
Rend. Istit. Mat. Univ. Trieste
Vol. 55 (2023), Art. No. 3, 27 pages

DOI: 10.13137/2464-8728/35484

Integrability aspects of the dynamical
forest model

Evan Sulaiman, Azad Amen and Waleed Aziz

Abstract. In this paper, we study the integrability problem of a
mathematical models of forests with two age classes of the form, ẋ =
ρy − (y − 1)2x − sx, ẏ = x − hy, where ρ, h, s ∈ R. We proved that
the system has a unique Darboux polynomial if and only if ρ = 0. The
model has only two or three exponential factors if h ̸= 0 or h = 0,
respectively. It is also, showed that the system admits a Darboux first
integral if and only if ρ = h = 0 and has no analytic first integral in
any neighborhood of fixed point except when ρ = h = 0.

Keywords: Forest system, Darboux polynomial, polynomial first integral, Darboux first
integrals, analytic first integral.
MS Classification 2020: 34A05, 34A34, 37J35.

1. Introduction

One of the most interesting problems in environmental science and mathemat-
ical ecology is modeling the dynamics of forest age structure. The forest age
structure dynamics, means the change of space and time of tree numbers in
different age classes, which affect by internal and external factors [11]. The
works in [3, 5, 9, 10], are devoted to model such dynamics in the simplest case
of just two age classes, young and old tress, of the form

ẋ = ρy − (y − 1)2x− sx, ẏ = x− hy, (1)

in which the densities of young and old trees at time t are denoted by x(t)
and y(t), respectively. Note that the parameters ρ, s and h are real numbers.
The parameter ρ is fertility, s and h are ageing and death rates. Note that
the system (1) has been studied in the papers [1, 2, 4, 6, 11, 21] but none of
these papers are devoted to investigate the integrability or non-integrability
problem. The local stability and dynamics near singularities have been stud-
ies in [20]. In particular, they used first Lyapunov coefficient and averaging
theory to study the bifurcation phenomena and Hopf bifurcation occurs at sin-
gular points. In [15], authors demonstrated that the Brusselator system have
no Darboux polynomial and polynomial first integral. The local and global
integrability of Chua circuit system are studied in [12]. They prove that under
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some conditions on parameters, the Chua system has no local analytic first
integrals at the origin as well as the system eventually admits no global ana-
lytic first integrals the problem of finding Darboux polynomials and Darboux
first integrals, are also considered in [13]. In [16], Llibre and Valls, showed
that Muthuswamy-Chua system admits no Darboux polynomial, polynomial
first integral and Darboux first integral. The existence of local analytic first
integrals of Liénard system has been studied in [14, 17].
The aim of this paper, is to characterize the existence and nonexistence of poly-
nomial and Darboux first integrals of system (1). We also study the existence
of local analytic first integrals of system (1). Note that all calculations were
performed by the computer algebra system Maple.

2. Preliminary Results

Consider the system of differential equations

ẋ = P (x, y), ẏ = Q(x, y), (2)

where P and Q are polynomials of degree at most d. The associated vector
field of system (2) is denoted by

X = P
∂

∂x
+Q

∂

∂y
.

Definition 2.1. Let M be an open subset of R2. A non-constant analytic
function F : M → R is a first integral of a vector field X on M if it is constant
on all solutions of system (2) which contained in M . That is, F is a first
integral of X on M if and only if

X (F ) = P
∂F

∂x
+Q

∂F

∂y
= 0.

Note that F is a polynomial first integral when it is a polynomial.

Definition 2.2. We say that g(x, y) = 0, is an invariant algebraic curve of the
system (2) if there exists a polynomial K ∈ C[x, y] such that

X (g) = P
∂g

∂x
+Q

∂g

∂y
= K g,

where K is a cofactor of the system (2) of degree at most d − 1. Note that,
g(x, y) is also known as a Darboux polynomial.

Definition 2.3. Let f, g ∈ C[x, y] be coprime, a non-constant function E =
exp(f/g) is said to be an exponential factor of the system (2) if it satisfies

X (E) = P
∂E

∂x
+Q

∂E

∂y
= E L.
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The polynomial L is a cofactor of the exponential factor with degree at most
d− 1.

Definition 2.4. A function R : M → R is an integrating factor of X , if it
satisfies

X (R) = −R div(X ),

where div(X ) = div(P,Q) = ∂P
∂x +

∂Q
∂y is the divergent of X . The first integral F ,

which is related to the integrating factor R, is F (x, y) = −
∫
R(x, y)P (x, y)dy+

T (x) satisfying ∂F
∂x = −RQ. Then

ẋ = P R = −∂F

∂y
, ẏ = QR =

∂F

∂x
.

Definition 2.5. A polynomial f(x, y) is called a weight homogeneous polyno-
mial if there exist r = (r1, r2) ∈ N2 and m ∈ N, such that for all α > 0,
f(αr1x, αr2y) = αm f(x, y), where N the set of all positive integers. The vari-
able r = (r1, r2) refers to the weight exponent of f and m denotes the weight
degree of f with the weight exponent r.

Definition 2.6. Let F be a first integral. Then F is said to be analytic first
integral, if F is an analytic function. If M is a neighborhood of a singular
point (x0, y0), then F is called a local analytic first integral of X at (x0, y0). If
M = R2, then F is called a global analytic first integral of X .

Remark 2.7. Let w be a finite generated vector subspace of C[x, y]. The
extactic algebraic curve of X , denoted by εw(X ), is a polynomial defined by

εw(X ) = det


u1 u2 · · · ul

X (u1) X (u2) · · · X (ul)
...

... · · ·
...

X l−1(u1) X l−1(u2) · · · X l−1(ul)

 = 0,

where {u1, u2, . . . , ul} is a basis of w, l = dim(w) is the dimension of w and
X i(ui) = X i−1(X (ui)).

Proposition 2.8 ([7]). Let w be a finitely generated vector subspace of C[x, y],
with dim(w) > 1, and X be a polynomial vector field C2. Then every Darboux
polynomial g = 0 for the vector field X , with g ∈ w, is a factor of εw(X ).

Theorem 2.9 ([8]). Assume that a polynomial vector field X of degree d in
C2 admits p irreducible Darboux polynomial gi = 0, with cofactor Ki for i =
1, . . . , p and q exponential factors Ej = exp(fj/hj) with cofactors Lj for j =
1, . . . , q. Then the following statements hold.
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a. There exist certain complex numbers λi and µj, not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = 0,

if and only if the function

F = gλ1
1 gλ2

2 . . . gλp
p Eµ1

1 Eµ2

2 . . . Eµq
q ,

is the Darboux first integral for X .

b. The function F is an integrating factor of X provided that the condition

p∑
i=1

λiKi +

q∑
j=1

µjLj = −div(X ),

is satisfied.

Proposition 2.10 ([18, 19]). The following statements hold.

a. If E = exp( fg ) is an exponential factor for system (2), and g is not a
constant polynomial, then g = 0 is an invariant algebraic curve.

b. Eventually, E = exp(f) can be an exponential factor, derived from the
multiplicity of the infinite invariant straight line.

Theorem 2.11 ([17]). Assume that the eigenvalues λ1 ̸= 0 and λ2 ̸= 0 at some
singular point (x0, y0) of X do not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0, for k1, k2 ∈ Z+ with k1 + k2 > 0.

Then system (2) has no local analytic first integrals in a neighborhood of the
singular point (x0, y0).

