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Monotonicity theorems and inequalities
for certain sine sums

Horst Alzer and Man Kam Kwong

Abstract. Inspired by the work of Askey-Steinig, Szegö, and
Schweitzer, we provide several monotonicity theorems and inequalities
for certain sine sums. Among others, we prove that for n ≥ 1 and
x ∈ (0, π/2), we have

d

dx

Cn(x)

1− cos(x)
< 0 and

d

dx
(1− cos(x))Cn(x) > 0,

where

Cn(x) =

n∑
k=1

sin((2k − 1)x)

2k − 1

denotes Carslaw’s sine polynomial. Another result states that the in-
equality

n∑
k=1

(n− k + a)(n− k + b)k sin(kx) > 0 (a, b ∈ R)

holds for all n ≥ 1 and x ∈ (0, π) if and only if a = b = 1.
Many corollaries and applications of these results are given. Among
them, we present a two-parameter class of absolutely monotonic rational
functions.

Keywords: Sine sum, inequality, absolutely monotonic, rational function, subadditive.
MS Classification 2020: 26A48, 26C15, 26D05.

1. Introduction and statement of the results

I. A classical result in the theory of trigonometric polynomials states that

Fn(x) =

n∑
k=1

sin(kx)

k
> 0 (n ≥ 1; 0 < x < π). (1)

Fejér conjectured the validity of (1) in 1910. The first proof was published by
Jackson [21] one year later. Since then, more than 20 proofs of the Fejér-Jackson
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inequality were discovered. A remarkable stronger result than (1) was given by
Askey and Steinig [13] in 1976. They proved the monotonicity property

d

dx

Fn(x)

sin(x/2)
< 0 (n ≥ 1; 0 < x < π). (2)

Some related theorems were published by Gasper [18] and Alzer and Kouman-
dos [2].

The inequality

Cn(x) =

n∑
k=1

sin((2k − 1)x)

2k − 1
> 0 (n ≥ 1; 0 < x < π) (3)

is an elegant counterpart of (1). It is due to Carslaw [15]. We note that (3) is
equivalent to the functional inequality

Fn(2x) < 2F2n(x) (n ≥ 1; 0 < x < π).

Extensions and refinements of (3) as well as various similar results can be found
in Alzer and Koumandos [1], Alzer and Kwong [4, 5, 7], Koschmieder [23],
Meynieux and Tudor [25], Ruscheweyh and Salinas [29]; see also Milovanović
et al. [26, p. 317].

In view of (2) it is natural to ask: do there exist monotonicity properties
of functions which are defined in terms of Cn(x)? Our first theorem gives an
affirmative answer to this question.

Theorem 1.1. Let n ≥ 1 be an integer. Then, for x ∈ (0, π/2),

d

dx

Cn(x)

1− cos(x)
< 0 and

d

dx
(1− cos(x))Cn(x) > 0. (4)

For x ∈ (π/2, π), we have

d

dx

Cn(x)

1 + cos(x)
> 0 and

d

dx
(1 + cos(x))Cn(x) < 0.

Remark 1.2. (i) It follows from the formula Cn(π − x) = Cn(x) that each of
the two different sets of inequalities in Theorem 1.1 can be derived from the
other.
(ii) As an immediate consequence of the monotonicity results we obtain the
estimates

(1− cos(x))Ln < Cn(x) <
Ln

1− cos(x)
(n ≥ 1; 0 < x < π/2),

where

Ln =

n∑
k=1

(−1)k−1

2k − 1

denotes the n-th partial sum of the classical Leibniz series for π/4.
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A new lower bound for Cn(x), given in the next theorem, plays a crucial
role in the proof of (4).

Theorem 1.3. Let n ≥ 1 be an integer. For x ∈ (0, π), we have

| sin(2nx)|1− | cos(x)|
1− cos(2x)

< Cn(x). (5)

II. The inequality

n∑
k=1

(n− k + 1) sin(kx) > 0 (n ≥ 1; 0 < x < π) (6)

was first published by Fejér [17] in 1928. It is due to Lukács. Fejér offered a
proof of (6) by using properties of power series. An elegant short proof and
an extension involving a binomial coefficient were given by Turán [32]; see also
Alzer and Kwong [3]. Askey and Gasper [12] pointed out that (6) is a special
case of an inequality for the sum of Jacobi polynomials. We define

Sn(x) =
n∑

k=1

(n− k + 1)2k sin(kx).

