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1. Introduction

The cohomology of a compact Kähler manifold has remarkable properties, ab-
stractified in the modern notion of a (polarized) Hodge structure. While the
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datum of a Hodge structure of weight 1 is equivalent to the datum of a compact
complex torus, this is no longer the case in higher weights. In weight 2 there
are remarkable examples of compact Kähler manifolds which are, mostly, de-
termined by the polarized Hodge structure on their second cohomology. These
are the hyperkähler manifolds: higher dimensional analogues of K3 surfaces.
In these lecture notes, we give an elementary introduction to hyperkähler man-
ifolds and survey some of their interesting properties.

We start by reviewing the notions of tensors, connections, the curvature ten-
sor, Ricci curvature and some of their properties. We define parallel transport,
holonomy and the Levi-Civita connection. We also describe the constraints
posed by the holonomy on the curvature tensor. We define (locally) sym-
metric spaces and state the main structure theorem for them. We then state
De Rham’s decomposition theorem for simply connected complete Riemannian
manifolds and Berger’s classification of the holonomy groups of nonsymmetric,
complete, connected, irreducible Riemannian manifolds. Berger’s classification
shows that hyperkähler manifolds are the nonsymmetric complete connected
irreducible Riemannian manifolds with holonomy group contained in Sp(r):
the group of automorphisms of the quaternions Hr preserving a quaternionic
hermitian form. It follows that they are Ricci flat. In fact, it follows from
the theorems of De Rham and Berger, the Calabi-Yau theorem and results of
Cheeger-Gromoll and Bochner that, after possibly taking a finite étale cover,
Ricci-flat compact Riemannian manifolds are products of complex tori, Calabi-
Yau manifolds and hyperkähler manifolds (see Paragraph 4.5).

Constructing examples of compact hyperkähler manifolds has proven par-
ticularly challenging. Two infinite series were constructed by Beauville [2],
using an idea of Fujiki [19]. Two sporadic families of hyperkählers of dimen-
sions 6 and 10 were constructed by O’Grady ([37, 38]) via desingularization
of certain singular moduli spaces of sheaves on K3 surfaces and complex tori
of dimension 2. We give an overview of Beauville’s constructions of the two
infinite series.

It is the content of the Torelli theorem that hyperkähler manifolds are es-
sentially determined by their second cohomology. This is consistent with the
fact that all constructions to date of hyperkähler manifolds involve surfaces.

We briefly describe the moduli spaces of compact hyperkähler manifolds,
their period domains and some of their properties. By a result of Tian-Todorov
and Bogomolov, the deformations of hyperkähler manifolds are unobstructed.
This essentially means that the moduli spaces of compact hyperkähler man-
ifolds are smooth analytic spaces. It is known however, that they are not
Hausdorff.

The period domain of a given family of hyperkähler manifolds is constructed
from the lattice abstractly isometric to the second integral cohomology of the
hyperkähler together with a natural non-degenerate quadratic form called the
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Beauville-Bogomolov form. This form generalizes the intersection form in the
case of dimension 2 and the natural form on the second cohomology of the Fano
variety of lines of a smooth cubic fourfold. In the case of the Fano variety of
lines, the form is induced by the intersection form on the fourth cohomology
of the cubic fourfold, via the Abel-Jacobi isomorphism between the second
cohomology of the Fano variety if lines and the fourth cohomology of the cubic
fourfold.

For a fixed compact hyperkähler X, we describe the local and the global
period domains with their respective maps from the local and global deforma-
tion spaces of X. We explain the local Torelli theorem and Verbitsky’s weaker
version of global Torelli which holds in the hyperkähler case.

We conclude with a brief discussion of twistor conics and twistor families,
the proof of the global Torelli theorem by Verbitsky and the relation between
twistor families and hyperholomorphic bundles.

Some good general references for the material that we present here are:
[2, 5, 6, 18, 22, 45].
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2. C∞ manifolds

2.1. Tangent and cotangent bundles

For a C∞ manifold M , we denote by TM the tangent bundle of M and T ∗
M the

cotangent bundle.

