 3+n− |λ| steps
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and the second case requires ∆2 = n− λ1 steps. If |λ| − n′ = 3g− 3 is reached
first, but λ1 < n′, then by equation (3.3) we have

Cg,n(λ) = Cg,n′(λ) = 0.

This will be the case whenever ∆1 < ∆2, which is true whenever |λ| − λ1 >
3g − 3.

Corollary 3.2. The string equation implies that Conjecture 1.4 holds true for
g ≤ 2.

Proof. The genera g = 0, 1 were already discussed in the introduction, and are
again verified here. For g = 0 there are no nonempty partitions and for g = 1
there is just λ = (λ1). For g = 2 we require |λ|−λ1 ≤ 3 and the only nonempty
partitions are (λ1), (λ1, 2), and (λ1, 3).

Remark 3.3. Equation (3.3) suggests that we could define coefficients Cg(λ)
corresponding to Cg,n(λ) for any n large enough. If n is too small, the corre-

sponding monomial eλe
3g−3+n−|λ|
1 does not appear in Ag,n, and Cg,n(λ) is for-

mally zero. Therefore, we want to define Cg(λ) as the common value for all non
trivial Cg,n(λ)’s. Those can be computed whenever n ≥ λ1 and |λ| ≤ 3g−3+n.
In particular, for non empty partitions we can always set

Cg(λ) = Cg,n0(λ)

where n0 = max{λ1, |λ| − (3g − 3)}. Remark however that partitions with
|λ| − (3g − 3) > λ1 have vanishing coefficient according to lemma 3.1, so the
non-trivial coefficients are in general Cg(λ) = Cg,λ1(λ). When λ = ∅, the
coefficient Cg,n(∅) will appear in Ag,n(x) as long as 3g−3+n ≥ 0, so for g = 0
we can pick C0(∅) = C0,3(∅), and for g ≥ 1 we set Cg(∅) = Cg,1(∅).

Corollary 3.4.

Ag,n(x) =
∑

|λ|≤3g−3+n
|λ|−λ1≤3g−3

λi≥2

Cg(λ) eλ e
3g−3+n−|λ|
1 .

In the supporting files we give a table of coefficients Dg,n(λ⊔ (1)3g−3+n) =
Cg,n(λ) for g = 3 and n ≤ 5 to illustrate explicit checks of relations (3.3), (3.3)
and (3.1).

3.4. Comparison between the conjecture and the string
equation constraint

Let us comment on how much conjecture 1.4 actually constraints the num-
ber of terms in the elementary symmetric polynomial decomposition of Ag,n,
compared to the constraint imposed by the string equation.
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From the string equation and (3.4), we see that partitions λ = (λ1)⊔µ can

have at most ℓ(µ) =
⌊
3g−3

2

⌋
. In conjecture 1.4 we claim that the maximum

length is actually ℓ(µ) = g − 1.

• Let us denote by Qg the set of partitions µ with |µ| ≤ 3g− 3 and µi ≥ 2.

• Let us denote by Q∗
g the set Qg under the further constraint ℓ(µ) ≤ g−1.

• Let us denote by Q∗∗
g the set Qg under the further constraint ℓ(µ) ≥ g−1.

One may ask how much bigger is Qg compared to Q∗
g. The first observations

is that each partition in Qg \ Q∗
g contains a block of the form (2, 2, 2). By

considering the bijection that removes such block we get a bijection between
Qg \Q∗

g ↔ Q∗∗
g−2, and therefore an equality of their cardinalities. This way we

have shown that the conjecture 1.4 discards from Qg a subset of Qg−2. The
table below shows the cardinalities of these sets for small values of g.

g 6 9 12 15 18 21
|Qg| 176 1575 10143 53174 239943 966467
|Q∗

g| 167 1528 9973 52649 238521 962922
|Q∗∗

g−2| 9 47 170 525 1422 3545

We see that our conjecture only discards a fraction of the total amount of
partitions considered. We make this point to emphasize that the strength of
the conjecture does not rely in the vanishing of a large amount of terms out
of the elementary symmetric decomposition of Ag,n, but rather in unveiling a
peculiar and unexpected constraint these partitions obey. It would be ideal to
have a geometric reason behind this vanishing. We will see an application of
this constraint in section 6.

3.5. Dilaton equation

It it straightforward to rewrite the dilaton equation 3.2 in terms of the ampli-
tudes Ag,n, obtaining

∂

∂xn+1
Ag,n+1(x1, . . . , xn+1)

∣∣
xn+1=0

= (2g − 2 + n)Ag,n(x1, . . . , xn).
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Let us now employ the expansion of Ag,n which we have refined in the previous
section (3.4), and compute the left hand side with (3.1):

∑
|λ|≤3g−2+n

Cg(λ)

l(λ)∑
j=1

eλj−1

∏
i ̸=j

eλie
3g−2+n−|λ|
1

+
∑

|λ|≤3g−2+n

Cg(λ)eλ(3g − 2 + n− |λ|)e3g−3+n−|λ|
1

= (2g − 2 + n)
∑

|λ|≤3g−3+n

Cg(λ)eλe
3g−3+n−|λ|
1

To extract an identity on Cg(λ) we must first reconstruct the elementary sym-
metric polynomial basis in the first term on the left hand side. We have two
cases to consider:

1. when λj = 2, then eλj−1 = e1 comes out of eλ and we can relabel what
is left as a new partition λ′ , which carries the coefficient associated to
λ′ ⊔ (2). There are m2(λ) ways to remove a row of length 2 from the
partition λ to get λ′, so it comes with multiplicity m2(λ

′) + 1.

2. when λj > 2 and thus λj − 1 > 1, we relabel it into a new partition
λ′. This term carries the coefficients of all the partitions from which we
can obtain λ′ by removing one block and then reordering the rows (those
partitions can obviously be obtained starting from λ′ by adding one block,
but they come with a different multiplicity than if we just counted the
ways to construct them from λ′ in all possible ways of adding one block).

We can describe the multiplicity in the following way. Let λ + (1)i be
the partition obtained by adding to λ a block at the i-th row (and then
reordering). It is enough to consider λ + (1)i for i = 1 and whenever
λi < λi−1 (those cases that do not require reordering the rows). Let
step(λ) ⊂ {1, . . . , ℓ(λ)} represent this set of steps. Let us count in how
many ways can we recover λ from λ + (1)i by removing a single block.
This is the number of rows of length λi +1 in λ+(1)i, which is the same
at the number of rows of length λi + 1 in λ plus one. Therefore we have:

∑
|λ|≤3g−3+n

∑
j∈step(λ)

(mλj+1(λ) + 1)Cg(λ+ (1)j)eλe
3g−3+n−|λ|
1

+
∑

|λ|≤3g−4+n

(m2(λ) + 1)Cg(λ ⊔ (2))eλe
3g−3+n−|λ|
1

+
∑

|λ|≤3g−3+n

(g − |λ|)Cg(λ)eλe
3g−3+n−|λ|
1 = 0.
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Figure 1: From λ to (k,µ)

Matching coefficients, we obtain∑
j∈step(λ)

(mλj+1(λ)+1)Cg(λ+(1)j)+(m2(λ)+1)Cg(λ⊔(2))+(g−|λ|)Cg(λ) = 0.

3.6. Solving the recursion

Equation (3.5) is a recursion on λ for fixed g: the Cg(λ) for smaller partitions
are related to the Cg(λ) for bigger partitions. However, whenever the partition
minus its first row has size exceeding 3g − 3, the coefficients vanish. To make
use of this, let us split partitions as λ = (λ1) ⊔ (λ2, . . . , λℓ(λ)) := (k) ⊔ µ and
let us denote

Cg(λ) = Cg(k, µ).

This notation only makes sense for k ≥ µ1, and from lemma 3.1 we must have
|µ| ≤ 3g − 3. For the empty partition λ = ∅ we keep the notation Cg(∅),
whereas Cg(k,∅) indicates a partition of a single row of length k, k ≥ 2. The
coefficient Cg(∅) can be computed for all g from the known formula for the
1-point function, and it is given in section 4.1. Let us therefore focus on the
remaining partitions that can we decomposed at (k, µ) for k ≥ 2. Let us rewrite
equation (3.5) in terms of pairs (k, µ). For λ = ∅,

Cg(2,∅) = −g Cg(∅).