Here, we present a companion to (6).

Theorem 1.4. Let n ≥ 1 be an integer. For x ∈ (0, π), we have Sn(x) > 0.

The following representation for Sn(x) plays a key role in our proof of
Theorem 1.4.

Theorem 1.5. Let n ≥ 1 be an integer. For x ∈ R, we have

16 sin4(x/2)Sn(x) = 4(n+ 1) sin(x)− (n+ 2) sin(nx)

− 4 sin((n+ 1)x) + n sin((n+ 2)x). (7)

Remark 1.6. Integrating Sn(t) from t = x to t = y yields, from Theorem 1.4,
an inequality involving the cosine function,

n∑
k=1

(n− k + 1)2 (cos(kx)− cos(ky)) > 0 (n ≥ 1; 0 ≤ x < y ≤ π). (8)

Remark 1.7. From Theorem 1.4 we conclude that the function

Mn(x) =

n∑
k=1

(n− k + 1)2
sin(kx)

k

is strictly concave on [0, π]. Applying the Petrović inequality (see Mitrinović
[27, section 1.4.7]) gives that Mn satisfies the subadditive property

Mn(x+ y) < Mn(x) +Mn(y) (n ≥ 1; x, y > 0, x+ y ≤ π).



(4 of 17) H. ALZER AND M.K. KWONG

Robertson [28] proved the inequality: For n ≥ 2 and 0 < x < π,

(n+ 1)
sin((n− 1)x)

sin(x)
− (n− 1)

sin((n+ 1)x)

sin(x)
≤ 4

(
n− sin(nx)

sin(x)

)
and used it to deduce properties of certain analytic functions. Askey and
Gasper [11] refined this inequality by showing that the factor 4 can be replaced
by 3 + cos(x). The inequality

sin(nx)

n sin(x)
≤

√
6

9
(n ≥ 2; π/n ≤ x ≤ π − π/n) (9)

is due to Askey; see Jagers [22]. It plays a role in the proof of Theorem 1.4.
An application of Theorem 1.4 leads to the following related result.

Corollary 1.8. Let λ ∈ R with λ ≥ 1. The inequality

sin(nx)

n sin(x)
<

λ+ cos(nx)

λ+ cos(x)
(10)

holds for all integers n ≥ 2 and x ∈ (0, π) if and only if λ ≥ 2.

A function f : I → R (where I ⊂ R is an interval) is called absolutely
monotonic if f has derivatives of all orders and satisfies

f (n)(x) ≥ 0 (n = 0, 1, 2, ...; x ∈ I).

These functions have applications in probability theory and the theory of an-
alytic functions. We refer to Widder [33, chapter IV] and Boas [14] for more
information on this subject. An additional application of Theorem 1.4 provides
a two-parameter class of absolutely monotonic rational functions.

Corollary 1.9. Let a, b ∈ R with −1 < a, b < 1. The function

Ra,b(x) =

(
1 + x

1− x

)2
x

(x2 + 2ax+ 1)(x2 + 2bx+ 1)
(11)

is absolutely monotonic on [0, 1).

We discovered Theorem 1.4 when studying a remarkable paper published by
Szegö [31] in 1941. His work on univalent functions led Szegö to the inequality

n∑
k=1

(n− k + 1)(n− k + 2)k sin(kx) > 0 (n ≥ 1; 0 < x ≤ τ), (12)

where τ = 1.98... is defined by the equation sin2(τ/2) = 7/10. Schweitzer [30]
improved this result. He showed that (12) is valid for all n ≥ 1, x ∈ (0, 2π/3)
and that 2π/3 cannot be replaced by a larger constant. Applications and coun-
terparts of (12) can be found in Askey and Fitch [10] and Alzer and Kwong [6].
The following companion to (12) is valid.
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Theorem 1.10. Let a, b ∈ R. The inequality

n∑
k=1

(n− k + a)(n− k + b)k sin(kx) > 0 (13)

holds for all integers n ≥ 1 and x ∈ (0, π) if and only if a = b = 1.