Theorem 2.12 ([17]). Assume that the eigenvalues λ1 and λ2 at some singular
point (x0, y0) of X satisfy that λ1 = 0 and λ2 ̸= 0. Then system (2) has no
local analytic first integrals if the singular point (x0, y0) is isolated.

3. Darboux first integrals

In this section, we prove that system (1) has a unique Darboux polynomial
when the parameter ρ = 0. It is also proved that system (1) has only two
exponential factors if h ̸= 0 and has only three exponential factors when h = 0.
Finally, it is proved that system (1) has a Darboux first integral if and only if
ρ = h = 0.
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Lemma 3.1. If g = g(x, y) is a Darboux polynomial of system (1) with cofactor
K ̸= 0, then K = K(y) = b0 + b1y + b2y

2 for some b0, b1, b2 ∈ C.

Proof. Assume that g = g(x, y) is a Darboux polynomial of system (1) with

non-zero cofactor K = K(x, y) =
∑2

i=0 Ki(y)x
i, for each i, Ki(y) is a poly-

nomial in the variable y of degree at most 2 − i. Then g satisfies the partial
differential equation

(ρy − (y − 1)2x− sx)
∂g

∂x
+ (x− hy)

∂g

∂y
= Kg. (3)

Without loss of generality, we can write g(x, y) =
∑n

i=0 gi(y)x
i, where gi(y) is

a polynomial in the variable y for each i and n ∈ N ∪ {0} is the degree of g.
In equation (3), the terms xn+2 satisfy

gn(y)K2(y) = 0. This implies that, K2(y) = 0.

Next, computing the terms xn+1 in (3), we obtain

dgn(y)

dy
= gn(y)K1(y).

The solution of this equation is gn(y) = C1 e
∫
k1(y)dy, where C1 is an arbitrary

constant. Since gn is a polynomial in y then it must be K1(y) = 0. Eventually,
K(x, y) = K0(y) = b0 + b1y + b2y

2 with b0, b1, b2 ∈ C.

Lemma 3.2. Assume g = g(x, y) is a Darboux polynomial of system (1), then
it is cofactor K is K(y) = b0 + b1y + b2y

2, where b0 = −m(1 + s) − lh, b1 =
2m, b2 = −m and m ∈ N ∪ {0}.

Proof. We first use the weight-change of variables

x = α−2x1, y = α−1y1, t = α2r.

Then system (1) becomes

ẋ1 = α3 ρ y1 − x1 y
2
1 + 2αx1 y1 − α2 (1 + s)x1, ẏ1 = αx1 − hα2 y1, (4)

where α > 0 and the primes denote the derivatives of variables with respect
to r. We set G(x1, y1) = αl g(α−2x1, α

−1y1), and Lemma 3.1 implies

K = α2K(α−2x1, α
−1y1) = b0α

2 + αb1y1 + b2y
2
1 ,

where l is the highest weight degree in the weight homogeneous components
of g in x1 and y1. Note that G = 0 is a Darboux polynomial of system (1) with
cofactor K. Indeed

dG

dr
= αl+2 dg

dt
= (b0α

2 + αb1y1 + b2y
2)G = KG.
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Assume that G =
∑n

i=0 αi Gi(x1, y1), Gi is a weight homogeneous polynomial
in x1 and y1 with weight degree n− i, for i = 0, . . . , n. In particular

Gi(x1, y1) = αngn−i(x, y), for i = 0, . . . , n. (5)

The polynomial G must satisfies

(α3ρy1 − x1y
2
1 + 2αx1y1 − (1 + s)α2x1)

n∑
i=0

αi ∂Gi

∂x1

+ (αx1 − hα2y1)

n∑
i=0

αi ∂Gi

∂y1
=

n∑
i=0

αi(b0α
2 + αb1y1 + b2y

2
1)Gi. (6)

The coefficients of α0 in equation (6) is

−x1 y
2
1

∂G0

∂x1
= b2 y

2
1 G0.

Since G0 ̸= 0, otherwise g would be a constant, then the solution of the above
partial differential equation is G0 = G0(y)x

−b2
1 . Since G0 is a weight homo-

geneous polynomial with weight degree n, then b2 = −m and m ∈ N ∪ {0}.
This implies that G0 = C0 x

m
1 yl1, where C0 is non-zero constant. Note that

n = 2m+ l.
Calculating the coefficients of α1 in (6), which satisfy

−x1y
2
1

∂G1

∂x1
+ 2x1y1

∂G0

∂x1
+ x1

∂G0

∂y1
= b1y1 G0 −my21 G1.

Solving it, yields G1 = C0 (l x1+2(m− b1
2 )y

2
1 ln(x1))x

m
1 yl−3

1 +F1(y1)x
m
1 , where

F1(y1) is an arbitrary polynomial in the variable y1. Since G1 is a weight
homogeneous polynomial with weight degree n − 1, then b1 = 2m and we
obtain

G1 = l C0 x
m+1
1 yl−3

1 + C1 x
m
1 yl−1

1 , C1 ∈ C. (7)

The coefficients of α2 in (6), are

− x1y
2
1

∂G2

∂x1
+ 2x1y1

∂G1

∂x1
− (1 + s)x1

∂G0

∂x1
+ x1

∂G1

∂y1
− hy1

∂G0

∂y1

= b0G0 + 2my1 G1 −my21 G2,

whose solution is

G2 =
1

2y31

(
2((C1 + 2C0)l − C1)x

m+1
1 yl−1

1 + C0 l (l − 3)xm+2
1 yl−3

1

− 2
(
C0 ln(x1)(lh+ (1 + s)m+ b0) y

l+1
1 − F2(y1) y

3
1)x

m
1

)
,



DYNAMICAL FOREST MODEL (7 of 27)

where F2(y1) is an arbitrary polynomial in the variable y1. Since G2 is a
weight homogeneous polynomial of degree n− 2 = 2m+ l− 2, then it must be
b0 = −lh− (1 + s)m with m ∈ N ∪ {0}.

Theorem 3.3. The system (1) has a unique Darboux polynomial if and only
if ρ = 0. Moreover, a Darboux polynomial is g = x with non-zero cofactor
K = −(1 + s) + 2y − y2.

Proof. Let g be the Darboux polynomial of system (1) and by Lemma 3.2 it is
cofactor is K = −lh−m(1+ s)+2my−my2 and G0, G1 and G2 are calculated
can be as before. The terms of the coefficient α3 in equation (6), satisfy

− x1y
2
1

∂G3

∂x1
+2x1y1

∂G2

∂x1
− (1+ s)x1

∂G1

∂x1
+ ρy1

∂G0

∂x1
+ x1

∂G2

∂y1
− hy1

∂G1

∂y1

= (−lh−m(s+ 1))G1 + 2my1G2 −my21G3.

Solving this differential equation, gives

G3 =
1

6y61

(
18 (((h− s

3 + 1)C0 +
2C1

3 + C2

3 ) l − 2C1

3 − 2C2

3 )xm+1
1 yl+1

1

+ 3 ((4C0+C1) l
2 + (−5C1−14C0) l + 4C1)x

m+2
1 yl−1

1 + 6F3(y1) y
6
1 x

m
1

+ l C0 (l − 3) (l − 6) yl−3
1 xm+3

1 − 6 ρC0 mxm−1
1 yl+5

1

+ 6C1 h ln(x1) y
l+3
1 xm

1

)
, (8)

where C2 ∈ C and F3(y1) is an arbitrary polynomial in the variable y1. Since
G3 is a weight homogeneous polynomial of degree n − 3 = 2m + l − 3, then
must be C1 h = 0. We distinguish the following two cases.

