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the complex Weyl symbols of the metaplectic representation operators
by using the holomorphic representations of the Jacobi group. Then
we recover some known formulas for the symbols of the metaplectic
operators in the classical Weyl calculus, in particular for the classical
Weyl symbol of the exponential of an operator whose Weyl symbol is a
quadratic form.
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1. Introduction

The metaplectic representation (also called oscillator representation or Weil
representation) is a projective unitary representation of the symplectic group
Sp(n,R) which was first investigated by I. E. Segal, D. Shale and A. Weil, see
for instance [21] and its references. The metaplectic representation plays an
important role in very different aereas of mathematics such as number theory
(automorphic forms) and mathematical physics (quantum mechanics).

For the computations, it is sometimes convenient to realize Sp(n,R) as a
subgroup S of SU(n, n), see [21, p. 175]. The group S acts naturally on the
(2n+1)-dimensional (real) Heisenberg group Hn and then on the generic repre-
sentations (the non-degenerated unitary irreducible representations) of Hn on
the Fock space F . Let k · ρ denote the action of k ∈ S on the generic represen-
tation ρ of Hn. Then k · ρ and ρ are unitarily equivalent representations and
there exists a unitary operator σ(k) on F (defined up to a unit scalar) such
that

(k · ρ)(h)σ(k) = σ(k)ρ(h) (1)

for each h ∈ Hn. The map σ is thus the metaplectic representation of S.
One can find in the literature various methods to construct the metaplectic

representation of S, that is, to obtain explicit formulas for σ(k), k ∈ S, see for
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instance [21] and [28]. However, as mentioned in [30, p. 533], the most direct
method is to use the holomorphic representations of the (multi-dimensional)
Jacobi group G := Hn ⋊ S. Here we apply this method in full details in order
to get explicit expressions for the kernels of the metaplectic operators σ(k) and
then for the Berezin symbols of σ(k). Note that this method also works for the
harmonic representation of SU(p, q), see [15].

The complex Weyl calculus W0 is the correspondence between operators on
F and functions on Cn obtained by translating the usual Weyl correspondence
(see [21, 26]) by means of the Bargmann transform. It is known that W0 is the
unitary component in the polar decomposition of the Berezin correspondence
on F , see [11, 29].

In the present paper, we give explicit formulas for the complex Weyl symbols
of the metaplectic operators. More precisely, we compute W0(σ(k)) for k ∈ S
andW0(dσ(X)) forX in the Lie algebra s of S. Our method is quite elementary,
let us describe it briefly. For any operator A on F , W0(A) can be expressed
by an integral formula involving the kernel of A. This allows us to reduce the
computation of W0(dσ(X)) to that of some Gaussian integral.

As an immediate consequence of these results, we recover some known for-
mulas for W1(σ

′(g)), g ∈ Sp(n,R) and W1(dσ
′(X)), X ∈ sp(n,R) where σ′

denotes the metaplectic representation of Sp(n,R) and W1 the inverse map of
the classical Weyl correspondence, [17, 21]. In particular, since W1(dσ

′(X)) is
a quadratic form on R2n for each X ∈ sp(n,R), we recover a formula of [27]
for the Weyl symbol of the exponential of an operator having a quadratic form
as Weyl symbol. A similar formula for the star exponential of a quadratic
form for the Moyal star product can be found in [6]. Note that these formulas
were then established in [27] and [6] by solving some differential systems, see
also [16]. Note also that the study of the Weyl symbol of the function of an
operator whose Weyl symbol is quadratic is still a subject of active research,
see for instance [19] and references therein.

The plan of this paper is as follows. In Section 2, we review some generalities
about the non-degenerated unitary irreducible representations of Hn on the
Fock space and about the Berezin correspondence. In Section 3, we introduce
the complex Weyl correspondence and we emphasize its connection with the
Berezin correspondence and also with the classical Weyl correspondence. In
Section 4, we consider the metaplectic representation σ and we give a functional
equation satisfied by the kernel of σ(k) for k ∈ S. Section 5 is devoted to
a short presentation of the (multi-dimensional) Jacobi group G = Hn ⋊ S
and its holomorphic representations [9]. We deduce from the formula for the
Berezin symbol of a holomorphic representation operator π(h, k) given in [12] a
functional equation for the kernel of π(id, k) which is used in Section 6 to find
formula for the kernel of σ(k). From this, we derive in Section 7 a formula for
W0(σ(k)) (k ∈ S). Finally, we compute W0(dσ(X)) (X ∈ s) in Section 8 and
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we relate the results to those of [27] and [6].

2. Heisenberg group: Berezin quantization

In this section, we first review some general facts on the the Bargmann-Fock
model for the unitary irreducible (non-degenerated) representations of the
Heisenberg group, see [21]. We follow the presentation of [13], see also [14].

For each z, w ∈ Cn, we denote zw :=
∑n

k=1 zkwk. For each z, z′, w, w′ ∈ Cn,
let

ω((z, w), (z′, w′)) = i
2 (zw

′ − z′w).

Then the (2n+ 1)-dimensional real Heisenberg group is

Hn := {((z, z̄), c) : z ∈ Cn, c ∈ R}

endowed with the multiplication law

((z, z̄), c) · ((z′, z̄′), c′) = ((z + z′, z̄ + z̄′), c+ c′ + 1
2ω((z, z̄), (z

′, z̄′))).

Let λ > 0. By the Stone-von Neumann theorem, there exists a unique (up to
unitary equivalence) unitary irreducible representation ρλ of Hn whose restric-
tion to the center of Hn is the character (0, c) → eiλc [32]. The Bargmann-Fock
realization of ρλ is defined as follows [3].

Let Fλ be the Hilbert space of all holomorphic functions f on Cn such that

∥f∥2Fλ
:=

∫
Cn

|f(z)|2 e−λ|z|2/2 dµλ(z) < +∞

where dµλ(z) := (2π)−nλn dm(z). Here z = x + iy with x and y in Rn and
dm(z) := dx dy is the standard Lebesgue measure on Cn.

Then
(ρλ(h)f)(z) = exp

(
iλc0 +

λ
2 z̄0z −

λ
4 |z0|

2
)
f(z − z0)

for each h = ((z0, z̄0), c0) ∈ Hn and z ∈ Cn.
For each z ∈ Cn, consider the coherent state ez(w) = exp(λz̄w/2). Then

we have the reproducing property f(z) = ⟨f, ez⟩Fλ
for each f ∈ Fλ.

We can introduce the Berezin calculus on Fλ [7, 8, 11]. The Berezin (co-
variant) symbol of an operator A on Fλ is the function Sλ(A) defined on Cn

by

Sλ(A)(z) :=
⟨Aez , ez⟩Fλ

⟨ez , ez⟩Fλ

and the double Berezin symbol sλ is defined by

sλ(A)(z, w) :=
⟨Aew , ez⟩Fλ

⟨ew , ez⟩Fλ
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for each (z, w) ∈ Cn × Cn such that ⟨ew , ez⟩Fλ
̸= 0.