III. In the literature, we can find numerous papers on inequalities for
trigonometric sums. The main reason for the great interest is that these results
have applications in various fields, like, for instance, geometric function theory,
numerical analysis, and number theory. Detailed information on this subject
with interesting historical comments and many references are given in Askey
[8], Askey and Gasper [12], Milovanović et al. [26, chapter 4]; see also Askey [9],
Dimitrov and Merlo [16], Gluchoff and Hartmann [19], and Koumandos [24].

IV. Our proofs of the stated theorems and corollaries are given in Sec-
tions 2-8. The algebraic and numerical computations have been carried out by
using the computer program MAPLE 13.

2. Proof of Theorem 1.3

Let n ≥ 1, x ∈ (0, π) and

Bn(x) = Cn(x)− | sin(2nx)|1− | cos(x)|
1− cos(2x)

.

Since Bn(π − x) = Bn(x), it suffices to prove that Bn is positive on (0, π/2].
Let x ∈ (0, π/2]. Then,

Bn(x) = Cn(x)−
| sin(2nx)|

2(1 + cos(x))
. (14)

We obtain

B1(x) =
sin(x)

1 + cos(x)
> 0.

Let t = cos(x). If x ∈ (0, π/4], then

B2(x) =
2 sin(x)(1 + 2 cos(x))

3(1 + cos(x))
p(t),

and if x ∈ (π/4, π/2], then

B2(x) =
2 sin(x)

3(1 + cos(x))
q(t)
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with
p(t) = −2t2 + 2t+ 1 and q(t) = 8t3 + 2t2 − 2t+ 1.

Since p is positive on [
√
2/2, 1] and q is positive on [0,

√
2/2], we conclude that

B2(x) > 0 for x ∈ (0, π/2].
Next, let n ≥ 3. We consider two cases.
Case 1. x ∈ (0, π/(2n)).
We have

Bn(x) = Cn(x)−
sin(2nx)

2(1 + cos(x))
.

Using

C ′
n(x) =

n∑
k=1

cos((2k − 1)x) =
sin(2nx)

2 sin(x)
(15)

gives
2 sin(x)B′

n(x) = sin(2nx)η(x)− 2n tan(x/2) cos(2nx)

with

η(x) = 1−
(

sin(x)

1 + cos(x)

)2

.

Since η is decreasing on (0, π), we conclude from 0 < x < π/(2n) ≤ π/6 that

η(x) ≥ η(π/6) > 0.92.

It follows that

2 sin(x)B′
n(x) > 0.92 sin(2nx)− 2n tan(x/2) cos(2nx). (16)

Case 1.1. x ∈ (0, π/(4n)).
From (16) we obtain

2 sin(x)B′
n(x) > cos(2nx)σn(x)

with
σn(x) = 0.92 tan(2nx)− 2n tan(x/2).

Since

1

n
σ′
n(x) =

1.84

cos2(2nx)
− 1

cos2(x/2)
>

1

cos2(2nx)
− 1

cos2(x/2)
> 0,

we get σn(x) > σn(0) = 0. Thus, B′
n(x) > 0.

Case 1.2. x ∈ [π/(4n), π/(2n)).
Since sin(2nx) > 0 ≥ cos(2nx), we get from (16) that B′

n(x) > 0.
From Case 1.1 and Case 1.2 we conclude that B′

n is positive on (0, π/(2n)].
This leads to Bn(x) > Bn(0) = 0.
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Case 2. x ∈ [π/(2n), π/2].
From (15) we obtain the integral representation

Cn(x) =

∫ x

0

sin(2ns)

2 sin(s)
ds.

