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Abstract. Let (X,L) be a complex polarized n-fold with the structure
of a geometric quadric fibration over a smooth projective surface. The
Hilbert curve of (X,L) is a complex affine plane curve of degree n,
containing n − 3 evenly spaced parallel lines. This paper is devoted
to a detailed study of the cubic representing the residual component.
Reducibility, existence of triple points, and properties of the irreducible
components are analyzed in connection with the structure of (X,L).
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1. Introduction

The Hilbert curve of a polarized manifold (X,L) with dim(X) = n ≥ 2 is the
complex affine plane curve Γ = Γ(X,L), of degree n, defined by the Hilbert-
like polynomial χ(xKX + yL), where KX is the canonical bundle of X and x
and y are regarded as complex variables. This notion was introduced in [3]
and extensively studied in [10, 11, 13, 6] for varieties which are special from
the adjunction theoretic point of view. The natural expectation is that sev-
eral properties of the polarized manifold that one considers are encoded by its
Hilbert curve, as suggested by [3, Theorem 6.1]. In particular, if X is endowed
with a fibration φ : X → Y over a normal variety Y of dimension m < n − 1
and KX + (n − m)L = φ∗A, for some ample Q-line bundle A on Y , then Γ
contains n − m − 1 parallel lines of prescribed equations as components, and
therefore it becomes important to understand the properties of the residual
curve of the union of such lines in Γ.

In this paper, relying on our previous study of the Hilbert curve of three-
folds which are conic fibrations over a smooth surface [6], we investigate n-
dimensional pairs (X,L) with n ≥ 4, where X is a quadric fibration in the
classical sense over a smooth surface and L makes it an adjunction theoretic
quadric fibration at the same time. We refer to pairs (X,L) of this type as
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geometric quadric fibrations. In this setting, Γ = ℓ1 + · · · + ℓn−3 + C, where
the ℓi’s are certain n − 3 parallel lines and C is the residual cubic; moreover,
both Γ and C are Serre-invariant, i.e. invariant under the involution induced
on the affine plane by Serre duality on X.

In order to make the equation of C explicit in terms of the numerical in-
variants associated with (X,L) (Proposition 3.1) we describe X as a divisor
of relative degree 2 inside the projective bundle defined by E := φ∗L, where
φ : X → S is the fibration morphism. The whole Section 3 is devoted to
computations involving Chern classes which lead to the equation of C. Various
consequences of these computations are discussed in Section 4 and Section 5. A
first crucial implication is that the projective closure of our cubic C intersects
the line at infinity transversely at a special point, say P∞, whose homogeneous
coordinates depend on n (Proposition 4.2). The cubic C is irreducible in gen-
eral. The above property allows us to prove that C contains a special line
of the affine plane whose direction is given by P∞ if and only if the quadric
fibration has no singular fibers, and also to characterize the existence of a
triple point for C in terms of the structure and the numerical invariants of X
(Theorem 4.5). This provides a complete generalization of [6, Theorem 5.2].
Moreover, this in turn leads to investigate other significant circumstances, for
instance, under what conditions: a) Γ is nonreduced (Proposition 4.7), b) C is
reducible (Corollary 5.3), c) C contains a general line, at least in the case when
(X,L) is a 4-dimensional geometric quadric fibration over P2 (Proposition 5.4).

Next we consider a special class of geometric quadric fibrations that we call
“deriving from cones”, in view of their construction (Section 6). They gener-
alize the geometric conic fibrations studied in [6, Section 6]. When the base
surface S of such a pair (X,L) is a minimal surface of Kodaira dimension zero,
we prove that the residual cubic of the Hilbert curve is always irreducible unless
n ≥ 4, S is abelian or bielliptic and the Chern classes of the vector bundle E
satisfy a precise numerical condition depending on n (Theorem 6.2). In partic-
ular, this result amends the sentence given for n = 3 in [6, Proposition 6.3 (ii)]
and at the same time provides a generalization to higher dimensions.

Clearly, Γ = C for n = 3, and several results established here for C specialize
to those proven for Γ in [6]. As it is natural to expect, passing from threefolds
to varieties of higher dimensions, new situations arise, for instance this happens
when we investigate the nonreducedness of Γ (Proposition 4.7). This fact makes
case n = 4 particularly relevant in our study. For this reason, in Section 7 we
discuss several examples in the setting of fourfolds, taking also advantage of
the fact that the Riemann–Roch formula, which is crucial to determine the
equation of Γ, is still handleable for n = 4. In particular, we discuss three
types of geometric quadric fibrations (X,L) whose underlying varieties X arise
in the classification of Fano fourfolds of index 2 with Picard number ≥ 2 [14].
For all of them the residual cubic C is reducible, containing a line that depends
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on the polarization L.

In Section 8, in the framework of plane cubic curves we provide a unifying
perspective for residual cubics of our Γ’s and for Serre-invariant cubics, which
constitute a dense Zariski open subset of P5. In particular we describe the
varieties whose points represent the cubics satisfying the various properties
discussed in the previous sections, like reducibility, existence of triple points,
etc. . This offers a global view of the families in which the residual cubic of
the Hilbert curve of a geometric quadric fibration (X,L) can fit into. It is
worth noting that while the families we describe are “continua”, only points
with rational coordinates on them can represent a residual cubic, because, as
for Γ, its equation has rational coefficients.

2. The leading idea

Let (X,L) be a quadric fibration with dim(X) = n over a smooth projective
surface S, via a morphism φ : X → S. In view of [6], we will assume that
n ≥ 4. We say that (X,L) is a geometric quadric fibration, to mean that
the following two facts hold. 1) The morphism φ is equidimensional with
connected fibers, and all of them are irreducible quadric hypersurfaces of Pn−1

with L inducing the hyperplane bundle. In particular, φ is flat, and for the
general fiber F of φ we have (F,LF ) =

(
Qn−2,OQ(1)

)
, where Qn−2 stands for

a smooth quadric hypersurface in Pn−1. 2) KX + (n − 2)L = φ∗H for some
ample line bundle H on S. Condition 1) means that φ : X → S is a fibré en
quadriques in the sense of [1] and, to emphasize the role of the polarization L
we can say that (X,L) is a classical quadric fibration, while condition 2) says
that (X,L) is also an adjunction theoretic quadric fibration over S (in the sense
of [4, p. 81]). Thanks to Grauert’s theorem, conditions 1) and 2) are enough to
guarantee that E := φ∗L is a locally free sheaf, i.e. a vector bundle, of rank n
on S, [9, Corollary 19.2]. If we consider its projectivization P := P(E) and we
denote by ξ the tautological line bundle on it, then X is fiberwise embedded
in the Pn−1-bundle P as a divisor of relative degree 2; more precisely, letting
π : P → S denote the bundle projection of P , we have that X ∈ |2ξ+ π∗B| for
some line bundle B on S, φ = π|X , and L = ξX .

The discriminant curve of (X,L) is the possible empty curve D ⊂ S param-
eterizing the singular fibers of π. By [7, (3.3)] we know that D ∈ |2c1(E) +nB|
(for n = 3 see also [6, (5)]).

Let p(x, y) = 0 be the equation of the Hilbert curve of (X,L). Recall
that p(x, y) = χ(xKX + yL), the polynomial expressing the Euler–Poincaré
characteristic of xKX + yL, when x and y are regarded as complex variables.
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According to [3, Theorem 6.1], we have that

p(x, y) =

n−3∏
i=1

(
(n− 2)x− y − i

)
R(x, y), (1)

where R(x, y) is a polynomial of degree 3. From the qualitative point of view,
this means that the Hilbert curve Γ of (X,L) can be written as

Γ = ℓ1 + · · ·+ ℓn−3 + C, (2)

i.e., it consists of n− 3 evenly spaced parallel lines with slope (n− 2) (the nef
value of (X,L)) plus a cubic C, which we call the residual cubic.

We call Serre involution the map s : A2 → A2 sending (x, y) to (1− x,−y),
induced by Serre duality. Note that Γ is Serre-invariant, i.e., invariant under
s. Moreover, s exchanges the line ℓi of equation (n − 2)x − y − i = 0 with
ℓn−2−i (i = 1, . . . , n−3), hence the set consisting of the n−3 lines ℓ1, . . . , ℓn−3

is globally Serre-invariant. It thus follows that the cubic C itself is also Serre-
invariant. We use coordinates (u, v) in place of (x = 1

2 + u, y = v) in order
to make this invariance more evident. Since the degree of C is odd, then
R( 12 + u, v) is the sum of two homogeneous polynomials in u and v of degrees
3 and 1 respectively [3, Lemma 7.1]. Thus we can write

R

(
1

2
+ u, v

)
= R3(u, v) +R1(u, v). (3)

where

R3(u, v) = αu3 + βu2v + γuv2 + δv3 (4)

with (α, β, γ, δ) ̸= (0, 0, 0, 0), because degC = 3, and

R1(u, v) = σu+ τv. (5)

Note that the property of having an equation of this type characterizes any
Serre-invariant plane cubic, which is not necessarily the residual cubic of Γ.

Our aim is to obtain the explicit expression of R
(
1
2 + u, v

)
in our specific

case, which in particular describes our cubic C. To do that, first recall that for
any divisor D on X,

χ(D) =
1

n!
Dn + . . . ,

where the dots stand for lower degree terms. So, by using homogeneous coordi-
nates (x : y : z), where z is the homogenizing coordinate, and letting p0(x, y, z)



HILBERT CURVES OF QUADRIC FIBRATIONS (5 of 33)

denote the homogeneous polynomial associated to p, we have:

p0(x, 1, 0) =
1

n!
(xKX + L)n (6)

=
1

n!

[
dnx

n +

(
n

1

)
dn−1x

n−1 +

(
n

2

)
dn−2x

n−2 + . . .