For any non-negative integers (k, l), the sections of the bundle T⊗k
M ⊗(T ∗

M )⊗l

are called (k, l)-tensors. Section of TM are vector fields and sections of ΛpT ∗
M

differential p-forms. Alternatively, vector fields can be defined as first order
differential operators on C∞ functions.

In a local coordinate chart with local coordinates (x1, . . . , xn), the (local)
vector fields ∂/∂x1, . . . , ∂/∂xn form a basis of vector fields and the (local) 1-
forms dx1, . . . , dxn form a basis of differential 1-forms. A local (k, l)-tensor can
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be written as

T =
∑

T i1,...,ik
j1,...,jl

∂

∂xi1
⊗ . . .⊗ ∂

∂xik
⊗ dxj1 ⊗ . . .⊗ dxjl .

2.2. The Lie bracket

Given a vector field v =
∑
vi ∂

∂xi and a C∞ function f on M ,

v(f) =

n∑
i=1

vi
∂f

∂xi
.

Given two vector fields v =
∑
vi ∂

∂xi , w =
∑
wi ∂

∂xi , the Lie bracket of v and w
is given by

[v, w] =

n∑
j=1

(
n∑

i=1

vi
∂wj

∂xi
− wi ∂v

j

∂xi

)
∂

∂xj
.

Alternatively, the Lie bracket can be defined via its action on C∞ functions
on M :

[v, w](f) = v(w(f))− w(v(f)).

2.3. Connections

Tangent vectors allow us to take derivatives of C∞ functions. Connections
allow us to take derivatives of sections of arbitrary vector bundles.

For a C∞ vector bundle E on M , a connection is a linear map

∇ : C∞(E) −→ C∞(E ⊗ T ∗
M ),

satisfying the Leibnitz rule

∇(fe) = f∇(e) + e⊗ df

for all C∞ sections e of E and C∞ functions f on M . For any vector field v
on M , the connection ∇ defines a linear map ∇v : C∞(E) → C∞(E) via

∇v(e) := ∇(e)(v).

We call ∇v the covariant derivative in the direction of v.
We may thus also think of ∇ as a linear map

∇ : C∞(E ⊗ TM ) −→ C∞(E).

When E = TM , the torsion of a connection ∇ : C∞(TM ⊗ TM ) → C∞(TM ) is
the linear map

T : C∞(Λ2TM ) −→ C∞(TM )

defined as
T (v ∧ w) := ∇v(w)−∇w(v)− [v, w].

We say ∇ is torsion-free or symmetric when T = 0.
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2.4. Curvature

Euclidean space is “flat”. What this means is that when we take second partial
derivatives of vector fields, the order of differentiation does not affect the final
result. Roughly speaking, the curvature of a connection measures the difference
between the second partials of a section of a vector bundle taken in different
orders.

For general vector fields v, w, the curvature measures the difference between
∇v∇w − ∇w∇v and the derivative in the direction of the bracket [v, w]. On
the tangent bundle of Euclidean space this difference is 0.

Precisely, the curvature of a connection ∇ is a linear map

R : C∞(E) −→ C∞(E ⊗ Λ2T ∗
M )

or, equivalently,
R : C∞(E ⊗ Λ2TM ) −→ C∞(E)

or a global section
R ∈ C∞(End(E)⊗ Λ2T ∗

M ).

It can be defined via its action on sections e of E and vector fields v, w as

R(e⊗ (v ∧ w)) = ∇v(∇w(e))−∇w(∇v(e))−∇[v,w](e).

We say that the connection ∇ (or sometimes the bundle E) is flat if R = 0.
In a coordinate chart with coordinates (x1, . . . , xn), the partial derivatives

commute, i.e., [
∂

∂xi
,
∂

∂xj

]
= 0

for all i, j. Hence

R

(
e⊗

(
∂

∂xi
∧ ∂

∂xj

))
= ∇ ∂

∂xi

(
∇ ∂

∂xj
(e)
)
−∇ ∂

∂xj

(
∇ ∂

∂xi
(e)
)

and the connection is flat if and only if its partial (covariant) derivatives com-
mute.