Note that sλ(A)(z, w) is holomorphic in the variable z and anti-holomorphic
in the variable w, then sλ(A) is determined by its restriction to the diagonal of
Cn × Cn, that is, by Sλ(A). Moreover, the operator A can be recovered from
sλ(A) as follows. We have

Af(z) = ⟨Af , ez⟩Fλ
= ⟨f , A∗ ez⟩Fλ

=

∫
Cn

f(w)A∗ ez(w) e
−λ|w|2/2 dµλ(w)

=

∫
Cn

f(w)⟨A∗ ez, ew⟩Fλ
e−λ|w|2/2 dµλ(w)

=

∫
Cn

f(w) sλ(A)(z, w)⟨ew, ez⟩Fλ
e−λ|w|2/2 dµλ(w).

In particular, we see that the map A → Sλ(A) is injective and that the kernel
of A is the function

kA(z, w) = ⟨Aew, ez⟩Fλ
= sλ(A)(z, w)⟨ew, ez⟩Fλ

. (2)

The map Sλ is then a bounded operator from the space L2(Fλ) of all
Hilbert-Schmidt operators on Fλ (endowed with the Hilbert-Schmidt norm)
to L2(Cn, µλ) which is one-to-one and has dense range [33]. Let us introduce
the Berezin transform which will be needed later. Let S∗

λ be the adjoint op-
erator of Sλ. Then the Berezin transform is the operator Bλ on L2(Cn, µλ)
defined by Bλ := SλS

∗
λ. We have the integral formula

(Bλf)(z) =

∫
Cn

f(w) e−λ|z−w|2/2 dµλ(w),

see [7, 8, 33]. Note also that we have Bλ = exp(∆/2λ) where

∆ = 4

n∑
k=1

∂2/∂zk∂z̄k,

see [29, 33].

3. Complex Weyl correspondence for Heisenberg group

The complex Weyl correspondence can be constructed from a Stratonovich-
Weyl quantizer see [13, 23, 31] and [1, Example 2.2 and Example 4.2].
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Let R0 be the parity operator on Fλ defined by

(R0f)(z) = 2nf(−z).

Then we define

Ω0(z) := ρλ((z, z̄), 0)R0ρλ((z, z̄), 0)
−1

for each z ∈ Cn. By an easy computation we get

(Ω0(z)f)(w) = 2n exp
(
λ(wz̄ − |z|2)

)
f(2z − w) (3)

for each z, w ∈ Cn and f ∈ Fλ. The map Ω0 is called a Stratonovich-Weyl
quantizer. For each trace-class operator A on Fλ, we define

W0(A)(z) := Tr(AΩ0(z))

for each z ∈ Cn.
Recall that we denote by kA the kernel of the trace-class (or more generally

Hilbert-Schmidt) operator A on Fλ, see Section 2. We have the following result,
see [1, 13, 14].

Proposition 3.1. For each trace-class operator A on Fλ and each z ∈ Cn, we
have

W0(A)(z) = 2n
∫
Cn

kA(w, 2z − w) exp
(
λ
(
−zz̄ + zw̄ − 1

2ww̄
))

dµλ(w). (4)

and, equivalently, on a more symmetric form

W0(A)(z)=2n
∫
Cn

kA(z+w, z−w) exp
(
λ
2 (−zz̄ − ww̄ + zw̄ − z̄w)

)
dµλ(w). (5)

These integral formulas allow us to extend W0 to operators on Fλ which are
not necessarily trace-class, for instance Hilbert-Schmidt operators. It is known
that W0 : L2(Fλ) → L2(Cn, µλ) is the unitary part in the polar decomposition

of Sλ, that is we have Sλ = B
1/2
λ W0, see [29, Theorem 6] and [11, 14].

Now, with the aim of linking W0 to the classical Weyl correspondence, we
consider another realization of the unitary irreducible representation of Hn

with central character ((0, 0), c) → eiλc, namely the Schrödinger representation
ρ′λ defined on L2(Rn) by

(ρ′λ((a+ ib, a− ib), c)ϕ)(x) = exp
(
iλ(c− bx+ 1

2ab)
)
ϕ(x− a)

for each a, b, x ∈ Rn.
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An (unitary) intertwining operator between ρλ and ρ′λ is the Bargmann
transform B : L2(Rn) → Fλ defined by

(Bf)(z) =
(
λ
π

)n/4 ∫
Rn

exp
(
−λ

4 z
2 + λzx− λ

2x
2
)
ϕ(x) dx,

see [11, 21].
Starting from the parity operator R1 on L2(Rn) defined by

(R1ϕ)(x) = 2nϕ(−x),

we can define the Stratonovich-Weyl quantizer Ω1 on R2n by

Ω1(a, b) := ρ′λ((a+ ib, a− ib), 0)R1ρ
′
λ((a+ ib, a− ib), 0)−1

or, equivalently, by

(Ω1(a, b)ϕ)(x) = 2n exp (2iλb(a− x))ϕ(2a− x) (6)

for each ϕ ∈ L2(Rn). Then, for each trace-class operator A on L2(Rn), we
define the function W1(A) on R2n by

W1(A)(x, y) := Tr(AΩ1(x, y))

for each x, y ∈ Rn.
On the other hand, recall that the classical Weyl correspondence on R2n is

defined as follows [21, 26]. For each function f in the Schwartz space S(R2n),
we define the operator W(f) acting on the Hilbert space L2(Rn) by

(W(f)ϕ)(x) = (2π)
−n

∫
R2n

eiytf(x+ 1
2y, t)ϕ(x+ y) dy dt. (7)

Consider the Fourier transform F2f of f ∈ S(R2n) with respect to the
second variable

(F2f)(x, y) = (2π)
−n/2

∫
Rn

e−iytf(x, t) dt.

Then we can write

(W(f)ϕ)(x) = (2π)
−n/2

∫
Rn

(F2f)(
1
2 (x+ y), x− y)ϕ(y)dy

and we can see that the kernel of W(f) is

kW(f)(x, y) = (2π)
−n/2

(F2f)(
1
2 (x+ y), x− y).
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Lemma 3.2. For each f ∈ S(R2n) such that W(f) is trace-class we have

Tr(Ω1(a, b)W(f)) = f(a, λb)

for each a, b ∈ Rn.

Proof. Let f ∈ S(R2n) and a, b ∈ Rn. Then we have

(Ω1(a, b)W(f)ϕ)(x) = 2n exp (2iλb(a− x)) (W(f)ϕ)(2a− x)

=2n exp (2iλb(a− x))

∫
Rn

kW(f)(2a− x, y)ϕ(y) dy.

Thus the kernel of Ω1(a, b)W(f) is

k′(x, y) := 2n exp (2iλb(a− x)) kW(f)(2a− x, y)

and by Mercer’s theorem we have

Tr(Ω1(a, b)W(f)) =

∫
Rn

k′(x, x) dx

= 2n
∫
Rn

exp (2iλb(a− x)) kW(f)(2a− x, x) dx

= (2π)
−n/2

2n
∫
Rn

exp (2iλb(a− x)) (F2f)(a, 2a− 2x) dx

= (2π)
−n/2

∫
Rn

exp (iλbx) (F2f)(a, x) dx

= f(a, λb),

by the Fourier inversion theorem.