Case 1: If C1 ̸= 0, h = 0. From equation (8) we obtain

G3 = (((−s+ 3)C0+C2+2C1) l − 2C2 − 2C1)x
m+1
1 yl−5

1 − ρmC0 y
l−1
1 xm−1

1

+ 2 ((C0 +
C2

4 ) l2 + (−7C0

2 − 5C1

4 ) l + C1)x
m+2
1 yl−7

1 + C3 x
m
1 yl−3

1

+ 1
6 l C0(l − 3)(l − 6)xm+3

1 yl−9
1 , C3 ∈ C.

The coefficients of α4 in equation (6) are

− x1y
2
1

∂G4

∂x1
+ 2x1y1

∂G3

∂x1
− (1 + s)x1

∂G2

∂x1
+ ρy1

∂G1

∂x1
+ x1

∂G3

∂y1

= −m(s+ 1)G2 + 2my1G3 −my21G4.



(8 of 27) E. SULAIMAN ET AL.

Solving it, we obtain

G4 =
1

24y51

(
24((C0 +

C1

6 )l3 + (−10C0 − 2C1) l
2 + ( 67C0

3 + 13C1

2 ) l − 14C1

3 )

xm+3
1 yl−5

1 + 48(((−2s+ 2)C0 + (−s
2 + 3

2 )C1 + C2 +
C3

2 )l + ( s2 − 3
2 )C1−

2C2 − 3C3

2 )yl−1
1 xm+1

1 + 12(((−2s+ 10)C0 + C2 + 4C1)l
2 + ((8s− 40)C0

− 7C2 − 22C1)l + 10C2 + 18C1) y
l−3
1 xm+2

1 − 48(C0 +
C1

2 ) ρmyl+3
1 xm−1

1

+ 24F4(y1)x
m
1 y51 + 24C0 ln(x1) ρ (l +m) yl+1

1 xm
1

+ l C0 (l − 3)(l − 6)(l − 9) yl−7
1 xm+4

1

)
, (9)

where F4(y1) is an arbitrary polynomial in the variable y1. Since G4 must be
a weight homogeneous polynomial of degree n− 4 = 2m+ l− 4, l+m ̸= 0 and
C0 ̸= 0, then must be ρ = 0. From equation (9), we get that h = 0 and ρ = 0.
Simple calculation shows

εw(X ) = det

1 x y
0 −(y − 1)2 x− s x x
0 ((y − 1)2 + s)2 x− 2x2 (y − 1) −(y − 1)2 x− s x

 = 0.

Then εw(X ) = 2x3 (y − 1). So by Proposition 2.8, then g = x is a unique
Darboux polynomial with cofactor −s − (y − 1)2. The polynomial (y − 1) is
not Darboux polynomial of system (1).

Case 2: If h ̸= 0, C1 = 0. The equation (7), gives

G1 = l C0 x
m+1
1 yl−3

1 . (10)

Let g =
∑n

i=0 gi(x, y), where gi is a homogeneous polynomial in the variable
x and y. Without loss of generality we can assume that gn ̸= 0 and n ≥ 1.
Then g satisfies the partial differential equation

(ρy − (y − 1)2x− sx)
∂g

∂x
+ (x− hy)

∂g

∂y
= (b0 + b1y + b2y

2) g. (11)

The terms of degree n+ 2 in equation (11), satisfy

−x y2
∂gn
∂x

= b2 y
2 gn,

and its solution is gn = x−b2 fn(y), where fn(y) is an arbitrary polynomial in
variable y. Since gn is a polynomial of degree n, then must be b2 = −m, where
m is a non-negative integer. Therefore

gn = Cn x
m yn−m, Cn ∈ C \ {0}. (12)
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The coefficients of degree n+ 1 in equation (11) satisfy

−xy2
∂gn−1

∂x
+ 2xy

∂gn
∂x

= b1ygn −my2gn−1.

Solving the differential equation above, we obtain

gn−1 = 2xm

(
Cn ln(x) (m− b1

2
) yn−m−1 +

fn−1(y)

2

)
,

where fn−1(y) is an arbitrary polynomial in the variables y. Since gn−1 is a
polynomial of degree n− 1, we must have that b1 = 2m. Then

gn−1 = Cn−1 x
m yn−m−1, Cn−1 ∈ C. (13)

Computing the terms of degree n in equation (11), gives

− xy2
∂gn−2

∂x
+ 2xy

∂gn−1

∂x
+ (ρy − (s+ 1)x)

∂gn
∂x

+ (x− hy)
∂gn
∂y

= b0 gn + 2my gn−1 −my2 gn−2,

whose solution is

gn−2 = −Cn x
m−1 ((−n+m)x2 + ρmy2) yn−m−3 + Cn−2 xmyn−m−2,

Cn−2 ∈ C.

Now, computing the degree n− 1 in equation (11), we see

− xy2
∂gn−3

∂x
+ 2xy

∂gn−2

∂x
+ (ρy − (s+ 1)x)

∂gn−1

∂x
+ (x− hy)

∂gn−1

∂y

= ((h− s− 1)m− nh) gn−1 + 2my gn−2 −my2 gn−3,

and solving it, yields

gn−3 =
1

y3
(−xm+1((−n+m+ 1)Cn−1 + 2Cn(−n+m))yn−m−1 − xm−1

ρm(Cn−1 + 2Cn) y
1+n−m + (hCn−1y

n−m ln(x) + fn−3(y)y
3)xm),

where fn−3(y) is an arbitrary polynomial in variable y. Since gn−3 is a poly-
nomial of degree n − 3, then must be hCn−1 = 0. By hypothesis h ̸= 0 then
must be Cn−1 = 0. Hence

gn−1 = 0. (14)

From (5), (10), (14) and since C0 ̸= 0, then must be l = 0 and we obtain

G1 = 0, G2 = Cn−2 x
m
1 y−2

1 . (15)
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SinceG2 is a weight homogeneous of degree n−2, thenG0 = C0 x
m, G2 = 0 and

G3 = −ρmC0 x
m−1 y−1. Since G3 is a weight homogeneous of weight degree

n − 3, then m = 0 or ρ = 0. If m = 0, then K = 0 which is contradiction.
Hence, must be ρ = 0, G3 = 0 and l = 0. To prove all Gi = 0 for i = 1, . . . , n,
we use mathematical induction. For i = 1, directly we get from equation (15).
Assume it is true for i = n− 1, which mean that Gi = 0 for i = 1, . . . , n− 1.
Now computing the term αn in equation (6), we have

−x1y
2
1

∂Gn

∂x1
= −my21 Gn.

Solving it, we obtain Gn = xm
1 f0(y1), where f0(y1) is an arbitrary polynomial

in variable y1. Since Gn is a weight homogeneous polynomial of degree zero,
then f0(y1) = 0. Therefore, Gi = 0 for i = 1, . . . , n. We get that G =
G0+G1+ · · ·+Gn = C0x

m
1 . Hence, xm

1 is a Darboux polynomial with cofactor
m(−(1 + s) + 2y1 − y21). Then the result follows.

We note that if h = 0 and ρ = 0 then system (1) is integrable, see Theo-
rem 3.5, so in the following result we consider h and ρ are not zero simultane-
ously.

Theorem 3.4. The following statements hold.

i. For h ̸= 0, the exponential factors of system (1) are ey and ey
2

with
respective cofactors x− hy and 2xy − 2hy2.

ii. For h=0, the exponential factors of system (1) are ey, ey
2

and e4xy−
8
3y

3+y4

with respective cofactors x, 2xy and 4x2 + 4ρy2 − 4(s+ 1)xy.