2.5. Parallel transport

Suppose given a C∞ vector bundle E on M with a connection

∇ : E −→ E ⊗ T ∗
M ,

and a smooth curve γ : [0, 1] → M . Parallel transport along γ produces
sections of the pull-back γ∗E that are ‘constant’ or ‘horizontal’ along γ. As we
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see below, such sections exist and are determined by their values at one point
of γ.

The pull-back γ∗E is a C∞ vector bundle on [0, 1] with fiber Eγ(t) at t ∈
[0, 1]. The connection ∇ defines the connection γ∗∇ on γ∗E as the composition

γ∗∇ : γ∗E −→ γ∗E ⊗ γ∗T ∗
M →→ γ∗E ⊗ T ∗

[0,1]

where the second map is induced by the projection T ∗
M →→ T ∗

[0,1].

In local coordinates (x1, . . . , xn) on M , with γ(t) = (x1(t), . . . , xn(t)),

γ̇(t) = (ẋ1(t), . . . , ẋn(t)) =

n∑
i=1

ẋi(t)
∂

∂xi

and, for all (local) sections e of E,

∇γ̇(t)(e) := ∇∑n
i=1 ẋi(t) ∂

∂xi
(e) =

n∑
i=1

ẋi(t)∇ ∂

∂xi
(e).

Definition and Proposition 2.1. Put x := γ(0), y := γ(1). Then, for all
e ∈ Ex = (γ∗E)0, there exists a unique smooth section s of γ∗E such that
s(0) = e and γ∗∇(s) = 0, i.e., ∇γ̇(t)(s) = 0.

The parallel transport of e along γ to y is Pγ(e) := s(1) ∈ Ey = (γ∗E)1.
The map Pγ : Ex −→ Ey is a linear isomorphism.

2.6. Holonomy

As we saw above, parallel transport defines linear isomorphisms between fibers
of E at points of M . In particular, for a given point x of M , it defines linear
automorphisms of the fiber Ex. The holonomy of ∇ is the group generated
by these automorphisms. It acts on all tensors of E and its invariants are the
covariantly constant tensors:

Definition and Proposition 2.2. If γ is a loop (i.e. x = y), then Pγ ∈
GL(Ex). The holonomy group Holx(∇) at x is

Holx(∇) := {Pγ | γ is a loop based at x}.

It has the following properties.

1. Holx(∇) is a Lie subgroup of GL(Ex):

γδ(t) =

{
δ(2t) if t ∈

[
0, 12

]
γ(2t− 1) if t ∈

[
1
2 , 1
]

γ−1(t) = γ(1− t),

Pγδ = Pγ ◦ Pδ, Pγ−1 = P−1
γ .



(8 of 44) ELHAM IZADI

2. If γ is a path from x to y, then

Holy(∇) = Pγ Holx(∇)P−1
γ .

Hence, up to conjugation, Holx(∇) only depends on the connected com-
ponent of M containing x.

3. if M is simply connected, then Holx(∇) is connected. Any loop can be
shrunk to a point:

γ : [0, 1]× [0, 1] −→M ; γs(t) := γ(s, t) ; γ1(t) = x for all t.

Then {Ps := Pγs
| s ∈ [0, 1]} is a path in Holx(∇) from P0 = Pγ0

to
P1 = Pγ1

= Id.

4. Let holx(∇) ⊂ gl(Ex) = End(Ex) be the Lie algebra of Holx(∇). Recall
that the curvature operator R(∇) belongs to C∞(E∗ ⊗ E ⊗ Λ2T ∗

M ) =
C∞(End(E)⊗ Λ2T ∗

M ). At a point x, the fiber R(∇)x of R(∇) belongs to
End(Ex)⊗ Λ2T ∗

xM . We have

R(∇)x ∈ holx(∇)⊗ Λ2T ∗
xM.

As we shall see below, Riemannian holonomy plays a central role in the
structure theory of Riemannian manifolds.

The connection ∇ induces connections on all tensor powers E⊗k ⊗ (E∗)⊗l,
and all exterior and symmetric powers of E and E∗ and their tensor products.
We shall denote these induced connections by ∇ as well.

Definition 2.3. A tensor S is called (covariantly) constant if ∇(S) = 0.