And for all other partitions,

Cg(k + 1, µ) +
∑

j∈step(µ)

(mµj+1(µ) + 1)Cg(k, µ+ (1)j)

+ δk,µ1+1Cg(k, µ+ (1)1) + δk,µ1Cg(k, µ+ (1)ι)

+ (m2(µ) + δk,2 + 1)Cg(k, µ ⊔ (2)) + (g − k − |µ|)Cg(k, µ) = 0.
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Here, ι is the first index such that µ1 = µι + 1 (which could possibly not
exist, and in that case this extra term can be ignored). If terms of the form
Cg(k, µ

′) with µ′
1 > k appear in the sum, we discard them by convention. This

is equivalent to say that if µ1 = k then 1 should not be included in step(µ).
Let us impose k ≥ g − |µ|+ 1 and define

Cg(k, µ) = (−1)µ+l(µ)(k + |µ| − g − 1)! Cg(k, µ).

The relation now reads

Cg(k + 1, µ)− Cg(k, µ) =∑
j∈step(µ)

(mµj+1(µ)+1)Cg(k, µ+(1)j)+(k+ |µ|−g+1)(m2(µ)+1)Cg(k, µ⊔ (2))

+(|µ|−g+3)δk,2Cg(k, µ⊔ (2))+ δk,µ1+1Cg(k, µ+(1)1)+ δk,µ1
Cg(k, µ+(1)ι).

Let us adopt the convention that µ1 = 2 for µ = ∅. We have the following
lemma.

Lemma 3.5. Let µ ∈ Qg. For |µ| = 3g−3 , the coefficients Cg(k, µ) are constant
functions of k whenever k ≥ µ1. For |µ| < 3g − 3, the coefficients Cg(k, µ) for
k > 3g − 3− |µ|+ µ1 are polynomials in k of degree 3g − 3− |µ|.
Proof. Consider (3.6) for a partition µ with µ = 3g − 3: the RHS vanishes,
which implies that Cg(k, µ) is a constant function of k. This is true for all
k ≥ µ1, and for µ = ∅ when g = 1 this is true for k ≥ 2.

When µ < 3g−3, we want to get rid of the δ terms, so we impose k > µ1+1,
(in the case µ = ∅ and g > 1, we impose k ≥ 3). Hence we have:

Cg(k + 1, µ)− Cg(k, µ) =∑
j∈step(µ)

(mµj+1(µ)+1)Cg(k, µ+(1)j)+(k+|µ|−g+1)(m2(µ)+1)Cg(k, µ⊔(2)).

Let us analyse what is needed in order to write (3.6) for all partitions µ′ that
can be constructed by adding blocks to µ, still with µ′ ≤ 3g− 3. This requires
that we also impose all conditions k > µ′

1+1 (except for the max size partition
that will have constant coefficients). The most constraining partition for k will
be the partition of size 3g− 4 where we placed all the remaining blocks on the
first row, giving µ′

1 = µ1+3g−4−|µ|. Therefore if k > 3g−3−|µ|+µ1 we can
impose all relations (3.6) simultaneously for µ and all its ascending partitions.
Now proceed by induction: if for all partitions µ′ with size |µ′| > |µ|, Cg(k, µ′)
are polynomials of degree 3g− 3− |µ′| for k > 3g− 3− |µ′|+µ′

1, then by (3.6),
the difference Cg(k+1, µ)−Cg(k, µ) is a polynomial of degree 3g−3−|µ|−1 for
k > 3g−3−|µ|+µ1, so Cg(k, µ) is itself a polynomial of degree 3g−3−|µ|.
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Corollary 3.6. For g ≥ 1, for k > 3g − 3− |µ|+ µ1 − δ|µ|,3g−3,

Cg(k, µ) = (k + |µ| − g − 1)!Qµ
g (k)

where Qµ
g is a polynomial of degree 3g − 3− |µ|.

Proof. We have to compare condition A : k > 3g− 3− |µ|+µ1 − δ|µ|,3g−3 from
the lemma above and condition B : k > g − |µ| required by the decomposition
(3.6). The difference is

2g − 3 + µ1 − δ|µ|,3g−3.

For g ≥ 2 or for µ1 ≥ 2 this quantity is positive, and hence A =⇒ B. When
g = 1 and µ = ∅, A : k > −1 and B : k > 1, although both conditions are
taken under the constraint k ≥ 2. Therefore, whenever lemma 3.5 applies, it is
possible to apply the decomposition in the form of (3.6).

Remark 3.7. Corollary 3.6 is only a fraction of the information that we can
extract from the dilaton equation. Building on that result, one could then
decompose Cg(k, µ) in a suitable basis of polynomials,

Cg(k, µ) =

3g−3−|µ|∑
j=0

α
(g)
j (µ)Pµ

j (k),

and obtain a recursion on the coefficients α
(g)
j (µ) with initial values given by

α
(g)
0 (µ). While this distillates the initial data in a yet smaller set of coefficients,

it is not so useful at present because we can only compute α
(g)
0 (µ) from the

entire polynomial Cg(k, µ).

Lemma 3.8. For any g ≥ 0, we have

Cg(∅) = 1, Cg(2, ∅) = −g.

Proof. The cases for g = 0 and g = 1 are checked directly, the closed formulae
are known in the literature and given in (1.1) and (1.1). It is well-known that
for n = 1 one has Ãg,1 = e3g−2

1 , and therefore Cg(∅) = 1. Use the string
equation backwards to exploit the n−independence in this degenerate case and
prove that indeed Cg(∅) = 1 in each Ãg,n. The coefficient Cg(2, ∅) = −g is
given by equation (3.6).

3.7. Compute Ag,n for small fixed g

We now use corollary 3.6 to compute, for fixed small g, Cg(λ) for all λ. We
again denote by µ the partition λ minus its first row. Recall that we require
|µ| ≤ 3g − 3 in order for Cg(λ) to be non-zero. We can, for fixed g and µ,
compute Cg(k, µ) for the first few values of k, and use the polynomial structure
discussed in corollary 3.6, then repeat this procedure for all µ ∈ Qg.
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3.7.1. The minimal amount of coefficients to determine all Cg(λ)

We have seen that Cg(k, µ) has a polynomial behaviour in k starting at k0 =
3g−2−|µ|+µ1−δ|µ|,3g−3, and the polynomial is of degree 3g−3−|µ|. Thus, it
is enough to compute the Cg(k0, µ) up to Cg(k0 +(3g− 3)− |µ|) in order to fit
the polynomial part of Cg(k, µ) for all k. Since Cg(k, µ) appears first in Ag,k,
this means we need to compute Ag,n for sufficiently high n, namely Ag,nmin(g)

with
nmin(g) = max

µ∈partg
{6g − 5− 2|µ|+ µ1 − δ|µ|,3g−3}.

This maximum is obviously always achieved by the empty partition µ = ∅ ,
therefore,

nmin(g) = 6g − 3− δg,1.

To summarize, our method allows one to compute closed expressions of Ag,n

for all n and fixed g, provided one is able to compute Ag,6g−3.
Let us also mention that our main conjecture cannot really help us in com-

puting Ag,n: while the conjecture restricts the set Qg of partitions to Q∗
g, this

restriction does not bound the polynomial degree required by our method. On
the contrary, the most demanding partition in term of polynomial degree is
the partition of minimal length µ = ∅ (whereas the conjecture concerns long
partitions).

3.8. Verification of the conjecture for small g

Let us discuss some of the consequences of corollary 3.6 on conjecture 1.4.
Corollary 3.6 applies to all partitions in Qg regardless of their length, and in
particular we can compute Cg(k, µ) for µ with ℓ(µ) > g − 1 and show by the
same polynomial argument that they are indeed zero for all k, proving the
conjecture for fixed g. This is what we verify explicitly in the formulas (1.6)
and (1.7) for the genus 2 and 3 amplitudes , and for g = 4 in the supporting
files of the article.

To check the conjecture for fixed g, we do not need to compute the entire
n−point function Ag,n, but it is enough to apply the polynomial argument to
Cg(k, µ) for partitions in Qg \ Q∗

g. This requires to know the n point function
only up to Ag,nconj(g) with

nconj(g) = max
µ∈Qg\Q∗

g

{6g − 5− 2|µ|+ µ1 − δ|µ|,3g−3}

This maximum is achieved by the partition (2)g = (

g times︷ ︸︸ ︷
2, . . . , 2) (and Qg \ Q∗

g is
empty for g ≤ 2, so we can assume that g ≥ 3 and (2)g is indeed present) and
therefore we have

nconj(g) = 2g − 1.
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We can summarize this discussion as follows.

Lemma 3.9. For all g ≥ 3, conjecture 1.4 holds for all n ≥ 1 if and only if it
holds for n = 2g − 1.

Based on this result we were able to check the conjecture for g ≤ 7.

3.9. Higher Virasoro constraints

In the previous section we have seen how to transfer from string and from
dilaton equations useful information on the coefficients Cg(λ). It is a natural
question to ask what value can higher Virasoro constraints provide. Let us
first observe that the Virasoro algebra commutation relations imply that the
algebra is generated by, for instance, the operators L−1 and L2, but not by
L−1 and L0. There seem to be therefore something left to be captured.