· · ·+
(

n

n− 3

)
d3x

3 +

(
n

n− 2

)
d2x

2 +

(
n

n− 1

)
d1x+ d

]
,

where di := Ki
X · Ln−i for i = 0, 1, . . . , n (d0 = d being the degree of (X,L)).

On the other hand, from (1) and (3) we see that p0(x, y, 0) = R3(x, y)
(
(n −

2)x− y
)n−3

. Hence (4) gives

p0(x, 1, 0) = (αx3 + βx2 + γx+ δ)
(
(n− 2)x− 1

)n−3
. (7)

By comparing (6) with (7), we can get the explicit expressions of α, β, γ and δ in
terms of the natural invariants of (X,L). Next, recalling that χ(OX) = χ(OS)
and Serre duality, we have

p(1, 0) = χ(KX) = (−1)nχ(OX) = (−1)nχ(OS). (8)

On the other hand, from (1) and (3) we get

p(1, 0) =

n−3∏
i=1

(n− 2− i)
(α
8
+

σ

2

)
=

(n− 3)!

8
(α+ 4σ). (9)

So, taking into account the previous discussion, we obtain the expression of σ.
It remains to determine τ . To do it, recall that KX + (n − 2)L = φ∗H. We
have, for every i ≥ 0,

Hi
(
KX + (n− 2)L

)
= Hi(φ∗H) ∼= Hi

(
φ∗(φ

∗H)
)
= Hi(H). (10)

The last equality will follow once we prove that Riφ∗(φ
∗H)) = 0 for i > 0, see

[9, p. 252, Ex. 8.1].
Because by projection formula Riφ∗(φ

∗H) ∼= Riφ∗OX ⊗H, it is enough to
show that Riφ∗OX = 0 for i > 0. As X ⊂ P and X ∈ |2ξ + π∗B|, we have the
following exact sequence

0 → OP (−2ξ − π∗B) → OP → OX → 0, (11)

and applying to it the direct image functor and using [9, p. 281, Ex. 11.8] we
obtain the following long exact sequence
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0 → R0π∗OP (−2ξ − π∗B) → R0π∗OP → R0φ∗OX → (12)

R1π∗OP (−2ξ − π∗B) → · · · · · · · · · → Rn−2φ∗OX →
Rn−1π∗OP (−2ξ − π∗B) → Rn−1π∗OP → Rn−1φ∗OX = 0,

the last equality coming from the fact that the fibers of φ have dimension
n − 2. By [9, p. 253, Ex. 8.4 (a)] we thus conclude that φ∗OX = R0φ∗OX =
R0π∗OP = OS and Riφ∗OX = Riπ∗OP = 0 for i > 0. Therefore,

p(1, n− 2) = χ(KX + (n− 2)L) = χ(φ∗H) = χ(H), (13)

in view of (10). Now, recalling the canonical bundle formula for P-bundles, by
adjunction we have

KX = (KP +X)X =
(
− nξ + π∗(KS + det E) + 2ξ + π∗B

)
X

(14)

=
(
− (n− 2)ξ + π∗(KS + det E + B)

)
X

= −(n− 2)L+ φ∗(KS + det E + B).

Hence, due to the injectivity of the homomorphism induced by φ between the
Picard groups of S and X, we get

H = KS + c1(E) + B. (15)

Thus (13) allows us to express p(1, n− 2) in terms of KS , c1(E) and B via the
Riemann–Roch theorem. On the other hand, from (1)–(5) we get

p(1, n− 2) =

n−3∏
i=1

(
n− 2− (n− 2)− i

)
R(1, n− 2) (16)

= (−1)n−3(n− 3)!
(α
8
+

β

4
(n− 2) +

γ

2
(n− 2)2

+ δ(n− 2)3 +
σ

2
+ τ(n− 2)

)
.

So (13) and (16) give another equation, which, added to the previous ones,
allows us to determine τ . For the explicit computations see Section 3, which
leads to Proposition 3.1.

3. Some computations

First of all we make explicit the coefficients of some of the powers of x from (6),
and precisely
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coeff(xn) = 1
n!dn,

coeff(x2) = 1
2(n−2)!d2,

coeff(x) = 1
(n−1)!d1,

coeff(1) = 1
n!d.

On the other hand, doing the same with (7), we get:

coeff(xn) = (n− 2)n−3α,

coeff(x2) = (−1)n−5
(
n−3
2

)
(n− 2)2δ + (−1)n−4(n− 3)(n− 2)γ + (−1)n−3β,

coeff(x) = (−1)n−4(n− 3)(n− 2)δ + (−1)n−3γ,

coeff(1) = (−1)n−3δ.

So, by equating the corresponding expressions of the coefficients of xn, x2,
x, 1, we obtain:

α =
1

n!(n− 2)n−3
dn, (17)

δ = (−1)n−1 1

n!
d, (18)

γ = (−1)n−1 1

(n− 1)!

(
d1 +

(n− 2)(n− 3)

n
d

)
, (19)

β = (−1)n−1

(
1

2(n− 2)!
d2 +

(n− 2)(n− 3)

(n− 1)!
d1 +

(n− 2)3(n− 3)

2n!
d

)
. (20)

This shows that the values of d, d1, d2 and dn are enough to compute the
coefficients of R3(u, v). As to R1(u, v), combining (8), (9) and (17) it follows
that

σ =
(−1)n8

4(n− 3)!
χ(OS)−

α

4
= (−1)n

2

(n− 3)!
χ(OS)−

1

4n!(n− 2)n−3
dn. (21)

Furthermore, using (13), (16) it follows that

τ =
(−1)n−3χ(H)

(n− 2)!
− 1

(n− 2)

(α
8
+

β(n− 2)

4
+

γ(n− 2)2

2
+ δ(n− 2)3 +

σ

2

)
and plugging in such expression the values from (17), (20), (19), (18), (21) we
get

τ =
(−1)n−1

(n− 2)!

(
χ(H)+χ(OS)−

1

8
d2−

n− 2

4
d1−

(n− 2)2(n2 − n+ 2)

8n(n− 1)
d
)
. (22)
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Hence, for the time being, we obtain the following expression for the poly-
nomial defining the residual cubic C:

R

(
1

2
+ u, v

)
=

1

n!(n − 2)n−3
dnu

3

+ (−1)
n−1

( 1

2(n − 2)!
d2 +

(n − 2)(n − 3)

(n − 1)!
d1 +

(n − 2)3(n − 3)

2n!
d
)
u
2
v

+ (−1)
n−1 1

(n − 1)!

(
d1 +

(n − 2)(n − 3)

n
d

)
uv

2
+ (−1)

n−1 1

n!
dv

3

+
(
(−1)

n 2

(n − 3)!
χ(OS) −

1

4n!(n − 2)n−3
dn

)
u

+
(−1)n−1

(n − 2)!

(
χ(H) + χ(OS) −

1

8
d2 −

n − 2

4
d1 −

(n − 2)2(n2 − n + 2)

8n(n − 1)
d
)
v.

To determine the value of di we need several computations involving Chern
classes. From now on, for simplicity we set ci = ci(E), i = 1, 2. First of
all, we recall the following facts. In the projective bundle P := P(E), since
dim(P ) = n+ 1, for any divisors D1,D2 on S, we have

ξnπ∗D1 = c1D1 and ξn−1π∗D1π
∗D2 = D1D2.

Moreover, according to the Chern–Wu relation

ξn − ξn−1π∗c1 + ξn−2π∗c2 = 0,

we get
ξn = ξn−1π∗c1 − ξn−2π∗c2 and ξn+1 = c21 − c2. (23)

Then standard computations relying on the above relations lead to the following
expression:

d = Ln = 2
(
c21 − c2

)
+ c1B. (24)

Next, recalling that X is contained in P as an element of |2ξ + π∗B| and the
expression of KX given by (14), we get

d1 = KXLn−1 = 2(n− 2)c2 − 2(n− 3)c21 + 2KSc1 (25)

− (n− 5)c1B +KSB + B2,

d2 = K2
XLn−2 = 2(n− 3)2c21 − 2(n− 2)2c2 − 4(n− 3)KSc1 (26)

+ 2K2
S − 2(n− 4)KSB + (n2 − 10n+ 20)c1B − 2(n− 3)B2,

and

dn = Kn
X = (−1)n(n− 2)n−2

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (27)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
.
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Plugging (24), (25), (26), (27), in (21) and (22), respectively, we see that

σ = (−1)n

(n−3)! 2χ(OS)− (−1)n(n−2)
4n!

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (28)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
and

τ = (−1)n

4

(
(3n2−9n+8)

n! c21 −
2(n−2)2

n! c2 +
(3n2−6n+4)

n! c1B (29)

+ 1
(n−2)! (B

2 + 2KSB) + 1
(n−2)!

(
K2

S − 4χ(OS)− 4χ(H)
))

= (−1)n

4

[
(n2−7n+8)

n! c21 −
2(n−2)2

n! c2 − (n2+2n−4)
n! c1B

+ 1
(n−2)!

(
K2

S − B2 − 8χ(OS)
)]
,

after replacing χ(H) with its expression provided by the Riemann–Roch theo-
rem.

Similarly, plugging (24), (25), (26), (27), in (17), (20), (19), (18), respec-
tively, we see that

α =
(−1)n(n− 2)

n!

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (30)

+ n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B + nB2

]
,

δ = (−1)n−3 1

n!

(
2c21 − 2c2 + c1B

)
, (31)

γ =
(−1)n−1

n!

[
4(3− n)c21 + 6(n− 2)c2 + 6c1B (32)

+ n(2KSc1 +KSB + B2)
]
,

β = (−1)n−1
[ 1

n!
(3n2 − 17n+ 24)c21 −

6

n!
(n− 2)2c2 +

1

(n− 2)!
K2

S (33)

− (n− 3)

(n− 1)!
(2KSc1 + B2) +

2

(n− 1)!
KSB − (n2 + 2n− 12)

n!
c1B

]
.