Proof. By Theorem 3.3 and Proposition 2.10 the exponential factor of sys-
tem (1) can be expressed as E = exp( f

xn ) for some non-negative integer n,
note that f and xn are coprime. Then E satisfies

(ρy − (y − 1)2x− sx)
∂E

∂x
+ (x− hy)

∂E

∂y
= LE,

and this implies

(ρy − (y − 1)2x− sx)
∂f

∂x
+ (x− hy)

∂f

∂y
+ n f ((y − 1)2 + s) = Lxn. (16)

First, for n ≥ 1. In this case, by denoting the restriction of f to x = 0 by f̂ in
equation (16), we can derive f̂ ̸= 0, otherwise, f becomes divisible by x, which

is impossible. The function f̂ satisfies

−hy
df̂(y)

dy
+ n f̂(y)

(
(y − 1)2 + s

)
= 0. (17)
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Solving (17), we obtain f̂(y) = C1 y
n (s+1)

h exp(n y (y−4)
2h ). Since f̂(y) is a poly-

nomial, if h ̸= 0 then must be n = 0, we get the result. On the other hand, if
h = 0 then we get nf̂(y) ((y − 1)2 + s) = 0. Then must be n = 0.
Second, for n = 0, directly E = ef where f ∈ C[x, y] is a polynomial of degree
m ∈ N. Then E satisfies

(ρy − (y − 1)2x− sx)
∂E

∂x
+ (x− hy)

∂E

∂y
= E L, (18)

and since E ̸= 0

(ρy − (y − 1)2x− sx)
∂f

∂x
+ (x− hy)

∂f

∂y
= L, (19)

where f = f(x, y) ∈ C[x, y], with a cofactor L = L(x, y) of degree at most two.
That we can write L = b0 + b1x + b2y + b3xy + b4x

2 + b5y
2 for some bi ∈ C,

i = 0, . . . , 5. Assume f =
∑m

i=0 fi(x, y), where each fi is a homogeneous
polynomial of degree i. Suppose that fm ̸= 0 for m ≥ 5.
The terms of degree m+ 2 in equation (19) is

−xy2
∂fm
∂x

= 0, and this implies that fm = fm(y).

Since fm is a homogeneous polynomial of degree m, then fm = Cmym, Cm ∈
C \ {0}. The terms of degree m+ 1 in equation (19) satisfy

−xy2
∂fm−1

∂x
+ 2xy

∂fm
∂x

= 0.

Solving it, we obtain fm−1 = Cm−1 y
m−1, Cm−1 ∈ C. Now compute the terms

of degree m in equation (19), which are

−xy2
∂fm−2

∂x
+ 2xy

∂fm−1

∂x
+ (−x− sx+ ρy)

∂fm
∂x

+ (x− hy)
∂fm
∂y

= 0.

The solution of differential equation above is

fm−2 = −hmCm ln(x) ym−2 +mCmym−3x+ Cm−2 y
m−2, Cm−2 ∈ C.

Since fm−2 is a homogeneous polynomial, then it must be hCmm = 0. By
hypothesis mCm ̸= 0. Then considering two different cases.

i. If h ̸= 0, then we get contradiction.Then f must be a polynomial of the
degree four satisfying equation (19). Suppose that f(x, y) = c0 + c1x +
c2y+ c3xy+ c4x

2 + c5y
2 + c6x

3 + c7x
2y+ c8xy

2 + c9y
3 + c10x

4 + c11y
4 +

c12x
3y + c13xy

3 + c14x
2y2 for some ci ∈ C, and for i = 0, . . . , 14. From

equation (19) we have

(ρy−(y−1)2x−sx)
∂f

∂x
+(x−hy)

∂f

∂y
= b0+b1x+b2y+b3xy+b4x

2+b5y
2,
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after some calculations, we see f = y+ y2. Then ey+y2

is the exponential
factor with cofactor x − hy + 2xy − 2hy2. In particular, ey and ey

2

are
only exponential factors of system (1) with respective cofactors x − hy
and 2xy − 2hy2.

ii. If h = 0, then fm−2 = mCmxym−3 + Cm−2y
m−2. The equation, which

encompasses terms of degree m− 1 in (19) are

−xy2
∂fm−3

∂x
+ 2xy

∂fm−2

∂x
+ (ρy − x(1 + s))

∂fm−1

∂x
+ x

∂fm−1

∂y
= 0,

and its solution is

fm−3 = (2mCm +mCm−1 − Cm−1)xy
m−4 + Cm−3 y

m−3, Cm−3 ∈ C.

The terms of degree m− 2 in equation (19) satisfy

−xy2
∂fm−4

∂x
+ 2xy

∂fm−3

∂x
+ (ρy − (1 + s)x)

∂fm−2

∂x
+ x

∂fm−2

∂y
= 0,

and whose solution is

fm−4 = ( ((−s+3)Cm+Cm−2+2Cm−1)m−2Cm−2−2Cm−1)x y
m−5

+ 1
2mx2Cm(m− 3)ym−6 + ρm ln(x)Cmym−4 + Cm−4y

m−4,

Cm−4 ∈ C.

Since fm−4 is a homogeneous polynomial of degree m− 4, then must be
ρmCm = 0. Since m,Cm and ρ are non-zero, then we get a contradiction.
Then f must be a polynomial of the degree four. Proceeding as in the
proof of case i, we obtain that ey, ey

2

and e4xy−
8
3y

3+y4

are exponential
factors with respective cofactors x, 2xy and 4x2 + 4ρy2 − 4(s+ 1)xy.

Theorem 3.5. System (1) has a polynomial first integrals if and only if ρ = h =
0. In particular the polynomial first integral is H(x, y) = − 1

3y
3−sy+y2−x−y.

Proof. The change of variables

y1 = y − 1, x1 = x,

transform system (1) to

ẋ1 = ρy1 + ρ− x1y
2
1 − sx1, ẏ1 = x1 − hy1 − h. (20)

Since the change is linear, clearly it is equivalent to look for polynomial first in-
tegral H(x, y) of system (1) that to look for polynomial first integrals
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H̄(x1, y1) = H(x, y) of system (20). We can write H̄ =
∑n

i=1 H̄i(x1)y
i
1, where

H̄i is a polynomials in the variables x1 for each i for i = 1, . . . , n. Since H̄n ̸= 0
for n > 0. The polynomial H̄ satisfies

(ρy1 + ρ− x1y
2
1 − sx1)

∂H̄

∂x1
+ (x1 − hy1 − h)

∂H̄

∂y1
= 0. (21)

The coefficients of yn+2
1 in equation (21), satisfies

−x1
dH̄n

dx1
= 0.

This implies that
H̄n(x1) = Bn, Bn ∈ C \ {0}.

Again, the coefficients of yn+1
1 in equation (21), satisfy

−x1
dH̄n−1

dx1
+ ρ

dH̄n

dx1
= 0.

The solution of the equation above is

H̄n−1 = Bn−1, Bn−1 ∈ C.

Next the coefficient of yn1 in equation (21), gives

−x1
dH̄n−2

dx1
+ ρ

dH̄n−1

dx1
− nh H̄n = 0.

Solving it, we obtain

H̄n−2 = −nh ln(x1)Bn +Bn−2, Bn−2 ∈ C.

Since H̄n−2 is a polynomial, then nhBn = 0. By hypothesis n > 0 and Bn ̸= 0,
then must h = 0. We obtain H̄n−2 = Bn−2. Computing the coefficients of
yn−1
1 in equation (21), we obtain

−x1
dH̄n−3

dx1
+ ρ

dH̄n−2

dx1
+ (ρ− sx1)

dH̄n−1

dx1
+ nx1 H̄n = 0.