We have tried directly to derive for each given m > 0 a recursion for the
Cg(λ). However, the recursions arising this way do not seem to be very suitable
for practical use. Instead, we are going to employ the result of Liu-Xu [32]
to restate our main conjecture in terms of the homogeneous polynomials Pr

and Sr.

Corollary 3.10. Let g ≥ 0 and n ≥ 1 be integer numbers such that 2g−2+n >
0. The following three statements are equivalent.

1. Conjecture 1.4:

Ag,n(x) =
∑

|λ|≤3g−3+n
λi≥2, l(λ)≤g

Cg(λ) eλ e
3g−3+n−|λ|
1 .

2.
Sg(x) =

∑
|λ|≤3g−3+n
λi≥2, l(λ)≤g

C ′
g(λ) eλ e

3g−3+n−|λ|
1 .

3.
Pg(x) =

∑
|λ|≤3g−3+n
λi≥2, l(λ)≤g

C ′′
g (λ) eλ e

3g−3+n−|λ|
1 .

Proof. It follows from the homogeneous degree of Pr and Sr, together with the
fact that in the formula for Fn and Gn only monomials in elementary symmetric
polynomials of degree 3 (e1e2 and e3) appear.

4. Verifying the conjecture for small n

This section contains the proof of the conjecture for n = 1, 2, 3.
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4.1. The case n = 1

A closed formula for the 1-point function F1(x) was computed by Witten [39]
and reads

F1(x) =
e

x3

24

x2
=

∞∑
g=0

x3g−2

24gg!
.

Since x = e1(x) and ei = 0 for i > 1, we trivially obtain:

Lemma 4.1. Conjecture 1.4 holds for n = 1 and any g ≥ 1. More precisely we
have:

Ag,1(x) = Cg(∅)e3g−2
1 , Cg(∅) =

1

24gg!
.

Note that the case (g, n) = (0, 1) is discarded as it is unstable, and corresponds
to the unstable integral ˆ

M0,1

1

1− xψ1
=

1

x2
.

4.2. The case n = 2

A closed formula for the 2-point function F2(x1, x2) was computed by Dijkgraaf
and reads in terms of the amplitudes

F2(x1, x2) = e
p3
24

1

e1

∑
k≥0

k!

2k(2k + 1)!
ek2e

k
1 .

Let us verify the main conjecture 1.4 by expanding F2 purely in elementary
symmetric polynomials.

Proposition 4.2. Conjecture 1.4 holds for n = 2 and any g ≥ 1. More pre-
cisely we have:

Ag,2(x) =

g∑
m=0

Cg((2)
m)em2 e

3g−1−2m
1 , Cg((2)

m) =
1

24gg!

(
g

m

)
(−3)m

(2m+ 1)
.

Proof. Let us first express the power sum in terms of the ei. One has p3 =
e31 − 3e1e2, as e3 vanishes in two variables. Substituting we obtain

F2(p1, p2) =
∑
l

(e31 − 3e1e2)
l

l!

1

24l
e−1
1

∑
k

k!

(2k + 1)!

1

2k
ek1e

k
2

=
∑
k

∑
l

l∑
j=0

1

l!24l
(−3)j

(
l

j

)
k!

(2k + 1)!
2−ke3l−1−2j+k

1 ej+k
2 .
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Now let us fix the degree to be 3l+3k− 1 = 3g− 1. Hence g = l+k, l = g−k,
and we have

Ag,2 =
∑
k

g−k∑
j=0

24k

(g − k)!24g
(−3)j

(
g − k

j

)
k!

(2k + 1)!
2−ke3g−1−2j−2k

1 ej+k
2 .

Setting j + k = m, with m = 0, ..., g and k = 0, ...,m we get

Ag,2 =
∑
m

m∑
k=0

24k

(g − k)!24g
(−3)m−k

(
g − k

m− k

)
k!

(2k + 1)!
2−ke3g−1−2m

1 em2

=
∑
m

m∑
k=0

1

24gg!
(−3)m

(
g

m

)
(−4)k

m!

(m− k)!

k!

(2k + 1)!
e3g−1−2m
1 em2 .

Therefore we have

Cg((2)
m) =

m∑
k=0

1

24gg!
(−3)m

(
g

m

)
(−4)k

m!

(m− k)!

k!

(2k + 1)!
.

It simply remains to show the combinatorial identity

1

2m+ 1
=

m∑
k=0

(−4)k
m!

(m− k)!

k!

(2k + 1)!
.

In fact this identity is a particular case for 2r+n = 2 of the one proved in [32,
Lemma 2.6]. This concludes the proof of the proposition.

Note that the case (g, n) = (0, 2) is discarded as it is unstable.

Remark 4.3. Let us see how one could have recovered Dijkgraaf formula di-
rectly from Theorem 2.1: since F1(x) = ex

3/24/x2, then G1(x) = x−2, hence
Br,1(x) = δr,0/x

2. We compute

Pr(x1, x2) =
1

2e1
2x21x

2
2

δr,0
x21x

2
2

=
δr,0
e1

.

It is then enough to substitute this into the formula for G2 = e−p3/24F2 and
solving for F2 converting the double factorials into factorials.

4.3. The case n = 3

The following formula for Pr(x1, x2, x3) was initially given by Zagier [41]. A
proof can be found in [32].

Pr(x1, x2, x3) =
1

4g(2g + 1)!!
×

× 1

e1

(
(x1 + x2)

r+1(x1x2)
r + (x2 + x3)

r+1(x2x3)
r + (x1 + x3)

r+1(x1x3)
r
)
.
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Proposition 4.4. Conjecture 1.4 holds for n = 3 and any g ≥ 0. More pre-
cisely we have:

4−r(2r + 1)!! Pr(x, y, z) = −(3r + 2)(−1)r+1er3

+

r∑
k=1

Res
t=0

dt

tr+1

er−k
3

k

(
r +

t

e1

)
(e1 − t)

r (
te2 − t2e1 + t3

)k
.

We are going to prove the residue formula. Notice that it implies the con-
jecture for n = 3 through Corollary 3.10, as in each summand we have at most
r − k factors of e3 and at most k factors of e2.

Proof. Let us consider the normalized version Tr of Pr:

Tr(x, y, z) =
1

e1

(
(x+ y)r+1(xy)r + (x+ z)r+1(xz)r + (y + z)r+1(yz)r

)
=

1

e1

(xy)r
r+1∑
j=0

er+1−j
1 (−1)jzj

(
r + 1

j

)
+ sym


= (−1)r+1er3 +

(xy)r
r∑

j=0

er−j
1 (−1)jzj

(
r + 1

j

)
+ sym



⇐⇒ Tr(x, y, z) + (−1)rer3 =

r∑
j=0

er−j
1 (−1)jzj(xy)r

(
r + 1

j

)
+ sym

= er3

r∑
j=0

er−j
1 (−1)j

(
r + 1

j

)(
1

xr−j
+

1

yr−j
+

1

zr−j

)
.

We want to describe this pr−j(1/x, 1/y, 1/z) factor. Let,

π(t) = (x− t)(y − t)(z − t)

= e3 − te2 + t2e1 − t3 .

Consider the development at small t,

log(
π(t)

e3
) = log(1− t

x
) + log(1− t

y
) + log(1− t

z
)

= −
∑
k≥1

1

k
tk
(

1

xk
+

1

yk
+

1

zk

)

⇐⇒ −mRes
t=0

dt

tm+1
log(

π(t)

e3
) = pm(1/x, 1/y, 1/z) .
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On the other hand,

log(
π(t)

e3
) = log(1− 1

e3
(te2 − t2e1 + t3))

= −
∑
k≥1

1

k
e−k
3 (te2 − t2e1 + t3)k .

Therefore,

pr−j(1/x, 1/y, 1/z) =
∑
k≥1

Res
t=0

dt

tr−j+1

r − j

k
e−k
3

(
te2 − t2e1 + t3

)k
=

r∑
k=1

Res
t=0

dt

tr−j+1

r − j

k
e−k
3

(
te2 − t2e1 + t3

)k
.

Please note that this is only valid for r − j ≥ 1.
We easily compute p0(1/x, 1/y, 1/z) = 3. We find

Tr(x, y, z) + (−1)rer3 =

r∑
k=1

Res
t=0

dt

tr+1

er−k
3

k

(
te2 − t2e1 + t3

)kr−1∑
j=0

er−j
1 (−t)j (r + 1)!

(r + 1− j)!j!
(r − j)


+ 3er3(−1)r(r + 1) .

Remains to repack the sum over j,

r∑
j=0

er−j
1 (−t)j (r + 1)!