The above discussion proves the following result.

Proposition 3.1. Let (X,L) be a geometric quadric fibration over a smooth
surface S, as in Section 2. Then the residual cubic of its Hilbert curve is defined
by (3), where the homogeneous part of degree 3 is
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R3(u, v) =
(−1)n−1

n!

{
− (n− 2)

[
(n2 − 5n+ 8)c21 − 2(n− 2)2c2 (34)

+ n2KSB + n(n− 1)K2
S + 2nKSc1 + 4c1B + nB2

]
u3

+
[
(3n2 − 17n+ 24)c21 − 6(n− 2)2c2 + n(n− 1)K2

S

− n(n− 3)(2KSc1 + B2) + 2nKSB − (n2 + 2n− 12)c1B
]
u2v

+
[
4(3− n)c21 + 6(n− 2)c2 + 6c1B + n(2KSc1 +KSB + B2)

]
uv2

+
(
2c21 − 2c2 + c1B

)
v3
}
,

while the homogenous part of degree 1 is

R1(u, v) =
(−1)n

4n!

{(
8n(n− 1)(n− 2)χ(OS)− (n− 2)

[
(n2 − 5n+ 8)c21 (35)

− 2(n− 2)2c2 + n(n− 1)K2
S + 2nKSc1 + n2KSB + 4c1B

+ nB2
])

u+
[
(n2 − 7n+ 8)c21 − 2(n− 2)2c2 − (n2 + 2n− 4)c1B

+ 4n(n− 1)
(
K2

S − B2 − 8χ(OS)
]
v
}
.

We like to point out that if we plug n = 3 in (34) and (35) then their sum
gives the equation of Γ in [6, Proposition 4.1].

4. First properties of the Hilbert curve

Let ℓ∞ be the line at infinity of the (u, v) plane. We denote by ℓ0 the line of
equation (n− 2)u− v = 0, whose point at infinity is P∞ := (1 : n− 2 : 0).

Lemma 4.1. Let C be any Serre-invariant plane cubic and let (3) be its equa-
tion, with R3 and R1 given by (4) and (5) respectively.
a) The projective closure C of C contains the point P∞ if and only if

α+ (n− 2)β + (n− 2)2γ + (n− 2)3δ = 0. (36)

b) C contains the line ℓ0 if and only if, in addition to (36), we have

σ + (n− 2)τ = 0. (37)

Proof. If we put v = (n−2)u in (3) then (36) and (37) express the vanishing of
the homogeneous parts of degree 3 and 1 of the polynomial in (3), respectively.
This proves a) and b).
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The computations done for Proposition 3.1 have the following consequence.

Proposition 4.2. Let (X,L) be a geometric quadric fibration over S as in Sec-
tion 2 and let C be the residual cubic of its Hilbert curve. Then condition (36)
is always satisfied for C. Moreover, C intersects ℓ∞ at P∞, transversely.

Proof. If we plug the values (30), (33), (32), (31) in (36) we get an expression
involving c21, c2, K

2
S , KSc1, KSB, B2, c1B, with appropriate coefficients. At a

close look such coefficients are all zeroes, hence our former claim follows. To
prove the latter, suppose, by contradiction, that C intersects ℓ∞ at P∞ with
multiplicity > 1. Then, dividing R3(u, v) by u3 and letting t := v/u, the value
n− 2 has to be a common root of the polynomial

δt3 + γt2 + βt+ α

and of its derivative. Hence

3(n− 2)2δ + 2(n− 2)γ + β = 0. (38)

However, taking into account (31), (32) and (33), the term on the left hand
side of (38) becomes

3(n− 2)2δ + 2(n− 2)γ + β =
(−1)n

(n− 2)!
(KS + c1 + B)2,

and since H = KS + c1 + B is the ample divisor in (15), this cannot be zero, a
contradiction.

As to the residual intersections of C with ℓ∞ we have the following result.

Proposition 4.3. Let C be a Serre-invariant plane cubic as in Lemma 4.1
such that P∞ ∈ C, and let Q∞ be a point at infinity distinct from P∞. The
cubic C intersects ℓ∞ at Q∞ with multiplicity 2 if and only if the following
condition

4αδ + (n− 2)
(
γ + (n− 2)δ

)2
= 0 (39)

is satisfied, in addition to (36). Moreover, in this case, if C is irreducible,
then C is singular at Q∞.

Proof. Let Q∞ = (−a : b : 0). Dividing R3(u, v) by u3 and letting t = v/u, as
before, we see that

C ∩ ℓ∞ = P∞ + 2Q∞ (40)

if and only if
δt3 + γt2 + βt+ α = (t− n+ 2)(at+ b)2, (41)

identically with respect to t. This is equivalent to

δ = a2, γ = 2ab− (n− 2)a2, β = b2 − 2ab(n− 2), α = −(n− 2)b2, (42)
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and eliminating a, b from these equations gives (36) and (39). Now suppose
that C is irreducible and smooth at Q∞. The Serre involution (u, v) 7→
(−u,−v) induces an involution ι : C → C such that ι(Q∞) = Q∞. Then,
as in [3, Lemma 3.3], we see that either ι is the identity map, or its differential,
acting on the tangent space TQ∞(C) to C at Q∞, is the multiplication by −1.
But the projective closure of TQ∞(C) is ℓ∞ itself because the intersection index
of C and ℓ∞ at Q∞ is 2. We thus get a contradiction since the Serre involution
induces the identity on ℓ∞ but not on C. It thus follows that Q∞ is a singular
point of C.

Actually, more can be said about the singular point Q∞.

Proposition 4.4. Let C be a Serre-invariant plane cubic such that P∞ ∈ C.
If C is irreducible and Q∞ is a double point of C, then Q∞ is necessarily
a node. Moreover the Serre involution exchanges the principal tangents to C
at Q∞.

Proof. Let Q∞ = (−a : b : 0) be a double point and suppose that a ̸= b. Up to
the change of homogenous coordinates u = U − aW, v = V + bW,w = U + V ,
with a ̸= b we can assume that Q∞ is the origin. In the new affine coordinates
U, V (if we set W = 1) the equation of C, after using (42), is:

(bU + aV )2[b+ (n− 2)a]− (U + V )2(aσ − bτ) + [σ − b2(n− 2)]U3 + [b2

−2ab(n−2)+2σ+ τ ]U2V +[2ab−a2(n−2)+σ+2τ ]UV 2+(a2+ τ)V 3 = 0.

The coefficient of the first term is not zero because Q∞ ̸= P∞. We thus
see that Q∞ is a cusp, the line of equation bU + aV = 0 being the unique
principal tangent to C at Q∞, if and only if σa− τb = 0. Next, note that the
point O, the origin of the affine coordinates (u, v), is a smooth point of C, due
to the assumptions. Thus the condition σa − τb = 0 is equivalent to saying
that the line tangent to C at O (whose equation is σu + τv = 0) contains
the point Q∞. But then, the intersection index of this line and C would be
greater than 3 (2 intersections at O, due to the tangency plus 2 intersections at
least at the singular point Q∞), a contradiction. If a = b, the same argument
as above works by using the following change of homogeneous coordinates:
u = U + V −W , v = U +W , w = U + V .

To see that the Serre involution exchanges the principal tangents at the
node Q∞, let s denote the extension of the Serre involution to P2. If ℓ is a
principal tangent at Q∞, then s(ℓ) is also a principal tangent. But if s(ℓ) = ℓ,
then necessarily ℓ must contain O. This comes from the fact that the only lines
fixed by s are those in the pencil through O plus ℓ∞. The latter, however,
cannot be a principal tangent to C at Q∞, since the multiplicity of intersection
is just 2. But then the intersection index of ℓ and C would be greater than 3 (1



HILBERT CURVES OF QUADRIC FIBRATIONS (13 of 33)

intersection at O and 3 at Q∞, since it is a principal tangent), a contradiction
again.

The following result is a generalization of [6, Theorem 5.2].

Theorem 4.5. Let (X,L) be a geometric quadric fibration of dimension n
over S and let C be the residual cubic of the Hilbert curve Γ of (X,L). Then

(i) ℓ0 is contained in C if and only if X is a bundle.

(ii) C has a triple point if and only if X is a bundle and

Kn
X + (−1)n−18n(n− 1)(n− 2)n−2χ(OX) = 0.

(iii) If ℓ0 is contained in C, then it is an irreducible component of multiplicity
1 of C.

Proof. A tedious check shows that

σ + (n− 2)τ =
(−1)n+1

4n!
n(n− 2)(2c1 + nB)(KS + c1 + B). (43)

Recalling that the discriminant curve D ∈ |2c1+nB| and that H = KS+c1+B
is the ample divisor in (15) this shows that

σ + (n− 2)τ =
(−1)n+1

4n!
n(n− 2)DH. (44)

Therefore σ + (n− 2)τ = 0 if and only if D = 0, i.e. X has no singular fibers.
Then (i) follows from Lemma 4.1, b) taking into account Proposition 4.2. To
prove (ii) note that if C has a triple point, then the origin must be a triple
point, and this happens if and only if σ = τ = 0. This is equivalent to
σ = σ + (n − 2)τ = 0 and we know from (i) that the latter of these two
conditions is equivalent to X being a bundle, hence to the fact that B = − 2

nc1.
Replace B with this value in the expression of σ provided by (21). Recalling
that χ(OX) = χ(OS) since X is a bundle, we thus get (ii). Finally, (iii) follows
from the latter assertion in Proposition 4.2.

The next question we want to address is about the nonreducedness of Γ,
where Γ is the Hilbert curve of a geometric quadric fibration (X,L) as in
Section 2. First of all consider the residual cubic C. As a consequence of
Theorem 4.5 we have the following result.