As an immediate consequence of this lemma, we get the following proposi-
tion.

Proposition 3.3. Let f ∈ S(R2n) such that W(f) is trace-class. Then, for
each x, y ∈ Rn, we have

W1(W(f))(x, y) = f(x, λy).

If, in particular, we take λ = 1, we see that W1 and W are inverse to each
other.

We can now specify the connection between W0 and W1, hence between W0

and W.

Proposition 3.4. For each trace-class operator A on L2(Rn) and each a, b ∈
Rn, we have

W1(A)(a, b) = W0(BAB−1)(a+ ib).
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Proof. We can easily verify that BR1 = R0B. Let A be a trace-class operator
on L2(Rn) and let a, b ∈ Rn. Recall that B intertwines ρλ and ρ′λ. Then we
have

W1(A)(a, b) =Tr(AΩ1(a, b))

=Tr(Aρ′λ((a+ ib, a− ib), 0)R1ρ
′
λ((a+ ib, a− ib), 0)−1)

=Tr(Aρ′λ((a+ ib, a− ib), 0)B−1R0Bρ′λ((a+ ib, a− ib), 0)−1)

=Tr(AB−1ρλ((a+ ib, a− ib), 0)R0ρλ((a+ ib, a− ib), 0)−1B)
=Tr(BAB−1Ω0(a+ ib))

=W0(BAB−1)(a+ ib).

Of course, Proposition 3.4 can be extended to operators which are not
necessarily of trace-class.

4. The metaplectic representation

Here we consider the group S := Sp(n,C) ∩ SU(n, n) which is isomorphic to
Sp(n,R) via the map M → UMU−1 where U :=

(
In iIn
In −iIn

)
, see [21, p. 175].

Then S consists of all matrices

k =

(
P Q
Q̄ P̄

)
, P,Q ∈ Mn(C), PP ∗ −QQ∗ = In, PQt = QP t.

Note that we also have

P ∗P −QtQ̄ = In, P ∗Q = QtP̄ .

This implies, in particular, that P−1Q and Q̄P−1 are symmetric.
The group S acts on Cn by

k(z, z̄) = (Pz +Qz̄, Q̄z + P̄ z̄)

where k =
(

P Q
Q̄ P̄

)
. Then ω is invariant for the action of S, that is, we have

ω(k(z, z̄), k(z′, z̄′)) = ω((z, z̄), (z′, z̄′))

for each z, z′ ∈ Cn. We will denote kz = Pz +Qz̄.
Thus S also acts on Hn by k · ((z, z̄), c) = (k(z, z̄), c).
Let λ > 0 and ρ := ρλ. For each k ∈ S, we define ρk by ρk(h) := ρ(k · h)

for each h ∈ Hn. Since k ∈ S acts on Hn as a group isomorphism, we see that
ρk is also a generic representation of Hn. Moreover, for each h = ((0, 0), c)
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in the center of Hn, we have ρk(h) = ρ(h). Hence, by the Stone-von Neu-
mann theorem, ρk and ρ are unitarily equivalent, that is, there exists a unitary
operator Ak of Fλ (defined up to a unit complex number) such that

ρk(h) = Akρ(h)A
−1
k (8)

for each h ∈ Hn.
Now we express Eq. 8 in terms of kernels.

Proposition 4.1. Let k ∈ S. Then the operator Ak on Fλ satisfies Eq. 8 if
and only if its kernel bk(z, w) := kAk

(z, w) satisfies the relation

exp
(
−λ

4 |kz0|
2 + λ

2 kz0z
)
bk(z − kz0, w)

= exp
(
−λ

4 |z0|
2 − λ

2 w̄z0
)
bk(z, w + z0) (9)

for each z0, z and w in Cn.

Proof. Let k ∈ S and h = ((z0, z̄0), 0) ∈ Hn. We have

(Akf)(z) =

∫
Cn

bk(z, w)f(w) e
−λ|w|2/2 dµλ(w).

Then, on the one hand, we get

ρλ(k · h)(Akf)(z) = exp
(
−λ

4 |kz0|
2 + λ

2 kz0z
)

×
∫
Cn

bk(z − kz0, w)f(w) e
−λ|w|2/2 dµλ(w).

On the other hand, we have

(Akρλ(h)f)(z)=

∫
Cn

bk(z, w) exp
(
−λ

4 |z0|
2 + λ

2 z̄0w
)
f(w−z0) e

−λ|w|2/2 dµλ(w).

By performing the change of variables w → w + z0 in this integral and then
writing that the kernels of ρλ(k · h)Ak and Akρλ(h) are the same, we obtained
the desired equation.

5. Holomorphic representations of the Jacobi group

In this section, we essentially follow [12] in which we contructed the holomorphic
representations of the Jacobi group by applying the general method of [30,
Chapter XII] (see also [9, 10]).

The (multi-dimensional) Jacobi group is the semi-direct product G := Hn⋊
S with respect to the action of S on Hn introduced in Section 4. The elements
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of G can be written as ((z, z̄), c, k) where z ∈ Cn, c ∈ R and k ∈ S. The
multiplication of G is given by

((z, z̄), c, k) · ((z′, z̄′), c′, k′) = ((z, z̄)+k(z′, z̄′), c+ c′+ 1
2ω((z, z̄), k(z

′, z̄′)), kk′).

The complexification Gc of G is then the semi-direct product Gc = Hc
n ⋊

Sp(n,C) whose elements can be written as ((z, w), c, k) where z, w ∈ Cn, c ∈ C,
k ∈ Sp(n,C) and the multiplication of Gc is obtained by replacing z̄ and z̄′ by
w and w′ in the preceding formula.

Let g and gc the Lie algebras ofG andGc. For eachX =
(
(z, w), c,

(
A B
C −At

))
in gc we define

X∗ = ((−w̄,−z̄),−c̄,
(

Āt −C̄
−B̄ −Ā

)
).

We denote by g → g∗ the involutive anti-automorphism of Gc which is obtained
by exponentiating X → X∗ to Gc.

Let K be the subgroup of G consisting of all elements
(
(0, 0), c,

(
P 0
0 P̄

))
where c ∈ R and P ∈ U(n). Let P+ and P− be the subgroups of G defined by

P+ =

{(
(y, 0), 0,

(
In Y
0 In

))
: y ∈ Cn, Y ∈ Mn(C), Y t = Y

}
and

P− =

{(
(0, v), 0,

(
In 0
V In

))
: v ∈ Cn, V ∈ Mn(C), V t = V

}
and let p+ and p− be the Lie algebras of P+ and P−. For convenience, we
denote by a(y, Y ) the element

(
(y, 0), 0,

(
0 Y
0 0

))
of p+.