(r + 1− j)!j!
(r − j)

=

r∑
j=0

er−j
1 (−t)j

(
(r + 1)

r!

(r − j)!j!
− (r + 1)!

(r + 1− j)!j!

)
= (r + 1)(e1 − t)r − 1

e1

(
(e1 − t)r+1 − (−1)r+1tr+1

)
=

(
r +

t

e1

)
(e1 − t)

r
+ (−1)rtr+1 .

Notice that he second term does not contribute in the residue. This concludes
the proof of the proposition.

5. An equivalent conjecture in terms of Ω classes

Ω classes can be thought of as a collection Ω of cohomology classes which play
a central role in the moduli spaces of curves: they are involved in several ELSV
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formulae arising in the context of Hurwitz theory [29, 28, 13], in the enumer-
ation of Masur-Veech volumes [8], in the double ramification cycle [22], in the
context of topological recursion for the 2-KP and the 2-BKP hierarchy [19],
Witten’s class, and more. They can be defined as certain cohomological classes
Ωg,n(r, s; a1, . . . , an) ∈ H∗(Mg,n), arising from r dimensional cohomological
field theories, which generalize the Chern class of the Hodge bundle in the con-
text of r-spin curves with a corresponding generalized Mumford formula for the
Chern characters. Their polynomiality in the parameters r, s and ai remains
in general a mystery. In this section we aim to partially shed light in this direc-
tion: we use a result of Goulden-Jackson-Vakil together with a ELSV formula
of [13] to transfer conjecture 1.4 to a statement involving the polynomiality of
the intersection of Ω-classes in its parameters when a specific relation among
the parameters holds.

5.1. Ω-classes

For 2g − 2 + n > 0, consider a non-singular marked curve

(C; p1, . . . , pn) ∈ Mg,n

and let ωlog = ωC(
∑
pi) be its log canonical bundle. Fix a positive integer r,

and let 1 ≤ s ≤ r and 1 ≤ a1, . . . , an ≤ r be integers satisfying the equation

a1 + a2 + · · ·+ an ≡ (2g − 2 + n)s (mod r).

This condition guarantees the existence of a line bundle over C whose rth ten-
sor power is isomorphic to ω⊗s

log(−
∑
aipi). Varying the underlying curve and

the choice of such an rth tensor root yields a moduli space with a natural com-
pactification Mr,s

g;a1,...,an
(see e.g. [23]). These works also include constructions

of the universal curve π : Cr,s

g;a1,...,an
→ Mr,s

g;a1,...,an
and the universal rth root

L → Cr,s

g;a1,...,an
. One can define psi-classes and kappa-classes in complete anal-

ogy with the case of moduli spaces of stable curves. The Chern characters of
the derived pushforward chk(R

∗π∗L) are given by [10]

chk(r, s; a1, . . . , an) :=
Bk+1(s/r)

(k + 1)!
κk −

n∑
i=1

Bk+1(ai/r)

(k + 1)!
ψk
i

+
r

2

r−1∑
a=0

Bk+1(a/r)

(k + 1)!
ja∗

(ψ′)k + (−1)k−1(ψ′′)k

ψ′ + ψ′′ .

Here, Bm(x) denotes the Bernoulli polynomial, ja is the boundary morphism
that represents the boundary divisor with multiplicity index a at one of the
two branches of the corresponding node, and ψ′, ψ′′ are the ψ-classes at the
two branches of the node.
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We define

Ω[x]
g,n(r, s; a1, . . . , an) := ϵ∗ exp

[ ∞∑
k=1

(−x)k(k − 1)! chk(r, s; a1, . . . , an)

]
for the pushforward of the virtual total Chern class on the moduli space of
stable curve via the natural forgetful morphism

ϵ : Mr,s

g;a1,...,an
→ Mg,n,

which forgets the line bundle, otherwise known as the spin structure. Moreover
Ω is enriched with an extra parameter x which tracks the cohomological degree
of the class.

5.2. Goulden-Jackson-Vakil ELSV formula

We now recall the polynomiality result of Goulden-Jackson-Vakil [20] for one-
part Hurwitz numbers, their conjectural ELSV formula, and the solution found
in [13].
Let g ≥ 0 and let xi be positive integers. Let us consider the one-part simple
Hurwitz numbers

hone-partg;x1,...,xn
,

that is, Hurwitz coverings of the Riemann sphere of genus g with ramification
profile x over zero, total ramification (d) = (

∑n
i xi) = (e1(x)) over infinity,

and only 2g − 1 + n further ramifications elsewhere, all of which are required
to be simple. Let S(x) be the the function

S(x) = sinh(x/2)

(x/2)
=

∞∑
k=0

x2k

22k(2k + 1)!
= 1 +

x2

24
+

x4

1920
+O(x6).

The inverse function reads

1

S(x)
=

(x/2)

sinh(x/2)
= 1 +

∞∑
k=0

(21−2k − 1)B2kx
2k

(2k)!
= 1− x2

24
+

7x4

5760
+O(x6).

Goulden, Jackson and Vakil proved that one-part double Hurwitz numbers are
represented by a polynomial in the xi of degree sharply in the range [2g − 2 +
n, 4g − 2 + n].

Theorem 5.1 ([20]). Simple one-part Hurwitz numbers are polynomial in the
ramification profile, i.e. there exist a polynomial hone-partg (x) such that for
positive integer values one has hone-partg (x) = hone-partg,x . More precisely, this
polynomial is given by

hone-partg (x) = e1(x)
2g−2+n Pg,n(x1, . . . , xn),
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for the degree 2g polynomial

Pg,n(x1, . . . , xn) = [t2g].

∏n
i=1 S(txi)
S(t)

.

It is clear that Pg,n is a polynomial of degree g in the variables x21, . . . , x
2
n.

The result of the theorem above can nowadays be reproduced by a one-line
computation using more modern techniques such as semi-infinite wedge for-
malism, see for instance [24]. In the same paper Goulden-Jackson-Vakil have
conjectured the existence of an ELSV-type formula for the numbers hone-partg;x .
One such ELSV formula was found in [13]:

hone-partg (x) =

= e2g−2+n
1

ˆ
Mg,n

e1
Ω

[1]
g,n(e1, e1; e

−
1 )∏

i=1(1−
xi

e1
ψi)

= e1−g
1

ˆ
Mg,n

e1Ω
[e1]
g,n (e1, e1; e

−
1 )∏

i=1(1− xiψi)
,

where e−1 (x1, . . . , xn) := (e1(x)− x1, . . . , e1(x)− xn). To pass from the first to
the second expression simply multiply and divide by e3g−3+n

1 and pair powers
of e1 to cohomological degree. Putting the two results together we have:

ˆ
Mg,n

e1Ω
[e1]
g,n (e1, e1; e

−
1 )∏

i=1(1− xiψi)
= e3g−3+n

1 · Pg,n(x1, . . . , xn) .

Let Ωd,g,n be the cohomological complex degree d part of the Omega-class

e1Ω
[1]
g,n(e1, e1; e

−
1 ). It is well-known that

e1Ω0,g,n = e2g1 · 1g,n,

where 1g,n is the fundamental class. Therefore we can extract Ag,n from this
expression as

Ag,n = eg−3+n
1 [t2g].

∏n
i=1 S(txi)
S(t)

−
3g−3+n∑

d=1

ed−2g
1

ˆ
Mg,n

e1Ωd,g,n∏
i=1(1− xiψi)

.

By analysing the degree in the µi in the expression above, we see that, since
of course Ag,n is homogeneous of degree 3g − 3 + n, the subleading terms on
the right-hand-side should cancel each other. On the other hand, it is clear
that taking the leading coefficient in the µi of the first term of the RHS simply
amounts to removing the S(t) from the denominator. Let Ωtop

g,n,d indicate the
polynomial terms in Ωg,n,d of degree 2g in the µi. Then we have

Ag,n = eg−3+n
1 [t2g].

n∏
i=1

S(txi) −
3g−3+n∑

d=1

ed−2g
1

ˆ
Mg,n

e1Ω
top
d,g,n∏

i=1(1− xiψi)
.
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It is obvious that the first term in the RHS satisfies the form of the con-
jecture 1.4: as the term contains eg−3+n

1 times a polynomial of degree 2g, the
most factors eλi

with λi > 1 is clearly g 3. Therefore we immediately obtain a
restatement of our main conjecture in terms of Ω-classes:

Proposition 5.2. The following two statements are equivalent:

i). Conjecture 1.4: Ag,n expanded in the ei basis has at most g factors eλi

with λi > 1.

ii). The expression

3g−3+n∑
d=1

ed−2g
1

ˆ
M,g,n

Ωtop
d,g,n∏

i=1(1− xiψi)

expanded in the ei basis has at most g factors eλi
with λi > 1.