Solving differential equation above, yields

H̄n−3 = nBnx1 +Bn−3, Bn−3 ∈ C.

Also the coefficients of yn−2
1 in equation (21), satisfies

−x1
dH̄n−4

dx1
+ ρ

dH̄n−3

dx1
+ (ρ− sx1)

dH̄n−2

dx1
+ x1(n− 1)H̄n−1 = 0,
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which has a solution

H̄n−4 = ρnBn ln(x1) + (n− 1)x1Bn−1 +Bn−4, Bn−4 ∈ C.

Since H̄n−4 is a polynomial, we get ρnBn = 0. Then it is obvious that must
be ρ = 0. Therefore, the polynomial first integral of system (1) is H(x, y) =
− 1

3y
3 − sy + y2 − x− y when h = ρ = 0.

Theorem 3.6. The following statements hold.

1. The system (1) has no Darboux first integrals if hρ ̸= 0.

2. If ρ = 0 and h ̸= 0, then the system (1) has no Darboux first integrals.

3. If ρ = 0 and h = 0, then the system has a Darboux first integrals. More

precisely the Darboux first integral is y3

3 − y2 + (1 + s)y + x.

4. If h = 0 and ρ ̸= 0, then the system (1) has no Darboux first integrals.

Proof. 1. Suppose that system (1) has a Darboux first integral. Applying
Theorem 3.3 system (1) does not admits any Darboux polynomial with
non-zero cofactor. Also Theorem 3.4 implies that system (1) has only

two exponential factors ey and ey
2

with cofactors x−hy and 2xy− 2hy2,
respectively. Applying Theorem 2.9, if there exists µ1, µ2 ∈ C, not all
zero such that

µ1 (x− hy) + µ2 (2xy − 2hy2) = 0.

It is clear that the equation above has only trivial solution which is a
contradiction. Hence, the system (1) has no a Darboux first integral.

2. Suppose that system (1) has a Darboux first integrals. Again Theorem
3.3 implies that system (1) has a unique Darboux polynomial g = x with
cofactor K = −(y − 1)2 − s and Theorem 3.4 showed that system (1)

has only two exponential factors ey and ey
2

with cofactors x − hy and
2xy − 2hy2, respectively. By Theorem 2.9, if there exists λ1, µ1, µ2 ∈ C,
not all zero such that

λ1 (−(y − 1)2 − s) + µ1 (x− hy) + µ2 (2xy − 2hy2) = 0.

The equation above has no non-zero solution which gives a contradiction.
Hence, the system has no Darboux first integral.

3. In this case x is a Darboux polynomial with cofactor K1 = −(y − 1)2 −
s and ey, ey

2

and e4xy−
8
3y

3+y4

are exponential factors with respective
cofactors L1 = x, L2 = 2xy and L3 = 4x2 − 4(s + 1)xy. In this case,
div(X ) = −(y−1)2−s. If there exists λ1, µ1, µ2, µ3 ∈ C, not all zero and
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such that the relation, λ1(−(y−1)2−s)+µ1(x)+µ2(2xy)+µ3(4x
2−4(s+

1)xy) = −div(X ) satisfied, then there is an integrating factor. Direct
calculation shows that µ1 = µ2 = µ3 = 0 and λ1 = −1. Then R =
x−1 is an integrating factor. So by using Definition 2.4 we obtain that
y3

3 − y2 + (1 + s) y + x is a first integral.

4. The proof is similar to case 1.

4. Analytic first integrals

This section is devoted to investigate the analytic first integral of system (1).
Note that, system (1) is a special case of Liénard polynomial differential system.
The change of coordinates

X = y and Y = x− hy,

transform system (1) to

Ẋ = Y,

Ẏ = (ρ− h(s+ 1))X − hX3 + 2hX2 − ((h+ s+ 1) +X2 − 2X)Y. (22)

The system (22) has unique singular point at origin if h = 0 and ρ ̸= 0, while

h ̸= 0 it has three singular points (0, 0) and

(
h±

√
−h2s+hρ

h , 0

)
. Furthermore,

the system (22) has infinite singular point if h = ρ = 0. Here g(X) = (ρ −
h(s+1))X −hX3+2hX2 and f(X) = (h+ s+1)+X2− 2X. The eigenvalues
of the system (22) at the origin are

λ1, λ2 =
−(h+ s+ 1)±

√
(h+ s+ 1)2 + 4ρ− 4(s+ 1)h

2
.

The investigation and calculations at the singular point

(
h−

√
−h2s+hρ

h , 0

)
are

similar to the singular point

(
h+

√
−h2s+hρ

h , 0

)
, so we consider just one of

them. We move the singular point

(
h+

√
−h2s+hρ

h , 0

)
into the origin. We use

the linear change of coordinates

X1 = X − h+
√
−h2s+ hρ

h
and Y1 = Y,
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which gives

Ẋ1 = Y1, Ẏ1 = 2(sh− ρ)X1 − hX2
1 + (−3X2

1 − 2X1)
√
−h2s+ hρ

− hX3
1 −

(
h2 + ρ

h
+

2X1

h

√
−h2s+ hρ+X2

1

)
Y1. (23)

Since h ̸= 0, −h2s + h ρ > 0, g(X1) = 2(sh − ρ)X1 − X2
1h + (−3X2

1 −
2X1)

√
−h2s+ hρ − hX3

1 and f(X1) = h2+ρ
h + 2X1

h

√
−h2s+ hρ + X2

1 . Then
eigenvalues of system (23), at the origin are

λ1, λ2 =
−(h2 + ρ)±

√
(h2 + ρ)2 + 8h2(hs− ρ−

√
−h2s+ hρ)

2h
.

Theorem 4.1. The system (22) has no local analytic first integral in a neigh-
borhood of the origin if h + s + 1 ̸= 0 and one of the following conditions
hold.

i. ρ = h(s+ 1),

ii. −ρ+ h(s+ 1) ̸= 0 and (h+s+1)2

h(s+1)−ρ /∈ Q−,

iii. −ρ + h(s + 1) ̸= 0 and h(s+1)−ρ
(h+s+1)2 = −α ∈ Q−, α ̸= pq

(p−q)2 for some

p, q ∈ Z+ and p ̸= q,

iv. ρ = − (h−(s+1))2

4 ,

v. −(h− (s+ 1))2 − 4ρ ̸= 0.

Proof. i. Then the eigenvalues of the system (22) where h+ s+ 1 ̸= 0 and
ρ = h(s+ 1) are

λ1 = 0 and λ2 = −(h+ s+ 1).

Since (0, 0) is an isolated singular point of system (22), Theorem 2.12
guarantees that system (22) has no local analytic first integrals in a neigh-
borhood of the origin.

ii. Now f(0) = h+ s+1, g(0)′ = −ρ+h(s+1) and f(0)2

g(0)′ = (h+s+1)2

h(s+1)−ρ /∈ Q−.

It is obvious

λ1 + λ2 = −(h+ s+ 1) and λ1λ2 = −ρ+ h (s+ 1).