We can verify that each element g =
(
(z0, w0), c0,

(
A B
C D

))
∈ Gc has a

P+KcP−-decomposition if and only if Det(D) ̸= 0 and, in this case, we have

g =

(
(y, 0), 0,

(
In Y
0 In

))
·
(
(0, 0), c,

(
P 0
0 (P t)−1

))
·
(
(0, v), 0,

(
In 0
V In

))
where y = z0 − BD−1w0, Y = BD−1, v = D−1w0, V = D−1C, P = A −
BD−1C = (Dt)−1 and c = c0 − i

4 (z0 − BD−1w0)w0. We then denote by
ζ : P+KcP− → P+ and κ : P+KcP− → Kc the projections onto P+- and
Kc-components.

Consider the action (defined almost everywhere) of Gc on p+ defined as
follows. For Z ∈ p+ and g ∈ Gc with g expZ ∈ P+KcP−, we define the
element g · Z of p+ by g · Z := log ζ(g expZ). We can verify that the action of
g =

(
(z0, w0), c0,

(
A B
C D

))
∈ Gc on a(y, Y ) ∈ p+ is given by g ·a(y, Y ) = a(y′, Y ′)

where Y ′ = (AY +B)(CY +D)−1 and

y′ = z0 +Ay − (AY +B)(CY +D)−1(w0 + Cy).
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Consequently, we have

D := G · 0 = {a(y, Y ) ∈ p+ : In − Y Ȳ > 0} ∼= Cn × B.

where B := {Y ∈ Mn(C) : Y t = Y, In − Y Ȳ > 0}.
Let χ be a unitary character of K whose extension to Kc is also de-

noted by χ. Following [30], we can introduce the functions Kχ(Z,W ) :=
χ(κ(expW ∗ expZ))−1 for Z, W ∈ D and Jχ(g, Z) := χ(κ(g expZ)) for g ∈ G
and Z ∈ D. We consider the Hilbert space Hχ of all holomorphic functions f
on D such that

∥f∥2χ :=

∫
D

|f(Z)|2 Kχ(Z,Z)−1cχdµ(Z) < +∞.

Here the G-invariant measure µ on D is defined by

dµ(Z) = Det(1− Y Ȳ )−(n+2) dµL(y, Y ),

where dµL is the Lebesgue measure on D ∼= Cn × B, see [30, p. 538], and the
constant cχ is defined by

c−1
χ =

∫
D

Kχ(Z,Z)−1 dµ(Z).

Let us fix χ as follows. Let λ > 0 and m ∈ Z. Then, for each k =(
(0, 0), c,

(
P 0
0 P̄

))
∈ K, we set χ(k) = eiλc(DetP )m.

Proposition 5.1. [12, 30]

1. Let Z = a(y, Y ) ∈ D and W = a(v, V ) ∈ D. We have

Kχ(Z,W ) = Det(In − Y V̄ )m

× exp
(
λ
4

(
2y(In − V̄ Y )−1v̄ + y(In − V̄ Y )−1V̄ y + v̄Y (In − V̄ Y )−1v̄

))
.

2. Hχ ̸= (0) if and only if m + n + 1/2 < 0. In this case, Hχ contains the
polynomials.

3. For each g =
(
(z0, z̄0), c0,

( P Q
Q̄ P̄

))
∈ G and each Z = a(y, Y ) ∈ D, we

have

J(g, Z) = eiλc0 Det(Q̄Y + P̄ )−m

× exp
(
λ
4

(
z0z̄0 + 2z̄0Py + yP tQ̄y

))
× exp

(
−λ

4 (z̄0 + Q̄y)(PY +Q)(Q̄Y + P̄ )−1(z̄0 + Q̄y)
)
.
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We assume now that m+ n+ 1/2 < 0. Then the formula

πχ(g)f(Z) = Jχ(g
−1, Z)−1 f(g−1 · Z)

defines a unitary representation of G on Hχ, [30, p. 540].
Note that Hχ is a reproducing kernel Hilbert space. Indeed, if we set

eZ(W ) := Kχ(W,Z) then we have we have the reproducing property f(Z) =
⟨f, eZ⟩χ for each f ∈ Hχ and each Z ∈ D [30, p. 540]. Here ⟨·, ·⟩χ is the inner
product on Hχ.

By using the coherent states (eZ)Z∈D, we can define the Berezin symbol
Sχ(A)(Z) and the double Berezin symbol sχ(A)(Z,W ) of an operator A on Hχ

as this was done for operators on Fλ in Section 2. We can also verify that the
kernel kA(Z,W ) of A satisfying

f(Z) =

∫
D

kA(Z,W )f(W )Kχ(W,W )−1cχdµ(W )

for each f ∈ Hχ is given by

kA(Z,W ) = ⟨AeW , eZ⟩χ = sχ(A)(Z,W )⟨eW , eZ⟩χ.

6. Kernels of metaplectic operators

By Proposition 5.1, we have

(πχ((z0, z̄0), 0, I2n)f)(Z)

= exp
(
λ
4

(
−|z0|2 + 2z̄0y + z̄0Y z̄0

))
f(a(y − z0 + Y z̄0, Y ))

for Z = a(y, Y ) ∈ D, z0 ∈ Cn and f ∈ Hχ.
Since this formula for πχ((z0, z̄0), 0, I2n) is close to that of ρλ((z0, z̄0), 0),

see Section 2, a natural idea is then to use the commutation relation

πχ(k(z0, z̄0), 0, I2n)πχ((0, 0), 0, k) = πχ((0, 0), 0, k)πχ((z0, z̄0), 0, I2n)

for k ∈ S in order to find a solution bk(z, w) of equation (9).

Proposition 6.1. For k ∈ S, let Bk(Z,W ) be the kernel of πχ((0, 0), 0, k).
Then

bk(z, w) := Bk(a(0, z), a(0, w))

is a solution of equation (9).

Proof. Let k ∈ S and Z = a(y, Y ) ∈ D. For each f ∈ Hχ, we have

(πχ((0, 0), 0, k)f)(Z) =

∫
D

Bk(Z,W )f(W )Kχ(W,W )−1cχdµ(W ).
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Then, on the one hand, we have

(πχ(k(z0, z̄0), 0, I2n)πχ((0, 0), 0, k)f)(Z)

= exp
(
λ
4

(
−|kz0|2 + 2(kz0)y + (kz0)Y (kz0)

))
×
∫
D

Bk(a(y − kz0 + Y (kz0), Y ),W )f(W )Kχ(W,W )−1cχdµ(W ).

On the other hand, we have

(πχ((0, 0), 0, k)πχ((z0, z̄0), 0, I2n)f)(Z)

=

∫
D

Bk(Z,W )(πχ((z0, z̄0), 0, I2n)f)(W )Kχ(W,W )−1cχdµ(W )

=

∫
D

Bk(Z,W ) exp
(
λ
4

(
−|z0|2 + 2z̄0v + z̄0V (z̄0)

))
× f(a(v − z0 + V z̄0, V ))Kχ(W,W )−1cχdµ(W )

with the notation W = a(v, V ). We perform in this integral the change of
variables v → v + z0 − V z̄0 and we find

(πχ((0, 0), 0, k)πχ((z0, z̄0), 0, I2n)f)(Z)

=

∫
D

Bk(Z, a(v + z0 − V z̄0, V )) exp
(
λ
4

(
|z0|2 + 2z̄0v − z̄0V z̄0

))
f(W )

×Kχ(a(v + z0 − V z̄0, V ), a(v + z0 − V z̄0, V ))−1cχdµ(W ).