The fact that this particular linear combination of integrals of Omega-
classes is a polynomial in the variables xi is per sé quite non-trivial, given that
the polynomiality of Omega-classes with respect to their parameters in general
fails (although this followed already before this work, from the combination of
[20] and [13]). Omega-classes have a precise expression in terms of decorated
stable graphs: the statement above implies that after integrating over all dec-
orated strata represented by these graphs the polynomiality in the parameters
features the same type of vanishing as the integrals of pure psi classes, and
that this is so for all pairs of stable (g, n). Again, it would be desirable to
find a geometric explanation of this phenomenon in terms of the properties of
Omega-classes.

6. Application: Intersection numbers as a g-dimensional
integrals

This section is devoted to integral representations of the amplitudes Ag,n, as
well as to the amplitudes of more involved cohomological classes — the Weil-
Petersson polynomials. We remark that the obtained expressions rely on the
main conjecture. However, dropping the assumption that conjecture 1.4 holds
true still gives rise to finite integral representations, although the number of
integrations needed gets much messier.

3In fact the condition top on Ωd,g,n is quite restrictive: as can be seen for instance in [22,
Corollary 4] the class Ωd,g,n has an explicit expression in terms of stable graphs decorated
with ψ-classes, κ−classes, and nodes which are either separable or not. Each decoration
involves coefficients given by Bernoulli polynomials as above. It is discussed in [4] that a
lot of the decorations arising from non-separable nodes produce subleading terms in the µi,
therefore the sum over stable graphs contains mostly sums over stable trees.
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We start from the observation that the Kontsevitch-Witten intersection
numbers can be recovered from the amplitudes as a residue taken simultane-
ously in n variables:

⟨ τd1 . . . τdn ⟩g = Res
x=0

n∏
i=1

dxi

xdi+1
i

Ag,n(x).

We are going to analyse and refine in several directions this expression, turning
it in particular into a (g + 1)-dimensional integral. We are going to recall first
some background on symmetric functions.

6.1. Monomial symmetric functions

We shall use an intermediate basis of symmetric functions. We work with
partitions with non zero entries, so that when n > ℓ(λ), we use the convention
that λℓ(λ)+1, . . . , λn = 0. The monomial symmetric polynomials of a partition
λ in the variables x = (x1, . . . , xn) is the sum of all monomials xν1

1 . . . xνn
n where

ν are distinct reorderings of λ, this is equivalent to,

mλ(x1, . . . , xn) =
1

Zλ(n− ℓ(λ))!

∑
σ∈Sn

x
λσ(1)

1 . . . x
λσ(n)
n ,

where Zλ =
∏

k≥1multk(λ)! is the product of factorials of multiplicities of the
entries of λ (not to be confused with the stabiliser of the conjugacy class, which
generally gets furthermore multiplied by all the individual parts). For instance
Z(5,5,2,2,2) = 2!3! = 24.

Some examples of mλ are m(2,1,1)(x1, x2, x3) = x21x2x3 + x1x
2
2x3 + x1x2x

2
3

and m(1)(x1, x2, x3) = e1(x1, x2, x3). The monomial symmetric functions have
an orthonormal product that can be represented by a residue, letting v =
(v1, . . . , vn),

Res
v=0

n∏
i=1

dvi
vi
mλ(v)mµ(1/v) = δµ,λ

n!

Zλ(n− ℓ(λ))!
.

Moreover the monomial symmetric and elementary symmetric basis satisfy

∑
λ

ℓ(λ)≤n
λi≤m

eλ(p1, . . . , pm)mλ(v1, . . . , vn) =
n∏

i=1

m∏
j=1

(1 + pjvi) .

For a fixed partition λ and for n ≥ ℓ(λ), we can decompose an elementary
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symmetric functions as

eλ(p) = Res
v=0

n∏
i=1

dvi
vi

m∏
j=1

(1 + pjvi)
Zλ(n− ℓ(λ))!

n!
mλ(1/v).

= Res
v=0

n∏
i=1

dvi
vi

m∏
j=1

(1 + pjvi)
1

n!
m̃λ(1/v).

Where we used the augmented monomial symmetric polynomials for concise-
ness (summing over all reorderings, possibly not distinct)

m̃λ(x1, . . . , xn) =
∑

σ∈Sn

x
λσ(1)

1 . . . x
λσ(n)
n .

In order to deal with the factors of e1, we will use the identity

ek1(p1, . . . , pm) = k! Res
u=0

du

uk+1

m∏
j=1

eupj .

6.2. g−dimensional integrals

For an arbitrary set of times tk, k ≥ 2, we consider the correlators〈
e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

.

We denote the corresponding amplitudes by

AΩt
g,n =

∑
d1,...,dn

〈
e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

∏
i

xdi
i .

Let us comment on the lower bound k ≥ 2 of the sum in the exponential:
having τ0 in the exponential would make the whole expression ill-defined (as
the number of marked points is allowed to increase without increasing the
cohomological degree, therefore giving rise to an infinite sum for each monomial
in the xi); whereas the τ1 in the exponential can be simplified by means of the
dilaton equation:〈

e
∑

k≥1 tk−1τk

n∏
i=1

τdi

〉
= t̃2g−2+n

0

〈
e
∑

k≥2 t̃k−1τk

n∏
i=1

τdi

〉
g

,
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under the substitutions (1 − t0)
−1 → t̃0 and ti(1 − t0)

−1 → t̃i, for i ≥ 1. Let
dg,n = 3g−3+n be the dimension of the moduli space of curves. We compute:

AΩt
g,n =

∑
d1,...,dn

〈
e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

n∏
i=1

xdi
i

=
∑
ℓ≥0

1

ℓ!

∑
µ1,...,µℓ

∑
d1,...,dn

tµ1−1 . . . tµℓ−1 < τµ⊔ d >g

n∏
i=1

xdi
i

=
∑
ℓ≥0

1

ℓ!

∑
µ1,...,µℓ

tµ1−1 . . . tµℓ−1Res
p=0

ℓ∏
j=1

dpj

p
µj+1
j

Ag,ℓ+n(p,x)

=
∑
ℓ≥0

1

ℓ!
Res
p=0

ℓ∏
j=1

dpj
pj

(∑
µ≥2

tµ−1p
−µ
j

)
Ag,ℓ+n(p,x)

=
∑
ℓ≥0

1

ℓ!

∑
|λ|≤dg,n+ℓ

λi≥2
l(λ)≤g

Cg(λ)Res
p=0

ℓ∏
j=1

dpj
pj

(∑
µ≥2

tµ−1p
−µ
j

)
eλ(p,x)e1(p,x)

dg,n+ℓ−|λ|

=
∑
λi≥2
l(λ)≤g

Cg(λ)
∑

ℓ≥|λ|−dg,n

Res
v=0

g∏
m=1

dvm
vm

1

g!
m̃λ(1/v)

(dg,n + ℓ− |λ|)!
ℓ!

Res
u=0

du

udg,n+ℓ−|λ|+1
Res
p=0

ℓ∏
j=1

dpj
pj

(
∑
µ≥2

tµ−1p
−µ
j )eupj

g∏
m=1

(1 + vmpj)

n∏
i=1

euxi

g∏
m=1

(1 + vmxi).

Now the pi are independent integration variables, which we can relabel p. Let
us evaluate the residue in p and define

F (t;u,v) := u− Res
p=0

dp

p
(
∑
µ≥2

tµ−1p
−µ)eup

g∏
m=1

(1 + vmp)

= u−
∑
k,j≥0
j+k≥2

tk+j−1
uj

j!
ek(v).

We now want to evaluate the sum over ℓ by means of the following series
identity:

∑
ℓ≥−s

(ℓ+ s)!

ℓ!
xℓ =

s! (1− x)−(s+1) s ≥ 0
(−1)s

(−s− 1)!
(1− x)−(s+1) log(1− x) + hs(x) s < 0



A NATURAL BASIS FOR INTERSECTION NUMBERS (33 of 47)

where hs(x) is a polynomial of degree −s − 1. The radius of convergence is
|x| < 1. There are two distinct cases:

• If |λ| ≤ dg,n:

∑
ℓ

u−ℓ (dg,n + ℓ− |λ|)!
ℓ!

(u−F (t;u,v))ℓ = (dg,n−|λ|)!
(
1

u
F (t;u,v)

)|λ|−dg,n−1

• If |λ| > dg,n:

∑
ℓ

u−ℓ (dg,n + ℓ− |λ|)!
ℓ!

(u− F (t;u,v))ℓ

=
(−1)|λ|−dg,n

(|λ| − dg,n − 1)!

(
1

u
F (t;u,v)

)|λ|−dg,n−1

ln

(
1

u
F (t;u,v)

)
+ hdg,n−|λ|

(
F (t;u,v)

u

)
.