Theorem 2.4. For a tensor S, ∇(S) = 0 if and only if S is fixed by Holx(∇),
if and only if Pγ(S(x)) = S(y) for all x, y ∈M and all paths γ from x to y.

3. Riemannian manifolds

A C∞ manifold is called Riemannian if it has a Riemannian metric, i.e., a
(2,0)-tensor g ∈ C∞((T ∗

M )2 which is symmetric:

g ∈ C∞(Sym2 T ∗
M ),

and defines a positive definite quadratic form on the tangent space TM,x for all
x ∈ M . It is a fundamental result in differential geometry that every smooth
manifold can be endowed with a Riemannian metric.

Riemannian manifolds have canonical connections on their tangent bundles:
the Levi-Civita connection. The holonomy of the Levi-Civita connection is
called Riemannian holonomy and the classification of Riemannian manifolds is
based on the classification of Riemannian holonomy groups.
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3.1. Levi-Civita connection

Suppose (M, g) is a Riemannian manifold. The fundamental theorem of Rie-
mannian geometry is the following.

Theorem 3.1. There exists a unique torsion free (or symmetric) connection ∇
on TM such that ∇g = 0. This unique connection is called the Levi-Civita or
Riemannian connection of (M, g).

One can verify that the condition ∇g = 0 is equivalent to the following
compatibility property: For all vector fields u, v, w on M ,

u(g(v, w)) = g(∇uv, w) + g(v,∇uw).

The Levi-Civita connection ∇ can be explicitly defined via

2g(∇uv, w) = u(g(v, w)) + v(g(u,w))− w(g(u, v))

+ g([u, v], w)− g([v, w], u)− g([u,w], v).

The curvature R(∇) is a (1, 3) tensor:

R(∇) : TM −→ TM ⊗ Λ2T ∗
M .

More symmetries of R(∇) can be exhibited by defining the (0, 4) tensor R̃(∇)
as the compostion

R̃(∇) : TM
R(∇)−→ TM ⊗ Λ2T ∗

M
g⊗Id−→ T ∗

M ⊗ Λ2T ∗
M .

While a priori R̃(∇) ∈ C∞((T ∗
M )⊗2 ⊗ Λ2T ∗

M ), one can show that in fact

R̃(∇) ∈ C∞(Sym2(Λ2T ∗
M )).

The Bianchi identities can be written in the form

R(u, v)w +R(v, w)u+R(w, u)v = 0,

∇uR(u, v) +∇vR(w, u) +∇wR(u, v) = 0.

In a basis of local coordinates x1, . . . , xn, we can write R̃(∇) as

R̃(∇) =
∑

a,b,c,d

R̃abcd

(
dxa ∧ dxb ⊙ dxc ∧ dxd

)
,

where α⊙ β := α⊗ β + β ⊗ α is the symmetric tensor. The Bianchi identities
then can be written as

R̃abcd + R̃acdb + R̃adbc = 0,
∂

∂xe
R̃abcd +

∂

∂xc
R̃abde +

∂

∂xd
R̃abec = 0.
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3.2. Ricci curvature

The Ricci curvature is a (0, 2) tensor, obtained by contracting R(∇):
At each point x ∈M , the curvature tensor R defines a multilinear map

Rx : TxM × TxM × TxM −→ TxM
(u, v, w) 7−→ R(u, v)w

The Ricci curvature is the (0, 2) tensor defined as

Ricx : TxM × TxM −→ R
(u, v) 7−→ tr(w 7→ Rx(u,w)v)

where tr is the trace of a linear map. It follows from the symmetries of the
curvature tensor that the Ricci curvature is symmetric. In local coordinates, if
we write the curvature tensor as

R(∇) =
∑

a,b,c,d

Ra
bcd

∂

∂xa
⊗ dxb ⊗ dxc ∧ dxd,

then the coordinates of the Ricci tensor are

Ricab =
∑
c

Rc
acb.

Definition 3.2. We say g is an Einstein metric if the Ricci curvature is a
constant multiple of the metric. We say g is Ricci flat if the Ricci curvature
is 0.