Then, by writing that πχ(k(z0, z̄0), 0, I2n)πχ((0, 0), 0, k) and

πχ((0, 0), 0, k)πχ((z0, z̄0), 0, I2n)

have the same kernel, we obtain

exp
(
λ
4

(
−|kz0|2 + 2(kz0)y + (kz0)Y (kz0)

))
×Bk(a(y − kz0 + Y (kz0), Y ),W )Kχ(W,W )−1

=exp
(
λ
4

(
|z0|2 + 2z̄0v − z̄0V z̄0

))
Bk(a(y, Y ), a(v + z0 − V z̄0, V ))

×Kχ(a(v + z0 − V z̄0, V ), a(v + z0 − V z̄0, V ))−1.

Note that Kχ(a(v, 0), a(v, 0)) = exp
(
λ
2 |v|

2
)
. Then, taking Y = V = 0 in the

above equality we get

exp
(
λ
4

(
−|kz0|2 + 2(kz0)y − 2|v|2

))
Bk(a(y − kz0, 0), a(v, 0))

= exp
(
λ
4

(
|z0|2 + 2z̄0v − 2|v + z0|2

))
Bk(a(y, 0), a(v + z0, 0)),

hence the desired result.
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The next step is then to compute Bk(a(y, 0), a(v, 0)).

Proposition 6.2. Let Z = a(y, 0) and W = a(v, 0). Then we have

Bk(Z,W ) = (DetP )m exp
(
λ
4

(
y(Q̄P−1y) + 2y(P t)−1v̄ − v̄(P−1Qv̄)

))
. (10)

Proof. Let Z = a(y, 0), W = a(v, 0) and g = ((0, 0), 0, k) where k ∈ S. Then
we have

Bk(Z,W ) = Kπχ(g)(Z,W ) = ⟨πχ(g)eW , eZ⟩χ
= (πχ(g)eW )(Z) = Jχ(g

−1, Z)−1eW (g−1 · Z)

= Jχ(g
−1, Z)−1⟨eW , eg−1·Z⟩χ = Jχ(g

−1, Z)−1Kχ(g
−1 · Z,W ).

Note that k−1 =
( P∗ −Qt

−Q∗ P t

)
. Then we get

g−1 · Z = a(P ∗y −Qt(P t)−1Q∗y,−Qt(P t)−1)

= a(P−1y,−Qt(P t)−1)

= a(P−1y,−P−1Q)

since

P ∗ −Qt(P t)−1Q∗ = P ∗ − P−1QQ∗ = P−1(PP ∗ −QQ∗) = P−1.

Thus, by Proposition 5.1, we have

Kχ(g
−1 · Z,W ) = exp

(
λ
4

(
2y(P t)−1v̄ − v̄P−1Qv̄

))
.

Moreover, by Proposition 5.1 again, we find

Jχ(g
−1, Z)−1 = (DetP )m exp

(
λ
4

(
y(P ∗)tQ∗y − yQ̄Qt(P t)−1Q∗y

))
.

Since we have

(P ∗)t − Q̄Qt(P t)−1 = ((P ∗)tP t − Q̄Qt)(P t)−1

= (PP ∗ −QQ∗)t(P t)−1 = (P t)−1,

the result follows.

For each k ∈ S, we denote by Ak the operator on Fλ with kernel

bk(z, w) = Bk(a(z, 0), a(w, 0)).

By Schur’s lemma, there exists, for each k, k′ ∈ S a scalar α(k, k′) such that
Akk′ = α(k, k′)AkAk′ .
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Lemma 6.3. Let k =
( P Q
Q̄ P̄

)
, k′ =

( P ′ Q′

Q̄′ P̄ ′

)
and k′′ =

( P ′′ Q′′

Q̄′′ P̄ ′′

)
in S. The we

have

(DetP ′′)m = α(k, k′)(DetP )m(DetP ′)m(Det(P−1P ′′P ′−1)−1/2.

Here, if z ∈ C, we define z1/2 as the principal determination of the square-root
(with branch cut along the negative real axis).

Proof. Since the kernel of AkAk′ is the convolution of the kernels of Ak and
Ak′ , we have

bkk′(z, w) = α(k, k′)

∫
Cn

bk(z, u)bk′(u,w)e−λ|u|2/2 dµλ(u).

Taking z = w = 0, we get

(DetP ′′)m = α(k, k′)(DetP )m(DetP ′)m

×
∫
Cn

exp
(
λ
4

(
−ūP−1Qū+ uQ̄′P ′−1u

))
e−λ|u|2/2 dµλ(u).

Recall that P−1Q and Q̄′P ′−1 are symmetric. Then, the integral in the pre-
ceding equality can be evaluated by using [21, Theorem 3, p. 258] and its value
is

Det−1/2(In + P−1QQ̄′P ′−1) = Det−1/2(P−1(PP ′ +QQ̄′)P ′−1)

= Det−1/2(P−1P ′′P ′−1).

The result follows.

We are now in position to recover [21, Theorem 4.37] (this result is due to
V. Bargmann and C. Itzykson). For k ∈ S, we denote by σ(k) the operator
Ak with kernel bk(z, w) corresponding to m = −1/2. Then σ is called the
metaplectic representation of S. Note that the value m = −1/2 does not
correspond to a holomorphic representation of G, see 2 of Proposition 5.1.

Proposition 6.4. 1. For each k, k′ ∈ S, we have σ(kk′) = ±σ(k)σ(k′).

2. For each k ∈ S, σ(k) is unitary.

Proof. 1. This is an immediate consequence of Lemma 6.3. 2. From the
formula for bk, see equation (10), we deduce that we have bk−1(z, w) = bk(z, w)
for each z, w ∈ Cn, hence Ak−1 = A∗

k. This implies that AkA
∗
k = ±Id. Since

AkA
∗
k is positive, we have AkA

∗
k = Id. By the same argument, we also obtain

A∗
kAk = Id.

We can also give a formula for the differential of σ.
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Proposition 6.5. Let X =
(
A B
B̄ Ā

)
∈ s. Then we have

(dσ(X)f)(z) = (− 1
2 Tr(A) + λ

4 z(B̄z))f(z)

−
n∑

j=1

(Az)j
∂f

∂zj
− 1

λ

∑
j,k

bjk
∂2f

∂zj∂zk

where B = (bjk).