One can check that the contribution from the polynomial h vanishes under the
u-residue when the vi are small enough, hence one can safely discard that term
from the computation. To sum this series, we need to ensure that it is con-
verging everywhere on some contours corresponding to the residue integration
in the u and v planes. Initially centred around 0, these contours might need
to be deformed in order to satisfy the constraint∣∣∣1− F (t;u,v)/u

∣∣∣ < 1.

To this end, let us write F as F (t;u,v) =
∑

k≥0 Fk(t;u)ek(v). Notice that the
sum over k is bounded by the amount of the v-variables, which is g. By the
triangular identity we have that∣∣∣1− F (t;u,v)

u

∣∣∣ ≤ ∣∣∣1− F0(t;u)

u

∣∣∣+ ∣∣∣ g∑
k=1

Fk(t;u)

u
ek(v)

∣∣∣.
Clearly, if we keep the vi small, the contribution from k ≥ 1 is also small. So
we keep the contours in the v as a residue around zero, and we are left with
the constraint∣∣∣1− F0(t;u)

u

∣∣∣ < 1, or equivalently
∣∣∣∑
j=2

tj−1
uj

j!

∣∣∣ < 1.

Depending on the function F (u), we might have to deform the residue contour
at u = 0 to a contour γ in the region where (6.2) is satisfied, homotopic with
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respect to the poles of F (t;u,v) in u (equivalently, the poles of all Fk(u), as
the ek are linearly independent).

Let us denote by û(F ) the set of zeros of F (t;u,v) in the region defined by

|1− F0(u)
u | < 1: the deformed integral along γ picks up contributions labeled by

û(F ) in two distinct ways, depending on whether the terms are meromorphic
or logarithmic. The meromorphic terms of (6.2) yield residues at û for each
û ∈ û(F ). The logarithmic terms of (6.2) are considered with the cut in the
u-variable on the line segment [0, û]. If γ encircles this cut, it can be squeezed
arbitrarily close to it: it can therefore be considered as the integral over the
cut in one direction plus the integral over the cut in the opposite direction in
which the argument gets raised by 2πi. After cancellation, the result equals
2πi times the remaining factors of the integrand, integrated along the cut in
the opposite direction. Therefore from (6.2) we then obtain that AΩt

g,n equals

∑
|λ|≤dg,n

λi≥2
l(λ)≤g

(dg,n − |λ|)! Cg(λ)

g!
Res
v=0

g∏
m=1

dvm
vm

m̃λ(1/v)

∑
û∈û(F )

Res
u=û

F (t;u,v)|λ|−dg,n−1
∏
i,m

euxi(1 + vmxi)

+
∑

|λ|>dg,n

λi≥2
ℓ(λ)≤g

(−1)|λ|−dg,n

(|λ| − dg,n − 1)!

Cg(λ)

g!
Res
v=0

g∏
m=1

dvm
vm

m̃λ(1/v)

∑
û∈û(F )

ˆ û

0

duF (t;u,v)|λ|−dg,n−1
∏
i,m

euxi(1 + vmxi)

When û(F ) = {0}, and in particular when |1 − F0(u)/u| < 1 is verified in a
neighbourhood of the origin, the line integrals do not contribute, so the last

two lines can be discarded. Let us indicate both operators Res
u=û

= 1
2iπ

¸
û
and
´ û
0

by the same symbol
›
û
: if the integrand is regular in F it is a line integral on

the segment [0, û], and if it is meromorphic and singular it is a residue around
û. Finally, we denote

›
=
∑

u∈û

›
û
.

Proposition 6.1. Assuming conjecture 1.4, the times dependent intersection
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numbers can be written as the g + 1 dimensional integral

∑
d1,...,dn

〈
e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

n∏
i=1

xdi
i

= Res
v=0

g∏
m=1

dvm
vm

“
du

Bg,n(F (t;u,v),v)

F (t;u,v)dg,n+1

∏
i,m

euxi(1 + vmxi),

where

Bg,n(ξ, v1, . . . , vg) =
∑

|λ|≤dg,n

λi≥2
l(λ)≤g

(dg,n − |λ|)! Cg(λ)

g!
m̃λ(1/v) ξ

|λ|

+
∑

|λ|>dg,n

λi≥2
l(λ)≤g

(−1)|λ|−dg,n

(|λ| − dg,n − 1)!

Cg(λ)

g!
m̃λ(1/v) ξ

|λ|,

and F (t;u,v) = u−
∑

k,j tk+j−1
uj

j! ek(v).

In order to extract the coefficient ⟨ e
∑

k≥2 tk−1τk
∏n

i=1 τdj ⟩g we take the residue
in the variables xi, which can be computed explicitly:

Res
x=0

n∏
i=1

dxi

xdi+1
i

euxi

g∏
m=1

(1 + vmxi) =

n∏
i=1

dxi

xdi+1
i

∑
k≥0

ukxki
k!

g∑
r=0

er(v)x
r
i

=

n∏
i=1

di∑
r=0

udi−r

(di − r)!
er(v)

= udg,n

n∏
i=1

di∑
r=0

er(v)

ur
1

(di − r)!
.

Corollary 6.2. The times dependent correlators can be computed as the fol-
lowing (g + 1)-dimensional integral:〈

e
∑

k≥2 tk−1τk

n∏
i=1

τdi

〉
g

=

= Res
v=0

g∏
m=1

dvm
vm

“
duudg,n

Bg,n(F (t;u,v),v)

F (t;u,v)dg,n+1

n∏
i=1

di∑
r=0

er(v)

ur
1

(di − r)!
.

Remark 6.3. When û(F ) = {0}, and in particular when |1 − F0(u)/u| < 1
is verified in a neighbourhood of the origin, the line integrals in

›
do not
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contribute and it is enough to restrict Bg,n to the part that yields negative
powers of F , that is, to

B−
g,n(ξ, v1, . . . , vg) =

∑
|λ|≤dg,n

λi≥2
l(λ)≤g

(dg,n − |λ|)! Cg(λ)

g!
m̃λ(1/v)ξ

|λ|.

In that case
›
(·) du is a simple residue in u at the origin.

Corollary 6.4. Setting all times to zero, we recover the Witten–Kontsevich
intersection numbers of ψ− classes. Therefore in terms of the corresponding
amplitudes we have:

Ag,n(x) = Res
v=0

g∏
m=1

dvm
vm

Res
u=0

du

u

B−
g,n(u,v)

udg,n+1

∏
i,m

euxi(1 + vmxi)

= [u0v01 . . . v
0
g ]
B−

g,n(u,v)

udg,n

∏
i,m

euxi(1 + vmxi) .

Equivalently, for the correlators we have:

⟨ τd1
. . . τdn

⟩g = Res
v=0

g∏
m=1

dvm
vm

Res
u=0

du

u
B−

g,n(u,v)

n∏
i=1

di∑
r=0

er(v)

ur
1

(di − r)!

= [u0v01 . . . v
0
g ]B

−
g,n(u,v)

n∏
i=1

di∑
r=0

er(v)

ur
1

(di − r)!

Remark 6.5. Note that taking the coefficient of the v0i restricts the partitions
λ of B−

g,n further to partitions with λi ≤ n, as it is impossible to collect a power
of vi higher than n from the product of n elementary symmetric polynomials
in the vj .

Lemma 6.1 provides a much general formula allowing to specify different
times tk which vary from problem to problem. The key ingredient of the lemma
isBg,n, which is itself times independent. As of now we are only able to compute
Bg,n for a fixed genus g (and for all n) from the data of the amplitude Ag,6g−3.
The amplitude has to be computed with different methods, such as Virasoro
constraints. However, we think that the study of the coefficients Cg(λ) beyond
string and dilaton equations will provide new ways of computing Bg,n in a more
direct way.

6.3. Explicit functions Bg,n in low genera

The functions Bg,n and B−
g,n for low genus can be given explicitly as follows.
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6.3.1. Genus zero:

B0,n = δn<3
(−1)n+1

(2− n)!
+ δn≥3(n− 3)!

B−
0,n = δn≥3(n− 3)!

6.3.2. Genus one:

B1,n(ξ, v) = n!−
n∑

k=2

(n− k)!(k − 2)!

(
ξ

v

)k

+

∞∑
k=n+1

(−1)n−k+1

(k − n+ 1)!
(k − 2)!

(
ξ

v

)

= n!−
n∑

k=2

(n− k)!(k − 2)!

(
ξ

v

)k

+

(
ξ

v

)n+1
(n− 1)!

(1 + ξ/v)n

B−
1,n(ξ, v) = n!−

n∑
k=2

(n− k)!(k − 2)!