Corollary 4.6. Let (X,L) be a geometric quadric fibration of dimension n
over S and let C be the residual cubic of the Hilbert curve Γ of (X,L). Then
C is nonreduced if and only if C = ℓ0 + 2ℓ′, with ℓ′ a line through the origin
transverse to ℓ0. This happens if and only if (40) holds, where Q∞ ̸= P∞, i.e.
if and only if, letting Q∞ = (−a : b : 0), the coefficients of R3(u, v) satisfy
conditions (36) and (39).
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Proof. Suppose that C is nonreduced. Clearly for no line ℓ it can happen that
C = 3ℓ, in view of Proposition 4.2. Therefore C = ℓ + 2ℓ′ where ℓ and ℓ′ are
two distinct lines, which cannot be parallel, by Proposition 4.2. Thus C has
a single triple point at ℓ ∩ ℓ′, which necessarily has to be the origin, and then
Theorem 4.5 and Proposition 4.2 again imply that X is a bundle and ℓ = ℓ0.
Moreover, (40) holds, where Q∞ is the point at infinity of ℓ′. Then the last
assertion follows from Proposition 4.3. The converse is obvious.

For an example of the situation described in Corollary 4.6, see [6, Exam-
ple 5.3, case (ii) on p. 556 and Remark 5.4].

Next look at Γ. In view of Corollary 4.6 we can suppose that C is reduced.
Assume that Γ = ℓ1 + · · ·+ ℓn−3 + C is nonreduced; then C = ℓ+ γ is neces-
sarily reducible into a line ℓ and a conic γ which could possibly be reducible.
Recall that ℓ1, . . . , ℓn−3 have the same point at infinity, which is P∞. Due to
Proposition 4.2 there are two possibilities: either

i) P∞ is the point at infinity of ℓ but it does not belong to γ, or

ii) P∞ is a point at infinity of γ but not of ℓ.

In case i), even if γ is reducible no line constituting γ can overlap one of the
ℓi’s, having a point at infinity distinct from P∞. On the other hand, ℓ has to
contain the origin O regardless of the rank of γ, in view of the symmetry of
C, hence ℓ =< O,P∞ >= ℓ0. Therefore ℓ0 must coincide with one of the ℓi’s
(i = 1, . . . , n − 3). Since ℓi is described, in coordinates u, v by (n − 2)u − v −
(i+ 1− n

2 ) = 0, we have that ℓ0 = ℓi if and only if n = 2m ≥ 4 and i = m− 1.

In case ii), since C is reduced, the nonreducedness of Γ implies that γ is
reducible in two lines, one of which, say ℓ′, has P∞ as point at infinity. Since
C also contains the line ℓ, we conclude that C has a triple point, which is
the origin O, due to the symmetry, hence ℓ′ =< O,P∞ >= ℓ0. Then up to
exchanging ℓ with ℓ′ we fall in case i) again and we get the same conclusion.

As we have seen, if Γ is nonreduced, then ℓ0 ⊂ C regardless of the fact that
C is reduced or not; hence X is a bundle; moreover, if C is reduced, ℓ0 is the
unique irreducible multiple component of Γ.

We want to stress the following fact. Suppose that C has no triple point (or,
equivalently, that γ has not a double point at the origin). This is equivalent
to requiring that the polynomial R1(u, v) is not identically zero. In this case,
it represents ℓ0, hence it divides R3(u, v), since C = ℓ0 + γ. So R3(u, v) =
Q(u, v)R1(u, v), where Q is a homogeneous polynomial in u, v of degree 2 and
then, recalling (3), C has equation

R

(
1

2
+ u, v

)
=

(
Q(u, v) + 1

)
R1(u, v) = 0. (45)
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Therefore the conic γ is described by Q(u, v) + 1 = 0; this clearly shows that
its rank is ≥ 2. In particular, if equality holds, our assumptions imply that
γ consist of two parallel lines, symmetric with respect to the origin. This
situation does really occur, as [6, Example 7.1, equation (41) at p. 563] shows.

In conclusion, we have

Proposition 4.7. Let (X,L) be a geometric quadric fibration of dimension n
over a smooth surface S as in Section 2. Its Hilbert curve Γ is nonreduced if
and only if either

1. C = γ + ℓ0, where γ is a conic of rank ≥ 2 and n = 2m ≥ 4, or

2. C is non reduced.

In both cases X is a bundle. In the former case ℓ0 is the only multiple compo-
nent of Γ and its multiplicity is 2; in the latter, γ = 2ℓ′, where ℓ′ ̸= ℓ0 is a line;
ℓ′ is the only component of multiplicity 2 of Γ, unless n = 2m ≥ 4, in which
case ℓ0 is a further component of multiplicity 2.

Case 1. in Proposition 4.7 is clearly a novelty with respect to what is known
for n = 3.

5. More on the residual cubic C

In this Section we analyze further the reducibility of the residual cubic C. More
generally, we first look at reducible Serre-invariant plane cubics.

Proposition 5.1. Let C ⊂ A2 be a Serre-invariant plane cubic such that C
meets ℓ∞ transversely at P∞, and let O be the origin of coordinates (u, v). If
C is reducible then C = ℓ + γ, where ℓ is a line passing through O and γ is a
conic, possibly reducible. Moreover, either

a) γ is of hyperbolic type, with center at O (in particular it has two distinct
points at infinity), or

b) γ consist of two parallel lines.

Proof. Clearly, if C is reducible, then it contains a line, say ℓ. There are two
possibilities: either

i) the line ℓ contains the origin O, or

ii) the line ℓ does not contain O.

We claim that in case ii) ℓ is an irreducible component of a conic residual with
respect to another line, which is also contained in C, and passes through O.
So, up to renaming, case ii) reduces to i), which gives the first assertion in the
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statement. To prove the claim, note that the map ι : C → C induced by the
Serre involution maps ℓ to another line ι(ℓ), which also does not contain O.
Thus C consists of three lines, two of which do not contain O, hence O belongs
to the third line, say λ. Note that ℓ and its conjugate ι(ℓ) are parallel, due to
the symmetry properties of C. Thus their projective closures cannot contain
the point P∞ = (1 : n− 2 : 0), in view of the assumption on C. It thus follows
from Lemma 4.1 a) that P∞ is the point at infinity of λ and therefore λ = ℓ0,
since it contains both the origin and P∞. In conclusion, in case ii) we have that
C = ℓ0 + ℓ′ + ℓ′′, where ℓ′ and ℓ′′ are two parallel lines, and letting γ = ℓ′ + ℓ′′

this gives b) in the statement. Next come to case i). Clearly γ := C − ℓ is
symmetric with respect to O. Hence γ is as in a) (regardless the fact that it
is irreducible or not) if O is its unique center. Otherwise it is as in b), since it
cannot be a parabola, because it is Serre-invariant itself.

Now let C be any Serre-invariant plane cubic. If C has a triple point then
necessarily it has a triple point at the origin, hence assuming that C has not
a triple point is equivalent to requiring that (σ, τ) ̸= (0, 0). So, let C be a
Serre-invariant reducible plane cubic again. Suppose that C has not a triple
point. Then R1(u, v) = 0 represents a line ℓ through O. Moreover, since C is
reducible, R1(u, v) divides R3(u, v), hence R3(u, v) = Q(u, v)R1(u, v), Q being
a homogeneous (nontrivial) polynomial of degree two in u and v. Thus, C is
described by (45). This shows that ℓ is a component of C and the conic residual
of ℓ in C has rank ≥ 2, in accordance with the assumption that C has not a
triple point. Now, by applying the same argument as in [6, p. 551] we see that
the existence of a polynomial Q as above is equivalent to the condition

σ2(σδ − τγ) + τ2(σβ − τα) = 0. (46)

Note that (46) is trivially satisfied also when C has a triple point. On the other
hand (45) obviously implies reducibility. Therefore, we have

Proposition 5.2. Let C be a Serre-invariant plane cubic and let (3) be its
equation, with R3 and R1 given by (4) and (5) respectively. Then C is reducible
if and only if (46) holds.

In particular, we get the following consequence.

Corollary 5.3. Let (X,L) be a geometric quadric fibration over a smooth
surface, as in Section 2, and let C be the residual cubic of its Hilbert curve
with respect to the lines ℓ1, . . . , ℓn−3. Then C is reducible if and only if (46)
holds.

For n = 4, assuming that S = P2, we can characterize the fact that C
contains a given line ℓ through the origin even more explicitly. In view of
Theorem 4.5(i), we can suppose that ℓ ̸= ℓ0.
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Proposition 5.4. Let (X,L) be a 4-dimensional geometric quadric fibration
over P2 and let Γ be its Hilbert curve. Then Γ contains the line ℓ : pu− qv = 0
((p, q) ̸= (0, 0)), with p ̸= 2q, if and only if [p(c1+b−1)−4q][p(c1+b+1)−8q] =
0, where c1 and b are such that c1(E) = OP2(c1) and B = OP2(b).

Proof. Because dim(X) = 4 then Γ = ℓ1 + C, where ℓ1 : 2u − v = 0 and C is
the residual cubic. Thus if the line ℓ : pu− qv = 0, with p ̸= 2q is contained in
Γ it follows that it is a component of the residual cubic C. Because the base of
the geometric quadric fibration (X,L) is P2, c1(E) = OP2(c1) and c2(E) = c2,
for some c1, c2 ∈ Z. Thus the coefficients of the terms in R3(u, v) become, up
to the factor 1

24 :

α = 8c21 − 16c2 − 48c1 − 96b+ 8c1b+ 8b2 + 216,

β = −
(
4c21 − 24c2 + 24c1 − 12c1b− 4b2 − 24b+ 108

)
,

γ = 4c21 − 12c2 + 24c1 − 6c1b+ 12b− 4b2,

δ = −2c21 + 2c2 − c1b.