3.3. Riemannian holonomy

For a Riemannian manifold (M, g), the holonomy of the Levi-Civita connec-
tion ∇ is called Riemannian holonomy. For x ∈M , we write

Holx(g) := Holx(∇) ⊂ GL(TxM),

holx(g) := holx(∇) ⊂ gl(TxM) = End(TxM) = TxM ⊗ T ∗
xM.

A first symmetry property of Riemannian holonomy is seen using the isomor-
phism g : TM → T ∗

M .

Proposition 3.3. We have

(gx ⊗ Idx)(holx(g) ⊂ Λ2T ∗
xM.

We saw that the curvature tensor R̃ ∈ (holx(g)⊗Λ2T ∗
xM)∩Sym2(Λ2T ∗

xM).
Hence

Theorem 3.4.
R̃ ∈ Sym2 holx(g) ⊂ Sym2(Λ2T ∗

xM).
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3.4. Reducibility

The first step in the classification of Riemannian manifolds is to decompose
them into their ‘irreducible’ factors. As we see below, these correspond to the
irreducible summands in the representation of the Riemannian holonomy group
on the tangent space of M .

Definition 3.5. A Riemannian manifold is called (locally) reducible if every
point has a neighborhood isometric to a product. It is called irreducible if it is
not locally reducible. We have

Proposition 3.6. Suppose a neighborhood of x ∈M is isometric to the product
(M1, g1)× (M2, g2). Then

Holx(g1 × g2) = Holx(g1)×Holx(g2).

Theorem 3.7. If (M, g) is irreducible at x, then Rn = TxM is an irreducible
representation of Holx(g).

3.5. Symmetric and locally symmetric spaces

A large and relatively well understood class of irreducible Riemannian mani-
folds is that of locally symmetric spaces.

Definition 3.8. A Riemannian manifold is called symmetric if, for all p ∈M ,
there exists an isometry sp : M → M such that s2p = IdM and p is an isolated
fixed point for sp.

Definition 3.9. A Riemannian manifold is called locally symmetric if every
point has an open neighborhood isometric to an open subset of a symmetric
space. It is called nonsymmetric if it is not locally symmetric.

Theorem 3.10. (M, g) is locally symmetric if and only if ∇R = 0.

3.6. Geodesics and completeness

To better understand locally symmetric spaces, we use ‘geodesics’. Geodesics
allow us to define a notion of ‘completeness’ (often called geodesic complete-
ness) for Riemannian manifolds. Among other things, these notions allow us
to describe all symmetric spaces in terms of Lie groups.

Definition 3.11. A geodesic is a parametrized smooth curve γ : (a, b) → M
such that, for all t ∈ (a, b), ∇γ̇(t)γ̇(t) = 0.

Intuitively, a geodesic is the trajectory of a particle moving with constant
velocity on the manifold: the equation ∇γ̇(t)γ̇(t) = 0 means that the accelera-
tion of the particle is 0 with respect to the Levi-Civita connection.
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The Riemannian metric defines a norm in the tangent space at each point
ofM . By integrating the length of the velocity vector of a parametrized (piece-
wise) smooth curve, we define the length of such a curve. One can show that
geodesics are locally the ‘shortest’ curves on M for the Riemannian length. It
can happen however that there are many geodesics of different lengths between
two given points on a manifold. The simplest example of this is the cylin-
der with Riemannian metric induced from R3: Consider a vertical cylinder,
obtained by revolving the vertical line L at x = 1, y = 0 around the z-axis.
Then the line L and all helixes on the cylinder are geodesics. Such curves give
infinitely many geodesics between any pair of distinct points on L.

The Riemannian distance is defined as the infimum of the lengths of the
(piecewise) smooth curves between two points on M . We have the following
useful existence and uniqueness theorem for geodesics.

Theorem 3.12. For all p ∈ M,v ∈ TpM , there exists a unique geodesic γ :
(a, b) →M such that γ(0) = p, γ̇(0) = v.

Definition 3.13. A manifold (M, g) is (geodesically) complete if every geodesic
(a, b) →M can be defined on all of R ⊃ (a, b).