Carslaw [15] proved that in [π/(2n), π/2], Cn attains its global minimum at
x = π/n. Thus,

Cn(x) ≥ Cn(π/n) = Yn + Zn, (17)

where

Yn =

∫ π/(2n)

0

sin(2ns)

2 sin(s)
ds =

1

4n

∫ π

0

sin(t)

sin(t/(2n))
dt

and

Zn =

∫ π/n

π/(2n)

sin(2ns)

2 sin(s)
ds =

1

4n

∫ 2π

π

sin(t)

sin(t/(2n))
dt.

Using the estimate
2n

t
≤ 1

sin(t/(2n))
(0 < t < π)

gives

Yn ≥ 1

4n

∫ π

0

2n

t
sin(t)dt > 0.92.

Since t 7→ sin(t)/t is decreasing on (0, π), we obtain for t ∈ (π, 2π),

2n

t
sin

(
t

2n

)
≥ 3

π
sin
(π
3

)
.

Thus,
1

sin(t/(2n))
≤ 4πn

3
√
3t

(π < t < 2π).

This leads to

Zn ≥ π

3
√
3

∫ 2π

π

sin(t)

t
dt > −0.27.

It follows that

Yn + Zn >
1

2
. (18)

Moreover, we have

| sin(2nx)|
2(1 + cos(x))

≤ 1

2(1 + cos(x))
≤ 1

2
. (19)

From (14), (17), (18) and (19) we conclude that Bn(x) > 0. The proof of
Theorem 1.3 is complete.
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3. Proof of Theorem 1.1

Let n ≥ 1. We define

Gn(x) =
Cn(x)

1− cos(x)
, Hn(x) = (1− cos(x))Cn(x).

Using (15) and (5) gives, for x ∈ (0, π/2),

(1− cos(x))2

sin(x)

d

dx
Gn(x) =

1

sin(x)

[
(1− cos(x))C ′

n(x)− sin(x)Cn(x)
]

= sin(2nx)
1− | cos(x)|
1− cos(2x)

− Cn(x) < 0

and

1

sin(x)

d

dx
Hn(x) =

1

sin(x)

[
(1− cos(x))C ′

n(x) + sin(x)Cn(x)
]

= Cn(x) + sin(2nx)
1− | cos(x)|
1− cos(2x)

> 0.

We define

G∗
n(x) =

Cn(x)

1 + cos(x)
, H∗

n(x) = (1 + cos(x))Cn(x).

Since G∗
n(x) = Gn(π−x) and H∗

n(x) = Hn(π−x), we obtain, for x ∈ (π/2, π),

d

dx
G∗

n(x) = −G′
n(π − x) > 0 and

d

dx
H∗

n(x) = −H ′
n(π − x) < 0.

4. Proof of Theorem 1.5

We have

n∑
k=1

k sin(kx) =
sin((n+ 1)x)

4 sin2(x/2)
− (n+ 1)

cos((n+ 1/2)x)

2 sin(x/2)
(20)

and
n∑

k=1

k cos(kx) = (n+ 1)
sin((n+ 1/2)x)

2 sin(x/2)
− 1− cos((n+ 1)x)

4 sin2(x/2)
; (21)

see Gradshteyn and Ryzhik [20, p. 38]. Next, we set

s(k) = sin(kx) and T (k) = (2 sin(x/2))k.
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By differentiation, we obtain from (20) and (21),

n∑
k=1

k2s(k) =
A∗

n

T (4)
, (22)

where

A∗
n = −2s(1)− (n+ 1)2s(n− 1) + n(3n+ 4)s(n)

− (n+ 1)(3n− 1)s(n+ 1) + n2s(n+ 2)

and
n∑

k=1

k3s(k) =
B∗

n

T (4)
, (23)

where

B∗
n = −(n+ 1)3s(n− 1) + (3n3 + 6n2 − 4)s(n)

− (3n3 + 3n2 − 3n+ 1)s(n+ 1) + n3s(n+ 2).

Moreover, (20) can be written as

n∑
k=1

ks(k) =
C∗

n

T (4)
, (24)

where

C∗
n = −(n+ 1)s(n− 1) + (3n+ 2)s(n)− (3n+ 1)s(n+ 1) + ns(n+ 2).