(
ξ

v

)k

6.3.3. Genus two:

B−
2,n(ξ, v1, v2)

= (n+ 3)!− (n+ 1)!

(
1

v21
+

1

v22

)
ξ2 − 9

5
n!

(
1

v31
+

1

v32

)
ξ3

−
n+3∑
k=4

(n− k + 3)!
(k − 3)!

60
(k3 + 21k2 − 70k + 96)

(
1

vk1
+

1

vk2

)
ξk

+
9

5
(n− 1)!

1

v21v
2
2

ξ4 +
9

5
(n− 2)!

(
1

v31v
2
2

+
1

v21v
3
2

)
ξ5

+

n+1∑
k=4

(n− k + 1)!
(k − 1)!

20
(k + 16)

(
1

vk1v
2
2

+
1

v21v
k
2

)
ξk+2

−
n∑

k=3

(n− k)!
k!

20

(
1

vk1v
3
2

+
1

v31v
k
2

)
ξk+3

6.4. Application to Weil-Petersson volumes

In the previous section we developed a times dependent formula for applications
to different enumerative geometric problems. In this section we employ this
formula specialising it to the suitable times tk providing the Weil-Petersson
volumes.
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It can be interesting to notice how in this case Bessel functions naturally
arise from the function F . The fact that Bessel functions must be involved in
the amplitudes of the Weil-Petersson volumes has been known in the literature
for a fairly long time, as explained below, and formulae in low genera were made
precise. Nevertheless, we achieve a concrete formula for their involvement in
all genera which, to the best of our knowledge, is new.

For a vector of positive real numbers L = (L1, . . . , Ln), let Mg,n(L) be the
moduli space of genus g hyperbolic surfaces with n hyperbolic boundaries of
length prescribed by L. Weil-Petersson volumes are defined as the integral of
the Weil-Petersson metric form ω on Mg,n(L):

Vg,n(L) =
1

(3g − 3 + n)!

ˆ
Mg,n(L)

ω3g−3+n.

The volume form extends to a closed form on Mg,n and defines a cohomology
class [ω] ∈ H2(Mg,n,R). It is also known [40] that [ω] = 2π2κ1 where κ1 is
the first Mumford class on Mg,n. In [34] Mirzakhani shows that (6.4) reduces
to an integral on the moduli space Mg,n of stable curves by

Vg,n(L) =
∑

α1,...,αn

〈
e2π

2κ1

n∏
i=1

τdi

〉
g

∏
i

L2di

2didi!
.

By projection formula, the integrals of monomials of ψ− and κ−classes can
be computed as a combination of integrals of monomials purely in terms of
ψ−classes. In particular, monomials in ψ−classes and powers of κ1 can be
expressed as combinations of correlators in terms of τk’s.

〈
e2π

2κ1

〉
g

=
∑
p

1

p!

∑
m1,...,mp

mi>0

(−1)
∑

i mi+p(2π2)
∑

i mi

m1! . . .mp!

〈 p∏
j=1

τmj+1

〉
g

=
〈
e
∑

k≥2 tk−1τk
〉
g

for

tk = − (−2π2)k

k!
, k ≥ 1.

For the rest of this section F (t, u,v) is intended with specialized times. Let us
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compute

F (u,v) = u−
∑
j,k≥0
j+k≥2

tk+j−1
uj

j!
ek(v),

= u−
∑
j,k≥0

(j,k)̸=(0,0)

tk+j−1
uj

j!
ek(v) + t0u+ t0e1(v),

= −e1(v) +
∑
k≥0

ek(v)(−2π2)k−1
∑
j≥0

(−1)j

j!(j + k − 1)!
(2π2)juj .

Taking the convention that 1/(−1)! = 0. We can relate this to the Bessel
functions,

Jn(x) =

∞∑
j=0

(−1)j

j!(j + n)!

(x
2

)2j+n

,

In(x) =

∞∑
j=0

1

j!(j + n)!

(x
2

)2j+n

.

We shall also use that J−n(x) = (−1)nJn(x). We obtain

F (u,v) = −e1(v) +
∑
k≥0

ek(v)(−1)k+1

(
π
√
2√
u

)k−1

Jk−1(2π
√
2u).

Here the sum over k is bounded by g since we conjecture that at most g variables
of integration v1, . . . , vg are necessary. Let us work out the set û(F ) to enter into
the residue formula. The condition |1−F0(u)/u| < 1 is verified in a neighbour-
hood of the origin, as F0(u)/u = 1

π
√
2u
J1(2π

√
2u) and limz→0 J1(2z)/z = 1. So

we can keep the residue contour around u = 0. Then, we can check that u = 0
is indeed (the unique) solution of F (u,v) = 0 since J0(0) = 1 and Jk(0) = 0
for k > 1. Therefore û(F ) = {0}, and only the terms in B−

g,n will contribute to
the residue formula (6.1). The first values of F (u,v) for g = 0, 1, 2 are

F (u) =
1

π

√
u

2
J1(2π

√
2u)

F (u, v1) = v1

(
J0(2π

√
2u)− 1

)
+

1

π

√
u

2
J1(2π

√
2u)

F (u, v1, v2) = (v1 + v2)
(
J0(2π

√
2u)− 1

)
+
(
1 + 2π2 v1v2

u

) 1

π

√
u

2
J1(2π

√
2u)
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The last ingredient we need to relate AΩt
g,n to Vg,n is the change of basis xi ↔ Li.

Let

Lxf(L) :=
1

x

ˆ ∞

0

f(L)e−
L2

2x LdL, so that xdi
i = Lxi

(
L2di

2didi!

)
.

In particular, we have Vg,n(L) = L−1AΩt
g,n(x). We also compute

L−1
∏
m

euxj (1 + vmxj) = L−1
∑
k,ℓ

uℓ

ℓ!
ek(v)x

k+ℓ
i

=
∑
k,ℓ

uℓ

ℓ!
ek(v)

L2k+2ℓ
i

2k+ℓ(k + ℓ)!

=
∑
k

ek(v)

(
Li√
2u

)k∑
ℓ

1

ℓ!(k + ℓ)!

(
Li

√
2u

2

)2ℓ+k

=
∑
k

ek(v)

(
Li√
2u

)k

Ik(Li

√
2u) .

We can now specialize (6.1) to the case of Weil-Petersson volumes.

Theorem 6.6. Conjecture 1.4 implies the following integral representation of
the Weil-Petersson amplitudes:

Vg,n(L) = Res
v=0

g∏
m=1

dvm
vm

Res
u=0

du

B−
g,n(F (u,v),v)

F (u,v)3g−2+n

n∏
i=1

(∑
k

ek(v)

(
Li√
2u

)k

Ik(Li

√
2u)

)
.

Remark 6.7. In fact a finer statement holds: each (g, n) for which Conjecture
1.4 is proved implies the corresponding statement in the result above. Therefore
formula (6.6) holds for g ≤ 7, any n; and for n ≤ 3, any g.

We give in the following the explicit formulae for Vg,n for genus 0 and 1. These
formulae are actually proved, as both the main conjecture and the formulae for
Bg,n were proved in low genus. We applied the change of variable 2u → u in
the residue.

V0,n(L1, . . . , Ln) =
1

2
(n− 3)! (2π)

n−2
Res
u=0

du

(
√
uJ1(2π

√
u))n−2

n∏
i=1

I0(Li

√
u) .
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For g = 1 we can compute the residue in v1 explicitly. The result is,

V1,n(L1, . . . , Ln) =
1

48
(2π)n+1 Res

u=0
du

1

(
√
uJ1(2π

√
u))n+1

n∏
j=1

I0(Lj

√
u)

(
n!−

n∑
k=2

(n− k)!(k − 2)!

k∑
ℓ=0

(
n− ℓ

k − ℓ

)(√
u

π
J1(2π

√
u)

)ℓ

×

× eℓ(D)(1− J0(2π
√
u))k−ℓ

)
with

Di(u, Li) =
(Li/2)I1(Li

√
u)√

uI0(Li
√
u)

.

Both are checked to give rise to the right Weil-Petersson volumes. Relations
between generating series of Weil-Petersson polynomials and Bessel functions
can be found for instance in [37] in relation to JT Gravity, in [25] via combi-
natorial techniques, and in [35] what concerns the Weil-Petersson volumes and
their large genus asymptotics.

7. Examples of similar behaviour from other
coholomogical classes

This section collects a few examples of cohomological classes or cohomological
field theories whose amplitudes (as in the case of integrals of Omega-classes)
show analogies with respect to the ones of the trivial CohFT, when expanded
in the elementary symmetric polynomials.