All compact Riemannian manifolds and all symmetric spaces are complete.
Every path connected Riemannian manifold which is also a complete metric
space with respect to the Riemannian distance is geodesically complete.

We can now give a description of symmetric spaces in terms of Lie groups.

Proposition 3.14. Suppose (M, g) is a connected, simply connected symmetric
space. Then (M, g) is complete. Put

G := {sp ◦ sq | p, q ∈M} ⊂ Isom(M).

Then G is a connected Lie group. Choose p ∈ M and let H be the stabilizer
subgroup of p in G. Then H is a closed connected Lie subgroup of G and the
map

G/H −→ M
g 7−→ g(p)

is a diffeomorphism.

3.7. De Rham’s theorem

De Rham’s theorem describes the decomposition of a Riemannian manifold
into the product of its irreducible factors.

Theorem 3.15. Suppose (M, g) is Riemannian, complete, simply connected.
Then M is isometric to a product M0 ×M1 × . . . ×Mk where M0 is a Eu-
clidean space and M1, . . . ,Mk are irreducible. The decomposition is unique up
to reordering M1, . . . ,Mk. The holonomy group of M is the product of the
holonomies of M1, . . . ,Mk.
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3.8. Berger’s theorem

Suppose (M,G) is connected. Then, Hol(g) := Holx(g) is independent of the
choice of x up to conjugation in GLn(R).

Definition 3.16. The restricted holonomy group Hol(g)0 is the connected com-
ponent of the identity of Hol(g).

Berger’s theorem classifies the possibilities for the restricted holonomy
group Hol(g)0 and describes the corresponding manifolds.

Theorem 3.17. Suppose (M, g) is Riemannian, complete, connected, nonsym-
metric, irreducible. Then the restricted holonomy group Hol(g)0 is one of the
following:

1. Hol(g)0 ∼= SO(n) (automorphisms of Rn preserving the metric, generic
metric),

2. n = 2m ≥ 4, Hol(g)0 = U(m) ⊂ SO(n) (automorphisms of Cm perserv-
ing a hermitian form, Kähler),

3. n = 2m ≥ 4, Hol(g)0 = SU(m) ⊂ SO(n) (automorphisms of Cm, Calabi-
Yau, Ricci-flat, Kähler),

4. n = 4r ≥ 4, Hol(g)0 = Sp(r) ⊂ SO(n) (R-linear automorphisms of
Hr preserving a quaternionic hermitian form, hyperkähler, Ricci-flat,
Kähler), (when r = 1, the group Sp(1) is abstractly isomorphic to the
group SU(2) = S3 of unit quaternions)

5. n = 4r ≥ 8, Hol(g)0 = Sp(r)Sp(1) ⊂ SO(n) (R-linear automorphisms of
Hr, quaternionic-Kähler, Einstein, not Ricci-flat, not Kähler), (the group
Sp(1) = SU(2) = S3 of unit length quaternions acts on Hr by right scalar
multiplication and commutes with Sp(r), however, this action is different
from the action of Sp(1) on H preserving a quaternionic hermitian form;
the Lie group Sp(r)Sp(1) generated by combining this action with that of
Sp(r) is abstractly isomorphic to (Sp(r) × Sp(1))/(Z/2Z); when r = 1,
Sp(1)Sp(1) = SO(4)),

6. n = 7, Hol(g)0 = G2 ⊂ SO(7) (automorphisms of ImO ∼= R7, excep-
tional, Ricci-flat),

7. n = 8, Hol(g)0 = Spin(7) ⊂ SO(8) (automorphisms of O ∼= R8, excep-
tional, Ricci-flat).
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4. Kähler manifolds

For a complex manifold M , multiplication by i defines an endomorphism I :
TM → TM satisfying I2 = − Id. This is called the complex structure (operator)
of M . A metric g on M is called Hermitian if

g(v, w) = g(Iv, Iw), for all vector fields v, w.

The (1, 1) form associated to g and I is

ω(v, w) := g(Iv, w), for all vector fields v, w.

Equivalently, ω is the composition

ω : TM
I−→ TM

g−→ T ∗
M .