Likewise the coefficients of u and v in R1(u, v) are, up to the factor 1
24 , respec-

tively

σ = −
(
2c21 − 4c2 − 12c1 − 24b+ 2c1b+ 2b2 + 6

)
,

τ = −
(
c21 + 2c2 + 5c1b+ 3b2 − 3

)
.

In view of Proposition 5.3, the line ℓ : pu− qv = 0 is a component of C if and
only if (46) holds with σ = pk and τ = −qk for some non zero k ∈ Z (since σ
and τ , expressed by the above equalities, are integers). Recalling that p ̸= 2q,
the last two conditions, combined with the above expressions of σ and τ , give

c2 =− 1

2

1

p− 2q
(2qc21 + 2qb2 − 12qc1 − 24qb+ 2qc1b+ pc21 + 5pc1b+ 3pb2

− 3p+ 6q).

The relation (46), after replacing σ = pk, τ = −qk and α, β, γ, δ with the
above expressions, becomes

k3(2q−p)(4q2c21 − 8q2c2 + 108q2 − 24q2c1 − 48q2b+ 4q2bc1

+ 4q2b2 + 8qpc2 − 24qpc1 + 8qpc1b+ 4qpb2

− 12qpb− 2p2c2 + 2p2c21 + p2c1b) = 0. (47)

Because k ̸= 0, after dividing out (47) with k3 and replacing the value of c2,
we see that (47) can be rewritten as

3(2q − p)(−4q − p+ c1p+ bp)(−8q + p+ c1p+ bp) = 0,

and this proves the assertion, since, as we said, p− 2q ̸= 0.
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As a further comment, we note the following. If p(c1 + b− 1)− 4q = 0 then
b = −c1 +

4q
p + 1 and in this case C = ℓ+ γ1, where the equation of γ1 is

(16p+ 4pc1 − 32q)u2 + (−4pc1 − 10p+ 20q)uv + (pc1 + p− 2q)v2

+ 2p− pc1 + 8q = 0.

On the other hand, if p(c1 + b+ 1)− 8q = 0 then b = −c1 +
8q
p − 1 and in this

case C = ℓ+ γ2, where the equation of γ2 is

(20p+ 4pc1 − 64q)u2 + (−4pc1 − 8p+ 40q)uv + (pc1 − p− 4q)v2

− 2p− pc1 + 16q = 0.

For instance, as to γ2, the determinant of its matrix is 36(p− 2q)2
(
p(c1 + 2)−

16q
)
. Hence γ2 is reducible if and only if p = 16q/(c1 + 2).

6. A special class of geometric quadric fibrations

Here we introduce a special class of quadric fibrations (X,L) which generalize
conic fibrations considered in [6, Section 6]. In line with [6], we call them
quadric fibrations deriving from cones since they are defined by generic quadric
sections of a cone with vertex a point over a scroll on a surface. As we will see,
they can never be quadric bundles, however the equation of the corresponding
Hilbert curve simplifies considerably with respect to that of a general quadric
fibration. The construction goes as follows.

6.1. Construction.

Let S be a smooth surface and let V be a very ample vector bundle of rank
n − 1 ≥ 2 on S. Set T := P(V) and denote by h the tautological line bundle.
Then h embeds T as an n-dimensional scroll over S in some projective space,
say Pm. Now set E := V ⊕ OS , and R := P(E). Then R is a Pn−1-bundle over
S, with projection π : R → S. Let ξ be the tautological line bundle of E on R
and denote by ϕ : R → PN the map defined by ξ. Clearly ϕ is a morphism,
since E is spanned. We have

ci(E) = ci(V) for i = 1, 2, (48)

by construction. Furthermore, from the additivity of H0, we get h0(ξ) =
h0(E) = h0(V)+1 = h0(h)+1, hence N = m+1. Note that ξ restricts trivially
to the section, say σ, of R corresponding to the obvious surjection E → OS .
Hence ϕ contracts σ to a point, say v, of the image Y := ϕ(R). Due to the
properties of ϕ, Y ⊂ Pm+1 is the cone over T with vertex v, ϕ : R → Y being
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the desingularization morphism; in fact, any fiber Fs = π−1(s) of π : R → S
is a Pn−1, and ϕ maps it isomorphically to the linear subspace of PN spanned
by v and the Pn−2 which is the fiber of the scroll T over s. Now consider a
general quadric hypersurface Q ⊂ PN (i.e., not containing v) and let X ⊂ R
be its inverse image via ϕ. Then X ∈ |2ξ|, because ξ = ϕ∗OPm+1(1). Note that
X is smooth and L := ξX is ample since X ⊂ R \ σ. Moreover, X intersects
every fibre Fs of π along a quadric. Therefore, by restricting π to X we get a
fibration φ := π|X : X → S in quadrics over S.

Because L = ξX we have that E = π∗ξ = φ∗L, thus R is exactly the
Pn−1-bundle P introduced in Section 2.

By the canonical bundle formula, recalling (48), we know that KR = −nξ+
π∗(KS + detV), thus, since X ∈ |2ξ|, we get by adjunction

KX = (KR +X)X =
(
− (n− 2)ξ + π∗(KS + detV)

)
X

= −(n− 2)L+ φ∗(KS + detV).

The fact that B is trivial implies that H := KS + det E = KS + detV, hence
H is ample unless (S,V) is in a precise list of exceptions [8, Main Theorem].
Therefore,

Proposition 6.1. Let (X,L) be a quadric fibration over S deriving from cones.
Then (X,L) is a geometric quadric fibration if and only if (S,V) is not one of
the following pairs:

(i) (S,V) = (P2,OP2(1)⊕r)), with r = 2, 3,

(ii) (S,V) = (P2,OP2(2)⊕OP2(1))),

(iii) (S,V) = (P2, TP2),

(iv) S is a P1-bundle over a smooth curve and V restricts as OP1(1)⊕2 to every
fiber.

Note that the exception (S,V) = (Q2,OQ2(1)⊕2)) (case 6 in [8, Main The-
orem]) is included in case (iv).

According to what we said before, for quadric fibrations (X,L) as in the
above construction, the line bundle B is trivial. This has strong implications.
As a first thing, we observe the following fact.

Remark 6.1. If (X,L) is quadric fibration deriving from cones then X cannot
be a bundle. Actually, were X a bundle, the fact that D ∈ |2c1(E)+nB| would
imply c1(E) = 0, hence c1(V) = 0 by (48), but this would prevent V from being
ample.
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By Proposition 3.1 the equation of the residual cubic of its Hilbert curve is
such that the homogeneous part of degree 3 is

R3(u, v) =
(−1)n

n!

{
(n − 2)

[
(n

2 − 5n + 8)c
2
1 − 2(n − 2)

2
c2 + n(n − 1)K

2
S + 2nKSc1

]
u
3

+
[
(3n

2 − 17n + 24)c
2
1 − 6(n − 2)

2
c2 + n(n − 1)K

2
S − 2n(n − 3)KSc1

]
u
2
v

+
[
4(3 − n)c

2
1 + 6(n − 2)c2 + 2nKSc1

]
uv

2
+

(
2c

2
1 − 2c2

)
v
3
}
,

(49)

while the homogenous part of degree 1 is

R1(u, v) =
(−1)n

4n!

{(
8n(n − 1)(n − 2)χ(OS) − (n − 2)

[
(n

2 − 5n + 8)c
2
1

− 2(n − 2)
2
c2 + n(n − 1)K

2
S + 2nKSc1

])
u

+
[
(n

2 − 7n + 8)c
2
1 − 2(n − 2)

2
c2 + 4n(n − 1)

(
K

2
S − 8χ(OS)

)]
v
}
.

(50)

Moreover, if the base surface S is a minimal surface of Kodaira dimension
zero, then the fact that KS is numerically trivial produces a further simplifica-
tion, which leads to the following result.

Theorem 6.2. Let (X,L) be a quadric fibration deriving from cones over a
minimal surface S with κ(S) = 0 and dim(X) = n ≥ 3.

(1) If n = 3 then C = Γ is always irreducible.

(2) If n ≥ 4 then C is irreducible in the following cases:

(i) if S is a K3 surface or an Enriques surface, and

(ii) if S is an abelian or a bielliptic surface and d ̸= 2n(n−3)
n2−5n+8 c2.

Proof. Due to Proposition 5.2, and Proposition 4.2 we know that (46) can be
rewritten as

[σ + (n− 2)τ ] U = 0,

where

U := n2δτ2−nδστ−4nδτ2+nγτ2+βτ2+δσ2+2δστ+4δτ2−γστ−2γτ2.

Now, taking into account that B is trivial, we can compute the coefficients
σ, τ, β, γ, δ from (50) and (49). Moreover, adding the information that KS is
numerically trivial and recalling (15), we get

σ + (n− 2)τ =
(−1)nn(n− 2)

2n!
c21 =

(−1)nn(n− 2)

2n!
H2 ̸= 0,

Therefore C is reducible if and only if U = 0. Plugging in the expression of U
the values of the coefficients σ, τ, β, γ, δ we see that, up to the scalar factor
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− (−1)3nn(n−1)
16n!3 c21

U =


[
− (n2 − 5n+ 8)c21 + 2(n− 2)2c2 + 16n(n− 1)

]2
+ 64n2c21 if S is K3[

−(n2 − 5n+ 8)c21 + 2(n− 2)2c2 + 8n(n− 1)
]2

+ 32n2c21 if S is Enriques[
(n2 − 5n+ 8)c21 − (2n2 − 8n+ 8)c2

]2
if S is abelian or bielliptic.