Proof. By differentiating the following formula for the kernel bk of σ(k)

bk(z, w) = (DetP )−1/2 exp
(
λ
4

(
z(Q̄P−1z) + 2(P−1z)w̄ − w̄(P−1Qw̄)

))
,

we obtain a formula for the kernel bX(z, w) of dσ(X):

bX(z, w) =
(
− 1

2 Tr(A) + λ
4 z(B̄z)− λ

2 (Az)w̄ − λ
4 w̄(Bw̄)

)
exp

(
λ
2 zw̄

)
.

Remark that by differentiating the reproducing property

f(z) = ⟨f, ez⟩Fλ
=

∫
Cn

eλzw̄/2f(w)e−λ|w|2/2 dµλ(w)

under the integral sign, we get

∂f

∂zj
= λ

2

∫
Cn

w̄je
λzw̄/2f(w)e−λ|w|2/2 dµλ(w)

for each j = 1, 2, . . . , n and, by differentiating again, we also obtain

∂2f

∂zj∂zk
=

(
λ
2

)2 ∫
Cn

w̄jw̄ke
λzw̄/2f(w)e−λ|w|2/2 dµλ(w)

for each j, k = 1, 2, . . . , n. This allows us to compute

(dσ(X)f)(z) =

∫
Cn

bX(z, w)f(w)e−λ|w|2/2 dµλ(w)

and to get the desired result.

We can also give formulas for the Berezin symbols of σ(k) for k ∈ S and
dσ(X) for X ∈ s. We immediately obtain the following proposition.

Proposition 6.6. 1. Let k =
( P Q
Q̄ P̄

)
∈ S. we have

Sλ(σ(k))(z) = (DetP )−1/2

× exp
(
λ
4

(
z(Q̄P−1z) + 2z̄(P−1 − In)z − z̄(P−1Qz̄)

))
.

2. Let X =
(
A B
B̄ Ā

)
∈ s. Then we have

Sλ(dσ(X))(z) = − 1
2 Tr(A) + λ

4 z(B̄z)− λ
2 (Az)z̄ − λ

4 z̄(Bz̄).
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7. Complex Weyl symbols of metaplectic operators

In this section, we compute W0(σ(k)) for k ∈ S and W0(dσ(X)) for X ∈ s. We
begin with two technical lemmas. The first one is a variant of [21, Theorem 3,
p. 258].

Lemma 7.1. Let A,B,D be n×n complex matrices such that At = A,Dt = D.
Let M =

(
A Bt

B D

)
, U =

(
In iIn
In −iIn

)
and N = U tMU . Assume that Re(N) is

positive definite. Let u, v ∈ Cn. Then we have∫
Cn

exp (− (w(Aw) + w̄(Dw̄) + 2w̄(Bw))) exp(uw + vw̄) dm(w)

= πn(DetN)−1/2 exp

(
1
4

(
u v

)
M−1

(
u
v

))
.

Proof. Write w = x+ iy with x, y ∈ Rn. Then

(
w
w̄

)
= U

(
x
y

)
. We have

w(Aw) + w̄(Dw̄) + 2w̄(Bw) = (w, w̄)M

(
w
w̄

)
= (x, y)N

(
x
y

)

and uw + vw̄ =
(
u v

)
U

(
x
y

)
.

The result then follows from the well-known equality∫
Rn

exp(−xAx+ zx) dx = (DetA)−1/2πn/2 exp
(
1
4z(A

−1z)
)

for z ∈ Cn and A a n×n symmetric complex matrix such that Re(A) is definite
positive.

Lemma 7.2. 1. Let a, b, p be n× n complex matrices such that
( −a In+pt

In+p d

)
is invertible with inverse matrix

( α β
γ δ

)
. Then we have(

a In − pt

p− In d

)(
α β
γ δ

)(
a pt − In

In − p d

)
=

(
4δ − a 3In − 4γ − pt

3In − 4β − p 4α+ d

)
.

2. Take a = Q̄P−1, d = P−1Q and p = P−1 with k =
( P Q
Q̄ P̄

)
∈ S. Let

J =
(

0 In
−In 0

)
. Then we have

1
2J(k − I2n)(k + I2n)

−1 =

(
δ 1

2In − γ
1
2In − β α

)
.
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3. Let k =
( P Q
Q̄ P̄

)
∈ S. Then

Det

(
−Q̄P−1 In + (P t)−1

In + P−1 P−1Q

)
= (−1)n(DetP )−1 Det(k + I2n).

Proof. 1. By writing(
α β
γ δ

)(
−a In + pt

In + p d

)
=

(
−a In + pt

In + p d

)(
α β
γ δ

)
= I2n

we obtain the series of equations

αa =β(In + p)− In ; γa = δ(In + p);

βd =− α(In + pt) ; δd = In − γ(In + pt);

aα =(In + pt)γ − In ; aβ = (In + pt)δ;

dγ =− (In + p)α ; dδ = In − (In + p)β.

By using these equations, we obtain firstly(
α β
γ δ

)(
a −In + pt

In − p d

)
=

(
2β − In −2α

2δ In − 2γ

)
and, secondly,(

a In − pt

−In + p d

)(
2β − In −2α

2δ In − 2γ

)
=

(
4δ − a 3In − 4γ − pt

3In − 4β − p 4α+ d

)
.

2-3. First we have(
−Q̄P−1 In + (P t)−1

In + P−1 P−1Q

)(
−P −Q
0 In

)
=

(
Q̄ Q̄P−1Q+ In + (P t)−1

−In − P −Q

)
=

(
Q̄ In + P̄

−In − P −Q

)
= J(k + I2n)

since

Q̄P−1Q+ (P t)−1 = (Q̄P−1QP t + In)(P
t)−1 = (Q̄Qt + In)(P

t)−1 = P̄ .

On the one hand, passing to the determinant, we obtain 3 and, on the other
hand, we deduce that(

−P −Q
0 In

)
=

(
α β
γ δ

)
J(k + I2n).
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This implies that(
δ 1

2In − γ
1
2In − β α

)
=

1

2

(
0 In
In 0

)
− J

(
α β
γ δ

)
J

=
1

2

(
0 In
In 0

)
− J

(
−P −Q
0 In

)
(k + I2n)

−1

=

(
1

2

(
0 In
In 0

)
(k+I2n)− J

(
−P −Q
0 In

))
(k+I2n)

−1

=
1

2
J(k − I2n)(k + I2n)

−1.

We denote by Arg(z) the principal argument of z ∈ C.

Proposition 7.3. Let k =
( P Q
Q̄ P̄

)
∈ S. Then we have

W0(σ(k))(z) = cn(k) exp

(
λ
2

(
z z̄

)
J(k − I2n)(k + I2n)

−1

(
z
z̄

))
where

cn(k) = 2n(Det(I2n + k))−1/2 if Det(I2n + k) > 0;

cn(k) = −i2n|Det(I2n + k)|−1/2 if Det(I2n + k) < 0 and Arg(Det(P )) ∈]0, π[;
cn(k) = i2n|Det(I2n + k)|−1/2 if Det(I2n + k) < 0 and Arg(Det(P )) ∈]−π, 0[.