The fact that ω is a (1, 1) form means ω(Iv, Iw) = ω(v, w). One also checks
that ω is anti-symmetric.

It is easy to check that any two of {I, g, ω} determine the third.

Definition and Proposition 4.1. The metric g is Kähler with respect to I
if one of the following equivalent conditions hold:

1. dω = 0,

2. ∇ω = 0,

3. ∇I = 0.

In such a case, ω is called the Kähler form of g.

So g is Kähler if and only if ω and I are constant. Equivalently Hol(g)
preserves ω and I. The subgroup of SO(n) preserving I is U(m) (n = 2m).
Therefore, M is Kähler if and only if Hol(g) ⊂ U(m).

4.1. Ricci form

Given a Kähler manifold (M, g, I), its Ricci form ρ is the differential form
associated to the Ricci curvature via I:

ρ(v, w) := Ric(Iv, w), for all vector fields v, w.

Equivalently, ρ is the composition

ρ : TM
I−→ TM

Ric−→ T ∗
M .

As in the case of ω and g, one has ρ ∈ C∞(Λ2T ∗
M ). The Ricci form is also

the curvature of the connection induced on KM := Ωm
M by the Levi-Civita

connection. We have the following

Proposition 4.2. The Ricci form ρ is a closed (1, 1) form. Its cohomology
class in H2(M,R) is [ρ] = 2πc1(KM ) = 2πc1(T

∗
M ).



HYPERKÄHLER MANIFOLDS (15 of 44)

4.2. Ricci flatness (the Calabi–Yau case)

Since the Ricci form ρ is the curvature of the connection induced on KM by
the Levi-Civita connection, if ρ = 0, then KM is a flat bundle.

Assume now thatM is Ricci-flat and simply connected. The flat bundleKM

admits locally flat, i.e., covariantly constant, sections. Since M is simply con-
nected, KM has a global flat section. Such a section is hence invariant under
Riemannian holonomy and, by the following lemma which is a consequence of
Bochner’s principle, holomorphic.

Lemma 4.3. Suppose (M, I, g) is a compact Kähler, simply connected, Ricci-
flat manifold with holonomy group H. For all x ∈ M and all positive integers
p, the natural evaluation map

H0(M,Ωp
M ) −→ (Ωp

M,x)
H

w 7−→ wx

is an isomorphism.

Hence KM has a nowhere vanishing holomorphic section, which implies
that KM is trivial, i.e., M is Calabi–Yau. Furthermore, on the tangent space
TpM at a point p ∈M , a nonvanishing differential m-form is a multiple of the
determinant. Hence Hol(g) preserves the determinant. Since we already know
that Hol(g) ⊂ U(m), this implies that Hol(g) ⊂ SU(m).

Conversely, if Hol(g) ⊂ SU(m), then M admits a nowhere vanishing differ-
ential m-form, KM is trivial and ρ = 0.

4.3. The hyperkähler case

Recall that the quaternions have bases of the form

H = R1⊕ Ri⊕ Rj ⊕ Rk, with i2 = j2 = k2 = ijk = −1.

A triple (i, j, k) as above is called a quaternionic triple. The Lie group Sp(r) is
the group of R-linear endomorphisms ofHr preserving a quaternionic Hermitian
form q. Recall that q is quaternionic Hermitian if

q(av, bw) = a b q(v, w), for all a, b ∈ H, v, w ∈ Hr

where, if a = λ + µi + νj + ρk, then a = λ − µi − νj − ρk. Such a q can be

represented by an r × r matrix A with entries in H such that AA
t
= Id is the

identity of Hr.
We can embed Sp(r) in SU(2r) each time we choose i ∈ H with i2 = −1 as

follows.
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Complete i to a quaternionic triple (i, j, k) and write

q = h+ ωj

where h is Hermitian with respect to i and ω is alternating C-bilinear with
respect to the complex structure on Hr given by i. Then Sp(r) can be identified
with the group of R-linear automorphisms of H preserving h and ω. Hence,
thinking of U(2r) as the group of transformations of Hr = C⊕Ci preserving h,
we can identify Sp(r) as the subgroup of U(2r) of transformations preserving ω.
In particular, they preserve ∧rω, which means they belong to SU(2r).