It is sufficient to show k1λ1 + k2λ2 ̸= 0 for k1, k2 ∈ Z+. Suppose that
k1λ1 + k2λ2 = 0. Then λ1 = −αλ2 for some α ∈ Q+. We obtain

λ2(1− α) = −(h+ s+ 1) and − αλ2
2 = −ρ+ h(s+ 1).
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We have, (h+s+1)2

h(s+1)−ρ = − (1−α)2

α ∈ Q−. Since (h + s + 1) ̸= 0 then α ̸= 1

and α ̸= 0 because h(s + 1) − ρ ̸= 0. Note that (h+s+1)2

h(s+1)−ρ /∈ Q−, then

k1λ1 + k2λ2 ̸= 0. Hence Theorem 2.11, guarantee that system (22) has
no local analytic first integrals in a neighborhood of the origin.

iii. We write g(0)′ = −α(h + s + 1)2 with α ∈ Q+ \ {0}. The rescaling
(X1, Y1, T1) = ((h+ s+ 1)X,Y, (h+ s+ 1)t), system (22) becomes

X ′
1 = Y1, Y ′

1 =
1

(h+ s+ 1)2
(ρ− h(s+ 1))X1 − Y1 +O(X1, Y1),

where O(X1, Y1) means terms of higher order and without loss of general-
ity we write (X,Y, t) instead of (X1, Y1, T1), then system above becomes
of the form

X ′ = Y, Y ′ = αX − Y +O(X,Y ).

We proceed the proof as the proof of Lemma 12 in [17].

iv. The eigenvalues of system (22) with ρ = − (h−(s+1))2

4 and h + s + 1 ̸=
0 are repeated eigenvalues λ1 = λ2 = −(h+s+1

2 ). So does not satisfy
resonance condition in Theorem 2.11. Therefore, the system (22) has no
local analytic first integrals in a neighborhood of origin.

v. We know that a necessary condition in order that system (22) has analytic
first integral is that the linear part of system (22) with h+ s+1 ̸= 0 and
−(h− (s+ 1))2 − 4ρ ̸= 0, admits a polynomial first integral.

Y
∂H1

∂X
+ ((ρ− h(s+ 1))X − (h+ s+ 1)Y )

∂H1

∂Y
= 0.

Solving it, we obtain

H1 =
1√

−(h−(s+1))2 − 4ρ

(
(h+s+1) arctan

(
(h+s+1)X+2Y√

−(h−(s+1))2 − 4ρX

)

−
√

−(h−(s+1))2 − 4ρ ln
(
(hs+h−ρ)X2 + (h+s+1)XY + Y 2)

2

)
,

then the linear part of system (22) has no polynomial first integrals in a
neighborhood of the origin, hence the result follows directly via Hartman-
Grobman Theorem.

Theorem 4.2. System (22) with h + s + 1 = 0 and ρ + (s + 1)2 ̸= 0 has no
analytic first integrals in a neighborhood of the origin.
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Proof. Suppose that H = H(X,Y ) is a local analytic first integral at the origin
of system (22) where h + s + 1 = 0 and ρ + (s + 1)2 ̸= 0. We write H =∑

k≥0 Hk(X,Y ), where each Hk is a homogeneous polynomial of degree k for
k = 1, 2, . . . . We use induction to show that

Hk = 0 for all k ≥ 1. (24)

If H = H0 = constant, then system (22) has no local analytic first integral at
the origin. Since H is a first integral of system (22), it must satisfy

Y
∂H

∂X
+
(
ρX + (s+1)(X3−2X2+(s+1)X)− (X2−2X)Y

) ∂H
∂Y

= 0. (25)

The equation, which encompasses terms of degree one in the variables X and
Y in (25) are

Y
∂H1

∂X
+ (ρ+ (s+ 1)2)X

∂H1

∂Y
= 0.

Thus H1 is either zero or it is polynomial first integral of linear part of sys-
tem (22). The calculations shows that H1 = 0.
The terms of degree two in the variables X and Y of (25), satisfy

Y
∂H2

∂X
+ (ρ+ (s+ 1)2)X

∂H2

∂Y
= 0.

Then again either H2 is zero or it is polynomial first integral. The solution of
the partial differential equation above is H2 = c2 F2, where c2 ∈ C and

F2 = (−(ρ+ (s+ 1)2)X2 + Y 2).

The terms of degree 3 in the variables X and Y in (25), satisfy

Y
∂H3

∂X
+ (ρ+ (s+ 1)2)X

∂H3

∂Y
+ c2 (2XY − 2(s+ 1)X2)

∂F2

∂Y
= 0.

Computing the homogeneous polynomial H3, we obtain H3 = 4
3 c2 G3, where

G3 = (s+ 1)X3 − 1

(ρ+ (s+ 1)2)
Y 3.

Calculating the terms of degree 4 in the variables X and Y in (25), we obtain

Y
∂H4

∂X
+ (ρ+ (s+ 1)2)X

∂H4

∂Y

+ (2XY − 2(s+ 1)X2)
∂H3

∂Y
+ ((s+ 1)X3 −X2Y )

∂H2

∂Y
= 0.
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Computing the homogeneous polynomials H4, implies that c2 = 0, then H2 =
H3 = 0 and H4 = c4 F

2
2 , c4 ∈ C. The terms of degree 5 in the variables X

and Y in (25), satisfy

Y
∂H5

∂X
+ (ρ+ (s+ 1)2)X

∂H5

∂Y
+ (2XY − 2(s+ 1)X2)(2 c4 F2)

∂F2

∂Y
= 0. (26)

Computing the homogeneous polynomials H5 in (26), which gives H5 =
8
3 c4 F2 G3. Computing the terms of degree 6 in variables X and Y in (25),
gives

Y
∂H6

∂X
+ (ρ+ (s+ 1)2)X

∂H6

∂Y

+ (2XY − 2(s+ 1)X2)
∂H5

∂Y
+ ((s+ 1)X3 −X2Y )

∂H4

∂Y
= 0.

Computing the homogeneous polynomials H6, implies that c4 = 0, then H4 =
H5 = 0 and H6 = c6 F

3
2 , c6 ∈ C. The terms of degree 7 in the variables X

and Y in (25), satisfy

Y
∂H7

∂X
+(ρ+(s+1)2)X

∂H7

∂Y
+(2XY − 2(s+1)X2) (3 c6 F

2
2 )

∂F2

∂Y
= 0. (27)

Computing the homogeneous polynomials H7 in (27), which is

H7 = c6 F
2
2 G3. (28)

The terms of degree 8 in the variables X and Y in (25), which satisfy

Y
∂H8

∂X
+ (ρ+ (s+ 1)2)X

∂H8

∂Y
+ (2XY − 2 (s+ 1)X2)

∂H7

∂Y

+ ((s+ 1)X3 −X2Y )
∂H6

∂Y
= 0.

Computing the homogeneous polynomials H8, we obtain c6 = 0, then H6 =
H7 = 0 and H8 = c8 F

4
2 , c8 ∈ C. We now prove by induction for n ≥ 3.

H2n = c2n F
n
2 ,

H2n+1 = Fn−1
2 g3 and Hi = 0 for i = 1, 2, 3, . . . , 2n− 1, (29)

where c2n ∈ C and g3 = g3(X,Y ) is a homogeneous polynomial of degree 3.
From equation (28) is true for n = 3. Next, we assume that (29) is true for
n = 4, . . . , N − 1 and we will prove it for n = N . By induction assumption the
terms of degree 2N − 2 in the variables X and Y in (25), we obtain H2N−2 =
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c2N−2 F
N−1
2 , c2N−2 ∈ C. Calculating the terms of degree 2N − 1 in the

variables X and Y in (25), which are

Y
∂H2N−1

∂X
+ (ρ+ (s+ 1)2)X

∂H2N−1

∂Y

+
(
2XY − 2(s+ 1)X2

)(
(N − 1) c2N−2 F

N−2
2

) ∂F2

∂Y
= 0. (30)

We consider two cases.