Proof. Let k =
( P Q
Q̄ P̄

)
∈ S. Recall that W0(σ(k)) is given by

W0(σ(k))(z) =
(
λ
π

)n∫
Cn

bk(z+w, z−w) exp
(
λ
2 (−zz̄ − ww̄ + zw̄ − z̄w)

)
dm(w)

where the kernel of σ(k) is

bk(z, w) = (DetP )−1/2 exp
(
λ
4

(
z(Q̄P−1z) + 2w̄(P−1z)− w̄(P−1Qw̄)

))
.

Then we get

W0(σ(k))(z) =
(
λ
π

)n
(DetP )−1/2

× exp
(
λ
4

(
z(Q̄P−1z) + 2z̄(P−1 − In)z − z̄(P−1Qz̄)

))
×
∫
Cn

exp
(
λ
4

(
wQ̄P−1w − w̄(P−1Qw̄)− 2w̄(In + P−1)w

))
× exp

(
λ
2

(
(Q̄P−1z + ((P t)−1 − In)z̄)w + ((In − P−1)z + P−1Qz̄)w̄

))
dm(w)
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The integral I(k) in the preceding formula can be evaluated by using Lemma
7.1 with

M = λ
4

(
−Q̄P−1 In + (P t)−1

In + P−1 P−1Q

)
and

u = λ
2 (Q̄P−1z + ((P t)−1 − In)z̄) ; v = λ

2 ((In − P−1)z + P−1Qz̄).

Observing that, by Lemma 7.2, we have

(
u v

)
M−1

(
u
v

)
= λ

(
z z̄

)( Q̄P−1 In − (P t)−1

−In + P−1 P−1Q

)(
−Q̄P−1 In + (P t)−1

In + P−1 P−1Q

)−1

×
(

Q̄P−1 −In + (P t)−1

In − P−1 P−1Q

)(
z
z̄

)
= λ

(
z z̄

)( 4δ − Q̄P−1 3In − 4γ − (P t)−1

3In − 4β − P−1 4α+ P−1Q

)(
z
z̄

)
,

we find that

I(k) = πn(DetU tMU)−1/2

× exp

(
λ
4

(
z z̄

)( 4δ − Q̄P−1 3In − 4γ − (P t)−1

3In − 4β − P−1 4α+ P−1Q

)(
z
z̄

))
.

Then we get

W0(σ(k))(z) = λn(DetP )−1/2(DetU tMU)−1/2

× exp

(
λ
(
z z̄

)( δ 1
2In − γ

1
2In − β α

)(
z
z̄

))
.

Note that

DetU tMU = (−1)n22n Det(M) = 22n(λ/4)2n Det(k + I2n)(Det(P ))−1.

Finally, by Lemma 7.2 again, we obtain

W0(σ(k))(z) = cn(k) exp

(
λ
2

(
z z̄

)
J(k − I2n)(k + I2n)

−1

(
z
z̄

))
where cn(k) = 2n(DetP )−1/2((Det(k + I2n)(DetP )−1)−1/2. The result hence
follows by taking into account the fact that, since k = U−1gU with g ∈
Sp(n,R), we have Det(I2n + k) = Det(I2n + g) ∈ R.
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Proposition 7.4. Let X =
(
A B
B̄ Ā

)
∈ s. Then we have

W0(dσ(X))(z) = λ
4 (z(B̄z)− z̄(Bz̄)− 2(Az)z̄).

Proof. There are different ways to prove this result. For instance, one can dif-
ferentiate W0(σ(k))(z) or one can use the integral formula for W0(dσ(X)), see
Proposition 3.1. However, the fastest method is based on the formula W0 =

B
−1/2
λ Sλ, see Section 3. Since Bλ = exp(∆/2λ) where ∆ = 4

∑n
k=1 ∂

2/∂zk∂z̄k,

see Section 2, we have B
−1/2
λ = exp(− 1

λ

∑n
k=1 ∂

2/∂zk∂z̄k). By using the for-
mula for Sλ(dσ(X)) given in Proposition 6.6, we get

− 1
λ

n∑
k=1

∂2/∂zk∂z̄k(Sλ(dσ(X))) = 1
2

n∑
k=1

(Aek)ek = 1
2 Tr(A)

hence

(B
−1/2
λ Sλ(dσ(X)))(z) = λ

4 (z(B̄z)− z̄(Bz̄)− 2(Az)z̄).

8. Applications

Here we recover some known results about the classical Weyl symbols of the
metaplectic representation operators of Sp(n,R) and about the computation
of some star-exponentials. We take λ = 1.

8.1. Weyl symbols of metaplectic representation
operators for Sp(n,R)

The metaplectic representation σ of S can be translated to Sp(n,R) as follows,
see [21, Chapter IV]. For each g ∈ Sp(n,R), we define σ′(g) = B−1σ(UgU−1)B
where U =

(
In iIn
In −iIn

)
. Then we can deduce from Proposition 7.3 a formula for

W1(σ
′(g)), g ∈ Sp(n,R). Recall that W1 is the inverse of the classical Weyl

correspondence W, see Section 2.

Proposition 8.1. Let g = (A B
C D ) ∈ Sp(n,R). Then we have

W1(σ
′(g))(x, y) = c′n(g) exp

(
−i

(
x y

)
J(g − I2n)(g + I2n)

−1

(
x
y

))
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where

c′n(g) = cn(UgU−1) = 2n(Det(I2n + g))−1/2 if Det(I2n + g) > 0;

c′n(g) = −i2n|Det(I2n + g)|−1/2

if Det(I2n + g) < 0 and Arg(Det(A+D + i(C −B))) ∈]0, π[;
c′n(g) = i2n|Det(I2n + g)|−1/2

if Det(I2n + g) < 0 and Arg(Det(A+D + i(C −B))) ∈]− π, 0[.

Proof. Let g = (A B
C D ) ∈ Sp(n,R) and k = UgU−1 =

(
P Q
Q̄ P̄

)
. By Proposi-

tion 3.4 and Proposition 7.3, we have, for each (x, y) ∈ R2n,

W1(σ
′(g))(x, y) = W1(B−1σ(k)B)(x, y) = W0(σ(k))(z)

= cn(k) exp

(
1
2

(
z z̄

)
J(k − I2n)(k + I2n)

−1

(
z
z̄

))
where z = x+ iy ∈ Cn. Now, since ( zz̄ ) = U ( xy ) and k = UgU−1, we obtain

1
2

(
z z̄

)
J(k − I2n)(k + I2n)

−1

(
z
z̄

)
= 1

2

(
x y

)
U tJU(g − I2n)(g + I2n)

−1

(
x
y

)
= −i

(
x y

)
J(g − I2n)(g + I2n)

−1

(
x
y

)
.

Moreover, we have Det(k + I2n) = Det(g + I2n), P = 1
2 (A + D + i(C − B))

and the rest of the proposition is just a reformulation of the discussion on the
value of cn(k), see Proposition 7.3.

Similar formulas involving Cayley transform can be found in [16, 17, 18,
20, 25]. In the excellent book [17], it seems that a factor 2n must be added in
Formula (3.71) to make it consistent with Formula (3.80).