Applying (22), (23), (24) and the representation

Sn(x) = (n+ 1)2
n∑

k=1

ks(k)− 2(n+ 1)

n∑
k=1

k2s(k) +

n∑
k=1

k3s(k)

we conclude that (7) holds.

5. Proof of Theorem 1.4

Using (7) we obtain

2
(1− cos(x))2

sin(x)
Sn(x) = An(x),

where

An(x) = 2(n+ 1)− sin(nx)

sin(x)
− 2

sin((n+ 1)x)

sin(x)
+ n cos((n+ 1)x).
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We show that An(x) > 0 for n ≥ 1 and x ∈ (0, π). First, we consider the cases
n = 1, 2, 3, 4, 5, 6. We set t = cos(x) ∈ (−1, 1). Then,

A1(x) = 2(1− t)2 > 0 and A2(x) = 8(1 + t)(1− t)2 > 0.

Moreover,

A3(x) = 4(1− t)2p3(t), A4(x) = 8(1 + t)(1− t)2p4(t),

A5(x) = 2(1− t)2p5(t), A6(x) = 16(1 + t)(1− t)2p6(t)

with

p3(t) = 6t2 + 8t+ 3, p4(t) = 8t2 + 4t+ 1,

p5(t) = 80t4 + 128t3 + 48t2 + 3, p6(t) = 24t4 + 16t3 − 4t2 − 2t+ 1.

A short calculation yields that the polynomials p3, p4, p5 and p6 are positive
on (−1, 1). It follows that A3, A4, A5 and A6 are positive on (0, π).

Let n ≥ 7. We consider five cases.

Case 1. x ∈ (0, π/n].

We set x = s/(n+ 1) with s ∈ (0, (n+ 1)π/n] and define

Jn(s) = sin

(
s

n+ 1

)
An

(
s

n+ 1

)
= (2n+ 2 + n cos(s)) sin

(
s

n+ 1

)
− sin

(
ns

n+ 1

)
− 2 sin(s). (25)

Case 1.1. s ∈ (0, 3π/4].

Using

1− 1

2
θ2 +

1

24
θ4 − 1

720
θ6 ≤ cos(θ) (θ ≥ 0)

and

θ − 1

6
θ3 ≤ sin(θ) ≤ θ − 1

6
θ3 +

1

120
θ5 (θ ≥ 0)

we obtain the estimates

sin

(
s

n+ 1

)
≥ s

n+ 1
− s3

6(n+ 1)3
,

− sin

(
ns

n+ 1

)
≥ − ns

n+ 1
+

n3s3

6(n+ 1)3
− n5s5

120(n+ 1)5
.
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It follows that

Jn(s) ≥
(
2n+ 2 + n

(
1− 1

2
s2 +

1

24
s4 − 1

720
s6
))(

s

n+ 1
− s3

6(n+ 1)3

)
− ns

n+ 1
+

n3s3

6(n+ 1)3
− n5s5

120(n+ 1)5
− 2s+

1

3
s3 − 1

60
s5

=
s5Pn(s)

4320(n+ 1)5

with

Pn(s) = n(n+ 1)2s4 − 6n(n+ 1)2(n2 + 2n+ 6)s2 + 72n5

+ 360n4 + 720n3 + 720n2 + 180n− 72.

It remains to show that Pn(s) > 0, or, equivalently, after replacing s2 by
t ∈ (0, (3π/4)2) ⊂ (0, 6),

Qn(t) = t2 − 6(n2 + 2n+ 6)t+
72n5+360n4+720n3+720n2+180n−72

n(n+ 1)2
> 0.

Since
Q′

n(t) = 2t− 6(n2 + 2n+ 6) < 0 (0 < t < 6),

we obtain

Qn(t) > Qn(6) =
36(n5 + 6n4 + 10n3 + 8n2 − 2)

n(n+ 1)2
> 0.