Case 1: H2N−1 is not divisible by F2. Repeating the argument for pass-
ing from (27) and (28). We obtain H2N−1 = F2 G̃2N−1, where G̃2N−1 =
G̃2N−1(X,Y ) is a homogeneous polynomial of degree 2N − 3 which is contra-
diction.

Case 2: H2N−1 is divisible by F2. In this case we can write H2N−1 =
F l
2 g3 with 1 ≤ l ≤ N − 3 and g3 is a homogeneous polynomial of degree

2N − 1− 2l, otherwise the results would be obtained. Again, eventually we get
a contradiction. In that case H2N−1 satisfies

Y
∂H2N−1

∂X
+ (ρ+ (s+ 1)2)X

∂H2N−1

∂Y
+

(2XY − 2(s+ 1)X2)

(
(N − 1) c2N−2 FN−2−l

2

∂F2

∂Y

)
= 0.

As l ≤ N − 3, then the same argument used in Case 1, imply a contradiction.
From the claim H2N−1 = FN−2

2 g3, where g3 = g3(X,Y ) is a homogeneous
polynomial of degree 3. Then equation (30) becomes

(N − 2)FN−3
2 g3

(
Y

∂F2

∂X
+ (ρ+ (s+ 1)2)X

∂F2

∂Y

)
+

(
Y
∂g3
∂X

+ (ρ+ (s+ 1)2)X
∂g3
∂Y

)
FN−2
2

+ (2X Y − 2(s+ 1)X2)

(
(N − 1) c2N−2 FN−2

2

∂F2

∂Y

)
= 0. (31)

Since F2 is a first integral of linear part of system (22), then we can rewrite
equation (31), as

Y
∂g3
∂X

+ (ρ+ (s+ 1)2)X
∂g3
∂Y

+ (2XY − 2(s+ 1)X2)

(
(N − 1) c2N−2

∂F2

∂Y

)
= 0. (32)
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The terms of degree 2N in the variables X and Y in (25) satisfy

Y
∂H2N

∂X
+ (ρ+ (s+ 1)2)X

∂H2N

∂Y

+ (2XY −2(s+1)X2)

(
(N−2)g3 F

N−3
2

∂F2

∂Y

)
+ (2XY −2(s+1)X2)FN−2

2

∂g3
∂Y

+ (N − 1)c2N−2((s+ 1)X3 − Y X2)FN−2
2

∂F2

∂Y
= 0.

We now proceed similarly as calculating H2N−1, we obtain H2N = FN−3
2 U6,

where U6 = U6(X,Y ) is a homogeneous polynomial of degree 6. Then U6

satisfies

Y
∂U6

∂X
+ (ρ+ (s+ 1)2)X

∂U6

∂Y
+ (2XY − 2(s+ 1)X2)

(
(N − 2)g3

∂F2

∂Y

)
+ (2XY − 2(s+ 1)X2)F2

∂g3
∂Y

+ (N − 1) c2N−2 ((s+ 1)X3 − Y X2)F2
∂F2

∂Y
= 0. (33)

Computing the homogeneous polynomials g3 and U6 from (32) and (33), there-
fore c2N−2 = 0 and g3 = 0. This implies that H2N−2 = H2N−1 = 0 and
H2N = c2N FN

2 , c2N ∈ C. The terms of degree 2N + 1 in equation (25), gives

Y
∂H2N+1

∂X
+ (ρ+ (s+ 1)2)X

∂H2N+1

∂Y

+ (2XY − 2(s+ 1)X2)

(
N c2N FN−1

2

∂F2

∂Y

)
= 0.

Then the same arguments used for calculating H2N−1 imply that H2N+1 is of
the form H2N+1 = FN−1

2 T3 where T3 = T3(X,Y ) is a homogeneous polynomial
of degree 3. Hence (29) holds true when n = N .

Theorem 4.3. System (22) has no local analytic first integral in a neighborhood

of the singular point

(
h+

√
−h2s+hρ

h , 0

)
if one of the following conditions hold.

a. ρ = hs, h ̸= 0 and h+ s ̸= 0,

b. ρ− hs > 0 and h > 0.

Proof. a. The eigenvalues of system (23), where ρ = hs and (h+ s) ̸= 0, are
λ1 = 0 and λ2 = −(h+s). Since (0, 0) is isolated singular point of system
(23), by Theorem 2.12, we obtain the system (23) has no local analytic
first integral in a neighborhood of the origin.
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b. Computing the eigenvalues of system (22) at the singular point(
h+

√
−h2s+hρ

h , 0

)
, which are

λ1, λ2 =
−(h2 + ρ)±

√
h4 + 8h3s− 8

√
−h2 s+ h ρ h2 − 6 ρ h2 + ρ2

2h
.

Suppose that there exist positive integers k1, k2 such that k1λ1+k2λ2 = 0.
Computing λ1λ2 = 2

(
(ρ − h s) +

√
h(ρ− hs)

)
. Note that by Theo-

rem 2.11, if such integers do not exist we are done. Then λ1 = −αλ2

with α is a positive rational, and hence in particular λ1λ2 = −αλ2
2 < 0.

But λ1λ2 = 2
(
(ρ−hs)+

√
h(ρ− hs)

)
> 0 if (ρ−h s)h > 0. The theorem’s

proof is now complete.

Theorem 4.4. If h ̸= 0, −h2s + h ρ > 0 and h2 + ρ ̸= 0 satisfies one of the
following conditions

i. hs− ρ−
√

−h2s+ hρ = 0.

ii. hs− ρ−
√
−h2s+ hρ ̸= 0 and

(h2+ρ)2

h2

2(hs−ρ−
√

−h2s+hρ)
/∈ Q−.

iii. hs−ρ−
√
−h2s+ hρ ̸= 0,

2(hs−ρ−
√

−h2s+hρ)
(h2+ρ)2

h2

= −α ∈ Q− and α ̸= p q
(p−q)2

for some p, q ∈ Z+.

iv. (h2 + ρ)2 + 8h2(hs− ρ−
√
−h2s+ hρ) = 0.

v. (h2 + ρ)2 + 8h2(hs− ρ−
√
−h2s+ hρ) ̸= 0.

Then the system (23) has no analytic first integrals in a neighborhood of the
origin.

Proof. i. If the conditions are satisfied in this case, then the eigenvalues

of the system (23), are λ1 = 0 and λ2 = − (h2+ρ)
h . Since (0, 0) is an

isolated singular point of system (23), Theorem 2.12 guarantee that the
system (23) has no local analytic first integrals in a neighborhood of the
origin.

ii. Now f(0) = h2+ρ
h , g(0)

′
= 2(hs − ρ −

√
−h2s+ hρ) and f(0)2

g(0)′
=

(h2+ρ)2

h2

2(hs−ρ−
√

−h2 s+h ρ)
/∈ Q−. It is obvious

λ1 + λ2 = −(
h2 + ρ

h
) and λ1λ2 = 2(hs− ρ−

√
−h2s+ hρ).
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It is sufficient to show k1λ1 + k2λ2 ̸= 0 for k1, k2 ∈ Z+. Suppose that
k1λ1 + k2λ2 = 0, then λ1 = −αλ2 for some α ∈ Q+. We obtain

λ2(1− α) = −
(

h2+ρ
h

)
and − αλ2

2 = 2(hs− ρ−
√
−h2s+ hρ).