The expression of W1(σ
′(g)) takes a more simple form when g = exp(X),

where X ∈ sp(n,R).

Corollary 8.2. Let X ∈ sp(n,R). Then we have

W1(σ
′(exp(X)))(x, y)

= (Det(cosh( 12X)))−1/2 exp

(
−i

(
x y

)
J tanh( 12X)

(
x
y

))
.

Proof. We just apply Proposition 8.1 to g = exp(X), X ∈ sp(n,R). We have

Det(g + I2n) = 22n Det(exp( 12X))Det(cosh( 12X)) = 22n Det(cosh( 12X)) ≥ 0
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hence c′n(g) = (Det(cosh( 12X)))−1/2 and (g+I2n)(g−I2n)
−1 = tanh( 12X). The

result follows.

We can also deduce the computation of W1(σ
′(X)), X ∈ sp(n,R), from

Proposition 7.4.

Proposition 8.3. Let X =
(
A B
C −At

)
∈ sp(n,R). Then we have

W1(dσ
′(X))(x, y) = 1

2 i(2y(Ax) + y(By)− x(Cx)) = − 1
2 i

(
x y

)
JX

(
x
y

)
.

Proof. Let X =
(
A B
C −At

)
∈ sp(n,R). Define Y = UXU−1 =

(
P Q
Q̄ P̄

)
∈ s. Then

we have

P = 1
2 (A+D + i(−B + C)) ; Q = 1

2 (A−D + i(B + C)).

Now, we have

W1(dσ
′(X))(x, y) = W1(B−1dσ(Y )B)(x, y) = W0(dσ(Y ))(x+ iy)

= 1
4 ((x+ iy)Q̄(x+ iy)− (x− iy)Q(x− iy)− 2(P (x+ iy))(x− iy)).

By replacing P and Q with the expressions given above, the result follows from
a tedious but easy calculation.

Remark 8.4. Let X =∈ sp(n,R). Then M = 1
2JX is a symmetric matrix and

qM (x, y) =
(
x y

)
M

(
x
y

)
is a quadratic form which is the Weyl symbol of the operator idσ′(X).

On the other hand, by Corollary 8.2, we have, for each t ∈ R and each
(x, y) ∈ R2n,

W1( exp(dσ
′(tX)))(x, y)

= (Det(cosh( 12 tX)))−1/2 exp

(
−i

(
x y

)
J tanh( 12 tX)

(
x
y

))
.

By the identity theorem for analytic functions, we can take t = i in the pre-
ceding equality. This gives

W1(exp(dσ
′(iX)))(x, y)

= (Det(cos( 12X)))−1/2 exp

((
x y

)
J tan( 12 tX)

(
x
y

))
= (Det(cos(JM)))−1/2 exp

(
−
(
x y

)
J tan(JM)

(
x
y

))
.

Then we recover a result of [27] about the Weyl symbol of the exponential of
an operator whose Weyl symbol is a quadratic form qM (x, y).
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8.2. Star exponentials

The preceding results can be reformulated in terms of star exponentials for
the Moyal star product. Let us recall that the notion of star product was
introduced in [4] in order to interpret quantum mechanics as deformation of
classical mechanics. Roughly speaking, a star product on a Poisson manifold
M is a formal deformation (f, g) → f ∗ g = f.g + t{f, g} +

∑
l≥2 t

lCl(f, g) of
the pointwise multiplication of C∞(M). An important problem is then the
computation of the star exponential exp∗(f) =

∑
l≥0

1
l!f

∗,l for some functions
f , see [2, 22]. Note that such computations are usually done by solving some
differential systems, see [5, 6]. Here we only consider the Moyal star product
on R2n defined as follows.

Take coordinates (p, q) on R2n ∼= Rn ×Rn and let x = (p, q). Then one has
xi = pi for 1 ≤ i ≤ n and xi = qi−n for n + 1 ≤ i ≤ 2n. For u, v ∈ C∞(R2n),
define P 0(u, v) := uv,

P 1(u, v) :=

n∑
k=1

(
∂u

∂pk

∂v

∂qk
− ∂u

∂qk

∂v

∂pk

)
=

∑
1≤i,j≤n

Λij∂xi
u∂xj

v

(the Poisson brackets) and, more generally, for l ≥ 2,

P l(u, v) :=
∑

1≤i1,...,il,j1,...,jl≤n

Λi1j1Λi2j2 · · ·Λiljl∂l
xi1 ...xil

u ∂l
xj1 ...xjl

v.

Then the Moyal product ∗ is the following formal deformation of the point-
wise multiplication of C∞(R2n)

u ∗ v :=
∑
l≥0

tl

l!
P l(u, v)

where t is a formal parameter.
Let us restrict ∗ to polynomials on R2n (this is sufficient for our purpose)

and take t = −i/2. Then ∗ induces an associative product on the polynomials
also denoted by ∗.

On the other hand, the classical Weyl correspondence W (see Section 3)
can be extended to polynomials [26]. More precisely, if f(p, q) = u(p)qα where
u is a polynomial on Rn then we have

(W(f)φ)(p) =

(
i
∂

∂s

)α (
u(p+ 1

2s)φ(p+ s)
) ∣∣∣

s=0
,

see [34]. Hence if f is a polynomial then W(f) is a differential operator with
polynomial coefficients. Moreover, we can show that ∗ corresponds to the com-
position of operators in the Weyl quantization, that is, for each polynomials
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f1, f2 on R2n, we have W(f1 ∗ f2) = W(f1)W(f2). Equivalently, we also have
W1(A1)∗W1(A2) = W1(A1A2) for each differential operators A1, A2 with poly-
nomial coefficients.

Let M be a real, symmetric (2n) × (2n) matrix. Let qM be the quadratic
form on R2n associated with M . Let X = −2JM ∈ sp(n,R). Then by Propo-
sition 8.3 we have W1(dσ

′(X)) = −iqM , hence

exp∗(−iqM ) = exp∗(W1(dσ
′(X))) = W1(exp(dσ

′(X))) = W1(σ
′(exp(X)))

and

exp∗(−iqM )(x, y) = (Det(cosh(JM))−1/2 exp

(
i
(
x y

)
J tanh(JM)

(
x
y

))
.

This is precisely the equation given in [6, Theorem 1]. In particular, for
qM (x, y) = t(x2 + y2), t ∈ R, we have JM = tJ , cosh(JM) = cos(t)I2n,
tanh(JM) = tan(t)J and the preceding formula becomes

exp∗(−it(x2 + y2)) = (cos(t))−n exp(−i tan(t)(x2 + y2)).

Up to mormalization, we recover the formula of [5, Proposition 1].
Note that, in general, computations of star exponentials involve special

functions, see [5, 22, 24].
Strangely enough, it seems that the connection between the computation of

the star exponential of a quadratic form (for the Moyal product) and the com-
putation of the Weyl symbol of the exponential of a differential operator whose
Weyl symbol is a quadratic form has not been mentioned in the literature.
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