Case 1.2. s ∈ [3π/4, (n+ 1)π/n].
Applying

sin

(
ns

n+ 1

)
≤ sin

(
3nπ

4(n+ 1)

)
≤ sin

(
21π

32

)
< 0.882

and

2 sin(s) ≤ 2 sin

(
3π

4

)
< 1.415

leads to

− sin

(
ns

n+ 1

)
− 2 sin(s) > −2.297. (26)

Using the monotonicity of x 7→ sin(x)/x we obtain

(n+ 2) sin

(
s

n+ 1

)
≥ (n+ 2) sin

(
3π

4(n+ 1)

)
≥ 8(n+ 2)

n+ 1
sin

(
3π

32

)
> 2.321. (27)
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From (25), (26) and (27) we get

Jn(s) ≥ (n+ 2) sin

(
s

n+ 1

)
− sin

(
ns

n+ 1

)
− 2 sin(s) > 0.

Case 2. x ∈ [π/n, π − π/n].
Using (9) we obtain

An(x) ≥ 2(n+ 1)−
√
6

9
n− 2

√
6

9
(n+ 1)− n

=

(
1−

√
6

3

)
n+ 2

(
1−

√
6

9

)
> 0 .

Case 3. n is odd and x ∈ [π − π/n, π − π/(n+ 1)].
Since x 7→ − sin(nx) is decreasing on I = [π−π/n, π−π/(n+1)], we obtain

− sin(nx) ≥ − sin

(
nπ − nπ

n+ 1

)
= − sin

(
π

n+ 1

)
.

Moreover, we have

sin(x) ≥ sin

(
π − π

n+ 1

)
= sin

(
π

n+ 1

)
. (28)

This gives

− sin(nx)

sin(x)
≥ −1. (29)

The function x 7→ − sin((n+ 1)x) is increasing on I. Thus,

−2 sin((n+ 1)x) ≥ −2 sin

(
(n+ 1)π − n+ 1

n
π

)
= −2 sin

(π
n

)
. (30)

Using (28) and (30) gives

−2
sin((n+ 1)x)

sin(x)
≥ −2

sin(π/n)

sin(x)
≥ −2

sin(π/n)

sin(π/(n+ 1))

≥ −2
n+ 1

n
≥ −16

7
. (31)

From (29) and (31) we conclude that

An(x) ≥ 2(n+ 1)− 1− 16

7
− n = n− 9

7
> 0.

Case 4. n is odd and x ∈ (π − π/(n+ 1), π).



SINE SUMS (13 of 17)

We have sin((n + 1)x) < 0, and since 0 < π − x < π/(n + 1) < π/n, we
conclude from Case 1 that An(π − x) > 0. It follows that

An(x) = An(π − x)− 4
sin((n+ 1)x)

sin(x)
> 0.

Case 5. n is even and x ∈ (π − π/n, π).
We have

An(x) = An(π − x) +
n(n+ 2)

sin(x)
ωn(x), (32)

where

ωn(x) =
sin((n+ 2)x)

n+ 2
− sin(nx)

n
.

Then,
ω′
n(x) = −2 sin(x) sin((n+ 1)x).

It follows that ω′
n is positive on (π−π/n, nπ/(n+1)) and negative on (nπ/(n+

1), π). This leads to

ωn(x) ≥ min (ωn(π − π/n), ωn(π)) = 0.

Moreover, from Case 1 we obtain that An(π − x) > 0. Applying (32) gives
An(x) > 0. This completes the proof of Theorem 1.4.

6. Proof of Corollary 1.8

Let n ≥ 2 and x ∈ (0, π). We define for λ ≥ 2,

D(λ) = Dn(λ, x) = λ+ cos(nx)− (λ+ cos(x))
sin(nx)

n sin(x)
.

Applying Theorem 1.4 and Theorem 1.5 gives

D(2) = 2 + cos(nx)− (2 + cos(x))
sin(nx)

n sin(x)

=
2 sin(x)(1− cos(x))

n(1 + cos(x))
Sn−1(x) > 0.