Thus for every n ≥ 3, U is different from zero if S is a K3 surface or an
Enriques surface, being U the sum of two quantities in which the first one is
greater than or equal to zero and the second one is strictly greater than zero
because c21 = H2 > 0. If S is an abelian or a bielliptic surface we see that if

n = 3 then U =
[
(n2 − 5n+8)c21 − (2n2 − 8n+8)c2

]2
= 2c21 − 2c2 and recalling

that d = L3 = 2(c21 − c2) our claim follows. This proves (1) and (i) of (2). On

the other hand, if n ≥ 4 then U =
[
(n2 − 5n+ 8)c21 − (2n2 − 8n+ 8)c2

]2
= 0 if

and only if c21 = 2n2−8n+8
n2−5n+8 c2, in which case d = 2(c21 − c2) = [2 + 4(n−4)

n2−5n+8 ]c2.
This proves (ii) of (2).

We have to point out that in [6, Proposition 6.3, (ii)] the statement is not
correct, in fact no condition on L3 is needed in order to have the irreducibility
of Γ. As to case n ≥ 4 with S abelian or bielliptic we observe that C is
certainly irreducible if (n − 1)c21 > 2nc2 (that is if E is not Bogomolov stable,
being rk(E) = n), because this prevents the term U from being zero.

Example 6.2. If in the construction 6.1, as T =P(V) we take the 5-dimensional
scroll in P11, over P2, of degree 10 and sectional genus 3, that is T =P(OP2(1)⊕4)
= P2 × P3, then (X,L) is a geometric quadric fibration, with c1(E) = c1(V) =
OP2(4) and c2(E) = c2(V) = 6 and plugging such values in (49) and (50) we get

p(X,L)

(
1

2
+ u, v

)
= − 1

12
(2u− v)(12u2 − 10uv + 2v2 + 3).

Note that the linear factor 2u− v is not the one defining the line ℓ0 whose
equation is (n− 2)u− v = 0, that is 3u− v = 0.

Example 6.3. If in the construction 6.1, as T = P(V) we take the 4-dimensional
scroll in P10, over P2, of degree 10 and sectional genus 3, that is T = P(TP2 ⊕
OP2(1)), then (X,L) is a geometric quadric fibration, with c1(E) = c1(V) =
OP2(4) and c2(E) = c2(V) = 6 and plugging such values in (49) and (50) we get

p(X,L)

(
1

2
+ u, v

)
=

7

3
u3 − 31

6
u2v +

11

3
uv2 − 5

6
v3 +

17

12
u− 25

24
v.

We like to stress the following fact. Let T1 and T2 be the scrolls in Exam-
ple 6.2 and Example 6.3 respectively. Adding OP2(1) to the three terms of the
Euler sequence on P2, we get the following exact sequence

0 → OP2 ⊕OP2(1) → OP2(1)⊕4 → TP2 ⊕OP2(1) → 0,
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where TP2 is the tangent bundle to P2. Then by using, for instance, [12,
Lemma 0.7], we see that T2 ⊂ P10 is the general hyperplane section of T1,
Segre embedded in P11.

7. Examples

Let (X,L) be a geometric quadric fibration over a smooth surface as in Sec-
tion 2. The key point in passing from the case of threefolds studied in [6] to
higher dimensions is clearly n = 4, as already (1), and what we proved in the
previous sections, show. For this reason the examples we discuss in this Section
are concerned with n = 4. First of all, note that if (X,L) is general, then the
residual cubic C of its Hilbert curve is irreducible according to Proposition 5.3.
Here is an example.

Example 7.1. Let P(E) be the P3-bundle over the smooth quadric Q2, defined
by the rank four vector bundle E = OQ2(1, 2)⊕4. Let π : P(E) → Q2 be the
projection morphism, let X be a general element in |2ξ + π∗OQ2(1, 2)|, where
ξ denotes the tautological line bundle of E on P(E), and call φ : X → Q2 the
restriction of π to X. On X we consider the polarization given by L = (ξ)X
Note that KX =

(
−4ξ+π∗OQ2(4, 8)+π∗OQ2(−2,−2)+2ξ+π∗OQ2(1, 2)

)
X

=(
− 2ξ + π∗OQ2(3, 8)

)
X
. The polarized pair (X,L) is a geometric quadric

fibration over Q2. Using (28) through (33) and the fact that c1 = OQ2(4, 8),
c2 = 24 and B = OQ2(1, 2), we see that the residual cubic C of the Hilbert
curve Γ of (X,L) has equation

4u3 − 12u2v − 3uv2 + 4v3 − 3u+
17

2
v = 0. (51)

In this case C is irreducible, the term on the left hand side of (46) taking the
value 266.

The remainder of this Section is devoted to examples for which C is re-
ducible.

Example 7.2. Let Y := P2 × P3 and let π and ρ be the projections onto the
first and the second factors respectively. Set A := π∗OP2(1), B := ρ∗OP3(1),
and write O(r, s) for rA + sB. Let X ⊂ Y is a smooth element in the linear
system |O(1, 2)|, hence

X ∼ A+ 2B. (52)

By adjunction, KX = [O(−3,−4)+X]X = O(−2,−2)X = −2 O(1, 1)X , so that
X is a Fano 4-fold of index 2; moreover, taking into account that A3 = B4 = 0
and A2B3 = 1, we have(

O(1, 1)X
)4

= O(1, 1)4X = (A+B)4(A+ 2B) = (4 + 12)A2B3 = 16
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(i. e. (X,O(1, 1)X) has degree 16).
Up to now φ := π|X : X → P2 is only a classical quadric fibration. To

make it a geometric quadric fibration consider on X the ample line bundle
L := O(a, 1)X for some positive integer a. Clearly L induces the hyperplane
bundle on every quadric surface, fiber of φ. Moreover,

KX + 2L = O
(
2(a− 1), 0

)
X

= φ∗OP2

(
2(a− 1)

)
.

Therefore, for (X,L) to be a geometric quadric fibration we need a ≥ 2.
Note that Y = P(V), where V = OP2(1)⊕4, the corresponding tautological

line bundle being ζ := O(1, 1). This is clear once we compare the two expression
of the canonical bundle of Y , viewed both as a product and as P(V) respectively.
Then V = π∗ζ and, recalling that φ = π|X , we also have V = φ∗(ζX). Next let

us determine the vector bundle E := φ∗L. Since L =
(
ζ + (a− 1)π∗OP2(1)

)
X
,

we get

E = φ∗[
(
ζ + π∗OP2(a− 1)

)
X
] = V ⊗OP2(a− 1) = OP2(a)⊕4.

In particular, this gives
c1 = OP2(4a). (53)

Since E is V twisted by a line bundle, we see that P := P(E) ∼= Y itself; note
however that the tautological line bundle corresponding to E is ξ = ζ+(a−1)A
(in accordance with the fact that L = ξX). Now recall that, in our setting,
X ∈ |2ξ + π∗B|. So, letting B = OP2(b), we get

2ξ + π∗B =
(
2ζ + 2(a− 1)A+ bA

)
= [2(A+B) + (2a+ b− 2)A]

= [(2a+ b)A+ 2B],

and from a comparison with (52) we deduce that b = −2a + 1, i.e. B =
OP2(−2a+ 1). Finally, look at D, the discriminant curve of our quadric fibra-
tion (X,L). From a general result already mentioned in Section 2 combined
with (53), since n = 4 we get

D ∈ |2c1 + nB| = |OP2(4)|.

Therefore certainly X is not a Q2-bundle over P2, D being non-trivial. It
remains to determine the canonical equation of the Hilbert curve Γ of (X,L).
By using the Riemann–Roch–Hirzebruch formula in the following form
(see [2, (8)])

χ(D) =
1

24
E4+

1

48

(
2c2(X)−K2

X

)
E2+

1

384

(
K2

X −4c2(X)
)
K2

X +χ(OX), (54)

where D = 1
2KX + E and E = uKX + vL, after standard Chern class compu-

tations we get the canonical equation of Γ, which is

p

(
1

2
+ u, v

)
=

1

6
(v − 2u)(av − 2u)

(
16u2 − 2(3a+5)uv + (3a+1)v2 + 2

)
= 0.
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We note that Γ is reducible, but, in addition to the line 2u − v = 0, which is
a prescribed component of Γ according to [3, Theorem 6.1], there is another
linear component for any a ≥ 2, namely the line av − 2u = 0.

As to the conic component, say γ, note that it is irreducible since a ≥ 2. On
the other hand, if a = 1, then (X,L) is not a geometric quadric fibration, as
already observed; moreover the equation of Γ becomes (2u− v)2

(
4(2u− v)2 +

2
)
= 0. In particular we see that the projective closure Γ of Γ has a singular

point of multiplicity 4 at (2 : 1 : 0). Note that this is in accordance with [3,
Lemma 3.2], since for a = 1, we have KX + 2L = 0, hence (X,L) fits into the
degenerate case.

Example 7.3. Consider P2 × Q3 and let p1 and p2 be the projections onto
the first and the second factor respectively. Set H1 := p∗1

(
OP2(1)

)
and H2 :=

p∗2
(
OQ3(1)

)
, and write O(r, s) for rH1 + sH2. Let X ⊂ P2 × Q3 be a smooth

element in the linear system |O(1, 1)|. By adjunction, KX = [O(−3,−3) +
X]X = −2 O(1, 1)X , so that X is a Fano 4-fold of index 2. Taking into account
that H3

1 = H4
2 = 0 and H2

1H
3
2 = 2, we see that

(
X,O(1, 1)X

)
has degree 20.

Let φ : X → P2 be the restriction of p1 to X, and take on X the polarization
given by L := O(a, 1)X for some positive integer a. Clearly L induces the
hyperplane bundle on every quadric surface, fiber of φ. Moreover,

KX + 2L = O
(
2(a− 1), 0

)
X

= φ∗OP2

(
2(a− 1)

)
.