We have,
(h2+ρ)2

h2

2(hs−ρ−
√

−h2s+hρ)
= − (1−α)2

α ∈ Q−. Since h2+ρ
h ̸= 0, then

α ̸= 1 and α ̸= 0 because 2(h s − ρ −
√
−h2 s+ h ρ) ̸= 0. Note that

(h2+ρ)2

h2

2(hs− ρ−
√
−h2s+ hρ)

/∈ Q−, then k1λ1 + k2λ2 ̸= 0. Hence by Theo-

rem 2.11, the system (23) has no local analytic first integrals in a neigh-
borhood of the origin.

iii. We write g(0)′ = −α (h
2+ρ
h )2 with α ∈ Q+ \ {0}. With the rescaling(

X,Y, T
)
=
((

h2+ρ
h

)
X1, Y1,

(
h2+ρ

h

)
t
)
, system (23) becomes of the form

X ′ = Y, Y ′ = −2(h s− ρ−
√
−h2 s+ hρ)

(h
2+ρ
h )2

X − Y +O(X,Y ).

where O(X,Y ) denotes terms of higher order and without loss of gener-
ality we write (X1, Y1, t) instead of (X,Y, T1), the system above becomes
of the form

X ′
1 = Y1, Y ′

1 = αX1 − Y1 +O(X1, Y1).

We proceed the proof as the proof of Lemma 12 in [17].

iv. The eigenvalues of system (23) with

(h2 + ρ)2 + 8h2
(
h s− ρ−

√
−h2s+ hρ

)
= 0 and h2 + ρ ̸= 0

are repeated eigenvalues λ1 = λ2 = − (h2+ρ)
2h . Then the resonance con-

dition does not hold and by Theorem 2.11, the system (23) has no local
analytic first integral in a neighborhood of origin.

v. We know that a necessary condition in order that system (23) has analytic
first integral is that the linear part of system (23) with h2 + ρ ̸= 0 and

(h2 + ρ)2 + 8h2(hs − ρ −
√

−h2s+ hρ) ̸= 0, admits a polynomial first
integral.

Y1
∂H1

∂X1
+

(
−2X1

√
−h2s+hρ+ 2hsX1 − 2ρX1 −

h2+ρ

h
Y1

)
∂H1

∂Y1
= 0.
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Solving it, we obtain

H1 =
1√

−((h2 + ρ)2 + 8h2(−ρ+ hs−
√

−h2s+ hρ))

(
(h2 + ρ)

arctan

 (h2 + ρ)X1 + 2hY1√
−((h2 + ρ)2 + 8h2(−ρ+ hs−

√
−h2s+ hρ))X1

−

1

2

√
−((h2 + ρ)2 + 8h2(−ρ+ hs−

√
−h2s+ hρ)) ln

(
− 2h2sX2

1

+ 2
√

−h2s+ hρhX2
1 + h2X1Y1 + 2hρX2

1 + hY 2
1 + ρX1Y1

))
.

Since the linear part of system (23) has no polynomial first integrals in a
neighborhood of the origin, hence the result follows directly.

Theorem 4.5. The system (23) has no local analytic first integrals in a neigh-
borhood of the origin if h2 + ρ = 0 and h(h+ s)−

√
−h2(h+ s)) ̸= 0.

Proof. Suppose that H = H(X1, Y1) is a local analytic first integral at the
origin of system (23) where h2 + ρ = 0 and h(h+ s)−

√
−h2(h+ s)) ̸= 0. We

write H =
∑

i≥0 Hi(X1, Y1), where each Hi is a homogeneous polynomial of
degree i for i = 1, 2, . . . . We use induction to show that

Hi = 0 for all i ≥ 1. (34)

If equation (34) implies that H = H0 = constant, then system (23) has no local
analytic first integral at the origin. Since H is a first integral of system (23)
with h2 + ρ = 0 and h(h+ s)−

√
−h2(h+ s)) ̸= 0, it must satisfy

Y1
∂H

∂X1
+

(
− hX3

1 + 2h2X1 + 2hsX1 − hX2
1 − 3X2

1

√
−h2(h+ s)

− 2X1

√
−h2(h+ s)−

(
X2

1Y1 +
2X1Y1

h

√
−h2(h+ s)

))
∂H

∂Y1
= 0. (35)

The terms of degree one in the variables X1 and Y1 in (35) satisfy

Y1
∂H1

∂X1
+ 2
(
h2 + h s−

√
−h2 (h+ s)

)
X1

∂H1

∂Y1
= 0.

Thus H1 is either zero or it is polynomial first integral of linear part of sys-
tem (23). As before, we obtain H1 = 0. Computing the terms of degree two in
the variables X1 and Y1 of (35), which satisfy

Y1
∂H2

∂X1
+ 2
(
h2 + h s−

√
−h2 (h+ s)

)
X1

∂H2

∂Y1
= 0.
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Then either H2 is zero or it is polynomial first integral of linear system. Com-
puting the homogeneous polynomial H2, we obtain H2 = C2 T2, C2 ∈ C,
where

T2 = Y 2
1 + 2

(√
−h2 (h+ s)− h (h+ s)

)
X2

1 .

The terms of degree 3 in the variables X1 and Y1 in (35), satisfy

Y1
∂H3

∂X1
+ 2

(
h2 + h s−

√
−h2 (h+ s)

)
X1

∂H3

∂Y1

+ C2

(
−hX2

1 − 3X2
1

√
−h2(h+ s)− 2X1 Y1

h

√
−h2 (h+ s)

)
∂T2

∂Y1
= 0.

Computing the homogeneous polynomial H3, we obtain H3 = 2
3 C2 G3, where

G3 =
(
3
√
−h2 (h+ s) + h

)
X3

1 −

(
h−

√
−h2 (h+ s)

h2 (h+ s+ 1)

)
Y 3
1 .

Calculating the terms of degree 4 in the variables X1 and Y1 in (35), which are

Y1
∂H4

∂X1
+ 2

(
h2 + hs−

√
−h2(h+ s)

)
X1

∂H4

∂Y1

+

(
−hX2

1 − 3X2
1

√
−h2(h+ s)− 2X1Y1

h

√
−h2(h+ s)

)
∂H3

∂Y1

+ (−hX3
1 −X2

1Y1)
∂H2

∂Y1
= 0.

Computing the homogeneous polynomials H4, we obtain C2 = 0 and H2 =
H3 = 0, H4 = C4 T 2

2 , C4 ∈ C. By the same argument in Theorem 4.2 we can
show that C4 = 0, H4 = H5 = 0 and H6 = C6 T

3
2 . The terms of degree 7 in

the variables X1 and Y1 in (35), satisfy

Y1
∂H7

∂X1
+ 2

(
h2 + hs−

√
−h2(h+ s)

)
X1

∂H7

∂Y1

+

(
−hX2

1 − 3X2
1

√
−h2(h+ s)− 2X1Y1

h

√
−h2(h+ s)

)
∂H6

∂Y1
= 0.

Computing the homogeneous polynomials H7, which is

H7 = C6 T 2
2 G3. (36)

Now we will prove by induction for n ≥ 3.

H2n = C2N Tn
2 ,

H2n+1 = Tn−1
2 g3 and Hi = 0 for i = 1, 2, 3, . . . , 2n− 1, (37)
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where C2n ∈ C and g3 = g3(X,Y ) is a homogeneous polynomial of degree 3.
From equation (36) it is true for n = 3. Next we assume that (37) is true for
n = 4, . . . , N − 1 and we will prove it for n = N . By induction assumption the
terms of degree 2N − 2, in (37), H2N−2 = C2N−2 TN−1

2 , C2N−2 ∈ C. By the
same argument in Theorem 4.2 we can show that Hi = 0 for all i ≥ 1.
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