Since

D′(λ) = 1− sin(nx)

n sin(x)
> 0,

we obtain D(λ) ≥ D(2) > 0. This leads to (10). Next, we assume that (10) is
valid for all n ≥ 2 and x ∈ (0, π). We define

E(x) = En(λ, x) = n(λ+ cos(nx)) sin(x)− (λ+ cos(x)) sin(nx).
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Then, E(x) > 0. Since E(0) = E′(0) = E′′(0) = 0, we get

E′′′(0) = n(n2 − 1)(λ− 2) ≥ 0.

This yields λ ≥ 2.

7. Proof of Corollary 1.9

Let x ∈ (−1, 1) and t ∈ (0, π). We define

U(x) =

∞∑
k=0

(k + 1)2xk =
1 + x

(1− x)3

and Vt(x) =

∞∑
k=1

cos(kt)xk =
x(cos(t)− x)

x2 − 2x cos(t) + 1
.

Let 0 < α < β < π and Wα,β(x) = U(x) (Vα(x)− Vβ(x)). Then,

Wα,β(x) =

∞∑
k=0

(k + 1)2xk
∞∑
k=1

(cos(kα)− cos(kβ))xk

=

∞∑
n=1

n∑
k=1

(n− k + 1)2 (cos(kα)− cos(kβ))xn

= (cos(α)− cos(β))

(
1 + x

1− x

)2
x

ϕ(x)
, (33)

where

ϕ(x) = (x2 − 2x cos(α) + 1)(x2 − 2x cos(β) + 1).

Moreover, we obtain

∞∑
n=1

n∑
k=1

(n− k + 1)2k
sin(kβ)

sin(β)
xn = lim

α→β

Wα,β(x)

cos(α)− cos(β)

=

(
1 + x

1− x

)2
x

(x2 − 2x cos(β) + 1)2
. (34)

Applying (8) and Theorem 1.4 we conclude that the power series in (33)
and (34) have positive coefficients. We set a = − cos(α) ∈ (−1, 1) and b =
− cos(β) ∈ (−1, 1). It follows that the function Ra,b, defined in (11), is abso-
lutely monotonic on [0, 1).
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8. Proof of Theorem 1.10

We denote the sum in (13) by Kn(a, b;x). From Theorem 1.4 we conclude that
Kn(1, 1;x) > 0 for n ≥ 1 and x ∈ (0, π). Next, we assume that (13) is valid
for all n ≥ 1 and x ∈ (0, π). From K1(a, b;x) = ab sin(x) > 0 we conclude that
ab > 0. For n = 2 we obtain

K2(a, b;x) = (1 + a+ b+ ab(1 + 4 cos(x))) sin(x) > 0.

This gives 1 + a+ b− 3ab ≥ 0. Thus,

0 < 3ab ≤ 1 + a+ b. (35)

Since Kn(a, b;π) = 0, we obtain for n ≥ 1,

d

dx
Kn(a, b;x)

∣∣∣
x=π

=

n∑
k=1

(−1)k(n− k + a)(n− k + b)k2 ≤ 0.

We consider two cases.
Case 1. n = 2N .
We obtain

d

dx
K2N (a, b;x)

∣∣∣
x=π

= N2(2ab− a− b) +N(ab− 1) ≤ 0.

This gives
2ab− a− b ≤ 0. (36)

Case 2. n = 2N + 1.
Then,

d

dx
K2N+1(a, b;x)

∣∣∣
x=π

= N2(a+ b− 2ab) +N(a+ b− 3ab)− ab ≤ 0.

It follows that
a+ b− 2ab ≤ 0. (37)

From (36) and (37) we get
a+ b = 2ab. (38)

Using (35) and (38) we conclude that a, b > 0. This gives

ab =
a+ b

2
≥

√
ab.

Thus, ab ≥ 1. Using (35) and (38) yields

1 + 2ab = 1 + a+ b ≥ 3ab.

Hence, ab ≤ 1. It follows that ab = 1. Applying this result and (38) leads to

0 = a+ b− 2ab =
1

a
(a− 1)2.

Thus, a = 1. It follows that b = 1.
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