Therefore, (X,L) will be a geometric quadric fibration as soon as a ≥ 2.
In order to compute the canonical equation of Γ, we tensor the structure

sequence
0 → O(−1,−1) → O(0, 0) → OX → 0

with O(ay − 2x, y − 2x) and we get

0 → O(ay− 2x− 1, y− 2x− 1) → O(ay− 2x, y− 2x) → xKX + yL → 0. (55)

Using the fact that χ(P2 × Q3,O(r, s)) = χ(P2,OP2(r)) · χ(Q3,OQ3(s)) and
standard computations, after replacing x = u + 1

2 , y = v we see that the
canonical equation of Γ is

p

(
1

2
+ u, v

)
=

1

6
(v − 2u)(av − 2u)

(
20u2 − 2(3a+7)uv + (3a+2)v2 + 1

)
= 0.

Thus the residual cubic C has equation

1

6
(av − 2u)

(
20u2 − 2(3a+ 7)uv + (3a+ 2)v2 + 1

)
= 0.

Even in this case the conic γ is irreducible, since a ≥ 2. Because X sits in
P := P(E) as a divisor, X ∈ |2ξ + π∗B| where ξ is the tautological line bundle,
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we compute the values of ci. Let B = OP2(b) for some integer b. From (15) we
have

2a− 2 = c1 − 3 + b

and thus c1 = 2a+ 1− b. Easy computations show that

d = 12a2 + 8a. (56)

d1 = −24a− 4− 12a2. (57)

On the other hand from (24) and (25), since KS = OP2(−3), B = OP2(b),
n = 4, and c1 = 2a+ 1− b we get that

d = 8a2 + 8a− 6ab+ 2− 3b+ b2 − 2c2. (58)

and

d1 = −8a2 − 20a+ 10ab− 8 + 8b− 2b2 + 4c2. (59)

Using (56),(57),(58),(59) we get that b = −2a, c1 = 4a+ 1, c2 = 6a2 + 3a+ 1.
As to the discriminant curve D of our quadric fibration (X,L), we have

D ∈ |2c1 + 4B| = |OP2(2)|.

Example 7.4. Let π : X → P2 × P2 be a double cover of P2 × P2, branched
along a smooth divisor of type (2, 2) and let R ⊂ X be the ramification divisor.
Then R is a smooth hypersurface and π(R) ∈ |2H|, with H = OP2×P2(1, 1).
We have a short exact sequence

0 → π∗T ∗
P2×P2 → T ∗

X → N∗
R/X → 0, (60)

where N∗
R/X is the conormal bundle of R ⊂ X. It comes from a local compu-

tation combined with the fact that N∗
R/X = J /J 2, where J is the ideal sheaf

of R in X. We will use (60) and the short exact sequence

0 → −2R → −R → N∗
R/X → 0 (61)

to determine ci(X). In fact arguing as in [5, Lemma 2.6] (which holds in any
dimension) we see that

c1(X) = π∗(c1(P2 × P2)−H
)
, (62)

c2(X) = π∗(c2(P2 × P2)− c1(P2 × P2)H + 2H2
)
. (63)

Let pi : P2×P2 → P2 be the projection onto the i-th factor. Let p∗1(OP2(1))=H1

and p∗2(OP2(1)) =H2, where H1 and H2 satisfy H3
1 =H3

2 = 0 and H2
1H

2
2 = 1.
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In order to compute ci(P2 × P2) we use the following exact sequence, deriving
from the Euler sequence,

0 → p∗1(OP2)⊕ p∗2(OP2) → p∗1
(
OP2(1)

)⊕3 ⊕ p∗2
(
OP2(1)

)⊕3 →
p∗1(TP2)⊕ p∗2(TP2) = TP2×P2 → 0

and we see that

c1(P2 × P2) = 3(H1 +H2), c2(P2 × P2) = 3(H2
1 +H2

2 + 3H1H2).

Thus

c1(X) = π∗(c1(P2 × P2)−H
)
= π∗(2H1 + 2H2),

c2(X) = π∗(c2(P2 × P2)− c1(P2 × P2)H + 2H2
)
= π∗(2H2

1 + 2H2
2 + 7H1H2).

Let φ = p1 ◦ π : X → P2, which is a classical quadric fibration. To make
it a geometric quadric fibration we consider on X the ample line bundle L :=
π∗(OP2×P2(a, 1)

)
for some positive integer a. Because

KX + 2L = π∗OP2×P2

(
2(a− 1), 0

)
= φ∗OP2

(
2(a− 1)

)
it follows that (X,L) will be a geometric quadric fibration if a ≥ 2.

By (54), after standard computations, we get the canonical equation of Γ,
which is

p

(
1

2
+ u, v

)
=

1

2
(v − 2u)(av − 2u)

(
4u2 − 2(a+ 1)uv + av2 + 1

)
= 0.

Thus the residual cubic C has equation

1

2
(2u− av)

(
4u2 − 2(a+ 1)uv + av2 + 1

)
= 0.

Even in this case the conic γ is irreducioble, provided that a ≥ 2. For such
(X,L) we see that

d = L4 =
(
π∗(OP2×P2(a, 1)

))4
= 2 · 6(aH1)

2H2
2 = 12a2. (64)

Similarly

d1 = 2(−2H1 − 2H2)(aH1 +H2)
3 = −12a2 − 12a. (65)

We now compute the values of ci. Let B = OP2(b) for some integer b.
From (15) we have

2a− 2 = c1 − 3 + b

and thus c1 = 2a+ 1− b.
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On the other hand from (24) and (25), since KS = OP2(−3), B = OP2(b),
n = 4, and c1 = 2a+ 1− b we get that

d = 8a2 + 8a− 6ab+ 2− 3b+ b2 − 2c2. (66)

and
d1 = −8a2 − 20a+ 10ab− 8 + 8b− 2b2 + 4c2. (67)

Using (64), (66), (65), (67) we obtain b = −2a+ 2, c1 = 4a− 1, c2 = 6a2 − 3a
and thus for the discriminant curve D, of our quadric fibration (X,L), we have

D ∈ |2c1 + 4B| = |OP2(6)|.

We like to point out that in Examples 7.2 - 7.4 X is a Fano 4-fold as in
[14, Table 0.3, No. 5, 8, 4, respectively]. For a ≥ 2 (X,L) is a 4-dimensional
geometric quadric fibration over P2 and fits into the situation described by
Proposition 5.4, satisfying the condition p(c1 + b − 1) − 4q = 0 in all three
cases. For instance, in Example 7.2, p = 2, b = − c1

2 + 1, q = c1
4 . On the other

hand, if a = 1 then KX = −2L, hence Γ itself is reducible into 4 parallel lines,
in accordance with [13, Lemma 3.1].

Example 7.5. Let P(E) be the P3-bundle over the Segre–Hirzebruch surface Fe

of invariant e (≥ 0), defined by the rank four vector bundle E = [C0+(e+1)f ]⊕4,
where C0 is a section of self-intersection C2

0 = −e and f a fiber of the bundle
projection Fe → P1. Let π : P(E) → Fe be the projection morphism, let X be
a general element in |2ξ + π∗B|, where ξ denotes the tautological line bundle
of E on P(E), B = aC0 + bf and call φ : X → Fe the restriction of π to X.
Note that KX =

(
− 4ξ+π∗(4C0+4(e+1)f − 2C0− (e+2)f)+2ξ+π∗B

)
X

=(
− 2ξ + π∗((2 + a)C0 + (3e + 2 + b)f)

)
X
. The polarized pair (X,L) where

L = (ξ)X is a geometric quadric fibration over Fe. Using (28) through (33)
and the fact that c1 = 4C0 + 4(e+ 1)f , c2 = 6(e+ 2), we see that the residual
cubic C of the Hilbert curve Γ of (X,L) has equation

2

3
(2u− 3v)(v2 − uv − 2u2 + 2) = 0, (68)

if the base surface is F0 and B = 2C0, and

1

6
(2u− 3v)(5v2 − 8uv − 4u2 + 7) = 0. (69)

if the base surface is F1 and B = OF1 .

8. A unifying perspective

Here we discuss a natural framework in which the residual cubics of Hilbert
curves of geometric quadric fibrations over a smooth surface fit into, offering
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a unifying perspective to many results proved in the previous Sections. To
start with let V be the family of Serre-invariant cubics, see for instance [3,
Section 7]. As observed in Section 2, a cubic C in the complex affine plane of
coordinates u and v belongs to V if and only if it is described by an equation
of type (3), with R3(u, v) and R1(u, v) as in (4) and (5), respectively, for some
complex numbers α, . . . , τ , with (α, β, γ, δ) ̸= (0, 0, 0, 0). So we can look at C
as the point (α : β : γ : δ : σ : τ) of P5 lying outside the line, say Λ, defined by
α = β = γ = δ = 0. Thus we have a natural identification

V = P5 \ Λ. (70)

According to Proposition 5.2, we can identify the reducible C ∈ V with the
points of the quartic hypersurface V ⊂ P5 of equation (46), lying outside Λ.
Let us rewrite the equation of V in the form

f(α, β, γ, δ, σ, τ) = σ2(σδ − τγ) + τ2(σβ − τα) = 0. (71)

Clearly, V contains Λ and also the 3-plane σ = τ = 0. In fact we have

Proposition 8.1. The singular locus Sing(V ) is exactly the 3-plane of equa-
tions σ = τ = 0.

Proof. The assertion follows immediately from the Jacobian criterion. Actually,
from (71) we get

grad(f) = (−τ3, τ2σ,−σ2τ, σ3, 3δσ2 − 2γστ + βτ2,−γσ2 + 2βστ − 3ατ2).

This shows that condition grad(f) = 0 is equivalent to the vanishing of the
first and the fourth components only.

As a consequence of Proposition 8.1 we have that also the singular locus of
V \ Λ is the 3-plane σ = τ = 0, since the latter and the line Λ are skew.