7.0.1. Chern classes of the Hodge bundle: amplitudes of λ−classes

The algebraic geometry of moduli spaces of stable curves has several surprising
properties involving its tautological cohomology classes. For example, the fol-
lowing conjecture was proposed by Faber in [16] and then proved by Faber and
Pandharipande in [17]. Let λi = ci(E) be the i-th Chern class of the Hodge
bundle of abelian differentials. One has:

ˆ
Mg,n

λgψ
d1
1 · · ·ψdn

n =

(
2g − 3 + n

d1, . . . , dn

)ˆ
Mg,1

λgψ
2g−2
1 .

In fact, the integral for n = 1 has been computed to be

bg :=

ˆ
Mg,1

λgψ
2g−2
1 = [t2g].

t/2

sin(t/2)
.
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Defining

AΩ=λg
g,n (x) :=

ˆ
Mg,n

λg∏n
i=1(1− xiψi)

,

it is straightforward to recast the statement above in terms of the generating
series, obtaining the cleanest form

Aλg
g,n = bg · e2g−3+n

1 .

In this example we see that the amplitudes of the class λg allow for at most
zero factors of eλ with λ > 1 in their expansion.

Concerning lower λ−classes, one can consider and analyse the amplitudes

Ãλi
g,n = 24gg! ·

ˆ
M,g,n

λi∏n
i=1(1− xiψi)

in the basis of elementary symmetric polynomials. What we know already
about these amplitudes is that for i = 0

Ãλ0
g,n = Ãg,n

the corresponding amplitude is addressed by the main conjecture and its ex-
pansion is expected to have at most g factors ej with j > 1. One could wonder
whether λi for arbitrary i contraints the maximum amount of such factors to
g − i. Experimentally, we see that this is false. For instance for g = 3, n = 3,
and i = 1 we computed:

Ãλ1
3,3 =

21

5
e81 −

42

5
e2e

6
1 +

321

35
e22e

4
1 −

18

7
e32e

2
1 −

642

35
e3e

5
1

+
912

35
e3e2e

3
1 −

72

7
e3e

2
2e1 +

111

35
e23e

2
1 +

66

35
e23e2,

Ãλ2
3,3 =

41

7
e71 −

41

7
e2e

5
1 +

74

35
e22e

3
1 −

16

35
e32e1 −

353

35
e3e

4
1

+
54

7
e3e2e

2
1 −

16

7
e3e

2
2 +

64

35
e23e1.

Let us remark two aspects: the first is that partitions with 3 factors ej
with j > 1 appear, hence there is in general no reduction of the number of
factor depending on the index of the λ−class, except for the intersection of
the λg where all such factors disappear at once. It is not so surprising that λg
is the only λ−class playing a special role, as it is the top degree of a CohFT
and moreover it defines an isomorphism between the top tautological rings of
the moduli spaces of stable curves and the moduli space of compact type (see,
e.g., [38]).
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The other observation is that in this example the structure of the conjecture
is not broken: the partition (2, 2, 2, 2) is in principle allowed for i = 1, as the
homogeneous degree is 8 in this case, but in fact it does not appear. One could
think that this fact is an immediate consequence of the main conjecture, as all
intersection of ψ−classes are positive rational numbers and hence there is no
chance to get non-trivial cancellations which get spoiled by the intersection of
the λi− classes. However, the intersection of the ψ−classes in Ag,n actually
takes place in top degree, whereas in Aλi

g,n the ψ−classes monomials are of
cohomological degree 3g − 3 + n − i, and hence partitions with more than g
factors ej with j > 1 could in principle appear.

7.0.2. Ω-classes

The Ω-class Ω[x](r, s; a1, . . . , an) has been discussed in Section 5 and it is proved
to provide a CohFT with flat unit whenever 0 ≤ s ≤ r. This is the case for the

parametrisation Ω
[e1]
g,n (e1, e1; e

−
1 ) used in this work. We have also observed that

ˆ
Mg,n

e1Ω
[e1]
g,n (e1, e1; e

−
1 )∏

i=1(1− xiψi)
= e3g−3+n

1 · Pg,n(x1, . . . , xn),

where Pg,n is a known polynomial of degree 2g in the xi which is in fact a
polynomials in the x2i . What is however relevant for the discussion here is that
the degree 2g does not allow for any term of the form eλi · · · eλg+1 in which
each λi > 1 in the expansion of the RHS. This is conforming to the principle
of the main conjecture. In addition, this case guarantees a minimal power of
e1, which the amplitudes Ag,n for the trivial CohFT do not have.

7.0.3. Monotone Hurwitz numbers

Monotone Hurwitz numbers also enumerate branched coverings of the Rie-
mann sphere with prescribed ramifications over zero by a partition µ, and the
remaining 2g − 2 + ℓ(µ) + |µ| simple ramifications satisfy the following mono-
tonic property: label the cover sheets, represent each simple ramification by
a transposition (ai bi) written such that 1 ≥ ai < bi ≥ |µ|, then impose the
condition bi ≥ bi+1 for i = 1, . . . , 2g − 3 + ℓ(µ) + |µ|.

Analogously to simple Hurwitz numbers, monotone Hurwitz numbers are
known to satisfy an explicit ELSV-type formula and are computed explicitly
in genus one and in genus zero.

The ELSV formula reads

h≤g,µ
(n+ d)!

=

ℓ∏
i=1

(
2µi

µi

) ∑
d1,...,dn=0

ˆ
Mg,n

Ω≤
g,n ψd1

1 · · ·ψdn

ℓ

ℓ∏
i=1

(2(di + µi)− 1)!!

(2µi − 1)!!
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where the intersecting class is

Ω≤
g,n := e

∑
p=1 Apκp , exp

(
−
∑
p=1

ApU
p

)
=
∑
k=0

(2k + 1)!!Uk.

On the other hand, the Goulden–Guay-Paquet–Novak formula for monotone
Hurwitz numbers in genus zero reads

h≤0,µ =

ℓ∏
i=1

(
2µi

µi

)
(2 (
∑

i µi) + ℓ− 3)!

(2 (
∑

i µi))!
.

Putting the two together and setting xi = 2µi + 1 we obtain

∑
d1,...,dn=0

ˆ
M0,n

Ω≤ ψd1
1 · · ·ψdℓ

n

n∏
i=1

(2(di − 1) + xi)!!

(xi − 2)!!
=

(e1 − 3)!

(e1 − n)!
.

It is clear the the RHS of the formula above is a non homogeneous polynomial
in e1 of degree n − 3. There are no ej involved in the expression for j > 1,
again agreeing with the general principle of the main conjecture 1.4.
In genus one, the Goulden–Guay-Paquet–Novak formula reads

h≤1,µ =

n∏
i=1

(
2µi

µi

)[
e1!

(e1 − n)!
− 3

(e1 − 1)!

(e1 − n)!
−

n∑
k=1

(k − 2)!
(e1 − k)!

(e1 − n)!
ek

]
.

Therefore we obtain:

∑
d1,...,dn=0

ˆ
M1,n

Ω≤ ψd1
1 · · ·ψdn

n

n∏
i=1

(2(di − 1) + xi)!!

(xi − 2)!!
=

=
e1!

(e1 − n)!
− 3

(e1 − 1)!

(e1 − n)!
−

n∑
k=1

(k − 2)!
(e1 − k)!

(e1 − n)!
ek.

By considering the free energies

AΩ≤

g,n(x) :=
∑

d1,...,dn=1

ˆ
Mg,n

Ω≤ ψd1
1 · · ·ψdn

n

n∏
i=1

(2(di − 1) + xi)!!

(xi − 2)!!

we see that once more the general principle of the conjecture 1.4 arises: each
ratio of factorials is a non-homogeneous polynomial in e1 of degree n, n − 1
and n − k respectively, and only summands of the form ea1 or ea1e

b
k appears,

as expected from a genus one expression. The non-homogeneity is also non
surprising, since the class Ω≤ contains non-trivial contributions in each coho-
mological degree.



A NATURAL BASIS FOR INTERSECTION NUMBERS (45 of 47)

Acknowledgements

This work would not have been possible without the fundamental contribution
of Adrien Ooms. B. E. and D. L. are supported by the Institut de Physique
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Giacchetto, and D. Lewański, Masur-Veech volumes and intersection theory:
The principal strata of quadratic differentials, Duke Math. J. 172 (2023), no. 9,
1735–1779.

[9] A. Chiodo, Stable twisted curves and their r-spin structures, Ann. Inst. Fourier
58 (2008), no. 5, 1635–1689.

[10] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted
curves and r-th roots, Compos. Math. 144 (2008), no. 6, 1461–1496.

[11] V. Delecroix, J. Schmitt, and J. van Zelm, admcycles - a sage package for
calculations in the tautological ring of the moduli space of stable curves, J. Softw.
Algebra Geom. 11 (2021), 89–11.



(46 of 47) B. EYNARD AND D. LEWAŃSKI
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