Now we consider another relevant locus in P5. We denote by S the family
of cubics C ∈ V such that the projective closure C contains the point at
infinity P∞ = (1 : n − 2 : 0) and intersects the line at infinity ℓ∞ at that
point transversely. The first condition says that the point corresponding to C
lies on the hyperplane H of equation (36), while the latter means that it
does not belong to the hyperplane h of equation (38), according to the proof
of Proposition 4.2. So S seems the most appropriate locus of V to include
the residual cubics of the Hilbert curves of geometric quadric fibrations as in
Section 2.

Because the coefficients in (1) are rationals, all residual cubics of the Hilbert
curves of our quadric fibrations correspond to rational points of the locus S .
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By definition S is the complement of h in V ∩ H , hence it is a quasi-
projective variety of dimension 4. In fact, noting that both H and h contain Λ,
we have that

S := V ∩ (H \ h) = (P5 \ Λ) ∩ (H \ h) = H \ h. (72)

In particular, S = H . Next, consider

T := {C ∈ S | C has a triple point}. (73)

According to the discussion in Section 4, any C ∈ T has a triple point at
the origin, hence it is reducible into three lines through the origin. Moreover,
since C contains P∞, any such C consists of the line ℓ0 and two other lines
distinct from ℓ0 belonging to the same pencil. Thus T = S(2)(P1 \ {o}), the
second symmetric product of P1\{o} with itself, o representing the line ℓ0, which
is removed from the pencil. Recall that for a C ∈ V , having a triple point at
the origin is equivalent to satisfying the equations σ = τ = 0 with the further
condition that C ∈ H . Removing the intersection with the hyperplane h, this
shows that T is a P2 minus a line, which agrees with the previous description,
since S(2)(P1) = P2. Proposition 8.1 has the following consequence.

Corollary 8.2. We have Sing(V ) ∩ S = T .

Remark 8.1. Since all reducible cubics of S lie in V ∩H , one could be tempted
to think that the singular locus Sing(V ∩H ) is more related to our analysis than
Sing(V ). However, this is not the case, as we will see in a moment. Of course
Sing(V ∩H ) is larger than Sing(V )∩H and using the Jacobian criterion one
can see that it consists of two components. Precisely, Sing(V ∩H ) = T ∪Z ,
where Z is defined by the following three equations: σ = −(n − 2)τ , β =
−(n− 2)

(
2γ + 3(n− 2)δ

)
and α = (n− 2)2

(
γ + 2(n− 2)δ

)
. However

(Z \ T ) ∩ S = ∅, (74)

which says that the component Z is irrelevant for S . To see this, suppose
that C ∈ Z . Then its equation is

(n− 2)2
(
γ + 2(n− 2)δ

)
u3 − (n− 2)

(
2γ + 3(n− 2)δ

)
u2v

+ γuv2 + δv3 − (n− 2)τu+ τv = 0,

where τ ̸= 0 if, in addition, C ̸∈ T . Note that the polynomial at the left hand
side is divisible by (n− 2)u− v, hence the above equation can be rewritten as(
(n−2)u−v

)[
γu

(
(n−2)u−v

)
+δ

(
2(n−2)2u2−(n−2)uv−v2

)
−τ

]
= 0. (75)

This shows that C = ℓ0 + G, where G is the conic described by the factor in
brackets. Looking for the points at infinity of G we immediately see that they
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are Q′
∞ = (1 : n− 2 : 0) and Q′′

∞ =
(
− δ : γ + 2(n− 2)δ : 0

)
, up to renaming.

But Q′
∞ = P∞, the point at infinity of ℓ0, hence C intersects ℓ∞ at P∞ with

multiplicity ≥ 2. Therefore C ̸∈ S .

We can also revisit Proposition 4.3 in the current setting. Let Q ⊂ P5 be
the quadric hypersurface of equation (39). According to Proposition 4.3, the
section of Q with the hyperplane H of equation (36), outside of Λ, that is

Q′ := Q ∩ H \ Λ,

describes the Serre-invariant cubics C such that C∩ ℓ∞ = P∞+2Q∞, whereQ∞
is a point at infinity, distinct from P∞. An immediate check shows that Sing(Q)
is the plane of equations δ = γ = α = 0, and combining them with (36), we see
that Sing(Q) ∩ H = Λ. But Λ is not included in S , hence

Sing(Q) ∩ S = ∅.

On the other hand, replacing α in (39) with its expression provided by (36)
we get an equation in β, γ, δ, mute in σ and τ , representing a quadric hy-
persurface of P4, say Q′′, which is the image of Q′ in the hyperplane Π
of equation α = 0 via the projection ρ : P5 \ {A} → Π from the point
A = (1 : 0 : 0 : · · · : 0) ∈ P5. A straightforward computation shows that
the singular locus of Q′′ in the hyperplane Π is described by the equations
β = γ = δ = 0, i.e. Sing(Q′′) = Λ. So, coming back to Q′ through the
projection ρ to describe Sing(Q′), we see that

Sing(Q′) ∩ S = ∅.

To complete the picture it remains to understand which loci of Q′ represent
the different kinds of cubics C fitting in Proposition 4.3. They are:

1) Serre-invariant cubics (the general being irreducible) passing through P∞
and with a node on ℓ∞, not in P∞;

2) reducible Serre-invariant cubics passing through P∞ and having a double
intersection with ℓ∞, not in P∞.

Now, come back to reducible Serre-invariant cubics. According to Proposi-
tion 5.1, in case 2) we have C = ℓ + γ; moreover, if γ is irreducible, then ℓ
contains O and γ has center in O, due to the Serre invariance, hence it cannot
be a parabola. As a consequence, γ ∩ ℓ∞ consists of two distinct points. Since
we are dealing with cubics C such that C ∩ ℓ∞ = P∞ + 2Q∞, we have that
ℓ ̸= ℓ0 and γ is a hyperbola whose asymptotes are ℓ0 and the line < O,Q∞ >.
In this case C intersects ℓ∞ with multiplicity one in P∞ and two in Q∞. Note
that for these cubics C, the admissible conics γ constitute a pencil; however,
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since Q∞ can vary on ℓ∞, with the only restriction of being different from P∞,
the family of such conics depends on two parameters. In addition, the line ℓ
moves in a pencil, since it has to contain O. Therefore the family of cubics C
of this type is 3-dimensional. Let us call this case 2a). Clearly, case 2) also
includes the following two possibilities.

2b) ℓ = ℓ0 and γ consists of two lines through O. This is the situation in
which C has a triple point, i.e., C ∈ T . We already know that this is a
2-dimensional family.

2c) ℓ = ℓ0 again, but C has no triple points. In this case, according to
Proposition 5.1(b), γ consists of two parallel lines ℓ′ and ℓ′′ with direc-
tion corresponding to Q∞ (and obviously symmetric with respect to O).
This family too has dimension 2, as one can see from the following com-
putation.

Concerning the dimensions of the various families, we note the following. We
know that case 1) is effective, as [6, Example 6.3] shows. Suppose that the node
is Q∞ = (−b : a : 0) and for simplicity, to treat equations in affine coordinates,
call m = −a/b the slope; then Q∞ = (1 : m : 0). The equation of C, in
homogeneous coordinates u, v, w is

f0 := f0(u, v, w) = αu3 + βu2v + γuv2 + δv3 + σuw2 + τvw2 = 0.

Imposing the vanishing of the three partial derivatives of f0 evaluated at Q∞,
we get the following system:{

f0,u = 3α+ 2βm+ γm2 = 0

f0,v = β + 2γm+ 3δm2 = 0.
(76)

Note that we get only two nontrivial equations, since the derivative of f0 with
respect to w evaluated at any point of ℓ∞ is zero, because only the last two
terms of f0 contain w, and in fact only w2. Equivalently, the homogeneous
equation of the tangent line to C at any of its points at infinity does not contain
w, hence it passes through O (cf. [3, Theorem 3.4]). Now, the occurrence of a
singular point of C at Q∞ is equivalent to the fact that m is a common root of
both equations in (76), This happens if and only if the resultant Res(f0,u, f0,v)
of the two polynomials in m at the left hand side of the two equations vanishes.
On the other hand,

Res(f0,u, f0,v) =

∣∣∣∣∣∣∣∣
γ 2β 3α 0
0 γ 2β 3α
3δ 2γ β 0
0 3δ 2γ β

∣∣∣∣∣∣∣∣ ,
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which, up to the multiplicative factor 3, is given by

F := 4αγ3 + 4β3δ − β2γ2 + 27α2δ2 − 18αβγδ.

An easy check shows that this quartic polynomial is irreducible. It defines a
quartic hypersurface in P5 and then the locus of the cubics C as in 1) corre-
sponds to the section of the quadric Q′ with the quartic of equation F = 0. In
particular this says that the family corresponding to case 1) depends on three
parameters. This is in accordance with the following fact: Serre-invariant cu-
bics passing through P∞ depend on 4 parameters (general point of the hyper-
plane H ) and imposing a singularity at a point that can vary on ℓ∞ requires
only one condition; hence the dimension is 4 − 1 = 3. We already said about
the dimensions of the families corresponding to cases 2a) and 2b), hence we
come to case 2c). Since ℓ0 is fixed, having equation (n − 2)u − v = 0, C is
determined by the slope of ℓ′ (the same as that of ℓ′′) and e. g. the distance
between ℓ′ and ℓ′′; hence the family depends on two parameters. In fact, letting
Q∞ = (−a : b : 0), ℓ′ has equation bu + av − c = 0 for some c ∈ C, and then
the equation of C has the form:

[(n− 2)u− v][(bu+ av)2 − c2] = 0.

Therefore C depends on the two parameters m := −b/a and c/a. In conclusion,
letting Fi) denote the family of the cubics C as in case i), where i = 1, 2a, etc.,
we have

dim[F1)] = dim[F2a)] = 3, while dim[F2b)] = dim[F2c)] = 2.
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