Given a Riemannian manifold M with Holp(g) ⊂ Sp(r), we can identify
TpM with Hr. The form ω obtained as above by decomposing the form q is in-
variant under the holonomy group ofM, hence globalizes to an alternating flat,
i.e., holomorphic, 2-form on M which is non-degenerate everywhere. Further-
more, the quaternionic triple (i, j, k) gives three complex structures I, J,K on
M satisfying the quaternionic relations and with respect to which g is Kähler
(I, J,K are invariant under Holp(g), hence flat). We then obtain a sphere of
complex structures λ = aI+ bJ+ cK with a, b, c ∈ R, a2+ b2+ c2 = 1 such that
∇λ = 0. The metric g is therefore Kähler with respect to all these complex
structures.

Note that if Hol(g) = U(m) or SU(m), then M has a unique complex
structure with respect to which g is Kähler because the only complex endo-
morphisms commuting with U(m) or SU(m) are multiplication by scalars. So
Calabi–Yaus have only one Kähler complex structure.

If Hol(g) = Sp(r), then M has exactly an S2 of Kähler complex struc-
tures because the only quaternionic endomorphisms commuting with Sp(r) are
multiplication by quaternionic scalars.

If M is a complex torus, then Hol(g) = 0. Any complex structure is then
Kähler.

Definition 4.4. We say that a simply connected Ricci-Flat manifold M is
irreducible hyperkähler if Hol(g) = Sp(r), i.e., M has exactly an S2 of Kähler
complex structures.

4.4. The Calabi conjecture and its consequence

Theorem 4.5. Calabi’s conjecture, Yau’s theorem:
Let (M, I) be a compact complex manifold and g a metric Kähler with respect

to I with Kähler form ω and Ricci form ρ. Let ρ′ be a real closed (1, 1) form on
M with cohomology class [ρ′] = [ρ] = 2πc1(KM ). There exists a unique Kähler
metric g′ on M whose Ricci form is ρ′ and whose Kähler form ω′ satisfies
[ω′] = [ω].

For Ricci-flat manifolds this has the following useful consequence.



HYPERKÄHLER MANIFOLDS (17 of 44)

Corollary 4.6. Suppose (M, I, g) is compact Kähler with c1(KM ) = 0. There
exists a unique Ricci-flat Kähler metric in each Kähler class on M . The Ricci-
flat Kähler metrics on M form a smooth family of dimension h1,1(M), isomor-
phic to the Kähler cone of M .

4.5. The decomposition theorem

The following decomposition theorem for Ricci-flat manifolds, usually referred
to as the Beauville–Bogomolov decomposition theorem, is a consequence of De
Rham’s decomposition theorem, the Berger classification theorem and results
of Cheeger–Gromoll and Bochner. (see [2, Théorème 1]).

Theorem 4.7. Let (M, I, g) be a compact Kähler, complete, Ricci-flat manifold.
Then

1. the universal cover of M is isomorphic to Ck ×
∏

i Vi ×
∏

j Xj where

Ck has the standard Kähler metric, and, for all i, Vi is compact simply
connected with holonomy SU(mi) and, for all j, Xj is compact simply
connected with holonomy Sp(rj),

2. there exists a finite étale cover of M isomorphic to T ×
∏

i Vi ×
∏

j Xj

where T is a complex torus of complex dimension k.

The proof uses

Lemma 4.8. Suppose (M, I, g) is a compact Kähler, simply connected, Ricci-flat
manifold. The group of automorphisms of (M, I) is discrete. In particular, the
group of automorphisms of (M, I, g) is finite (because it is contained in SO(n)
which is compact).

5. Holomorphic symplectic manifolds

We now present the infinite series of examples of compact hyperkähler mani-
folds constructed by Beauville [2]. For this, the point of view of holomorphic
symplectic geometry is more convenient. We begin with the following.

Proposition 5.1. Suppose (M, I, g) is a compact Kähler, simply connected,
Ricci-flat manifold of complex dimension 2r with holonomy group Sp(r). Then

1. there exists a holomorphic 2-form φ on M which is nondegenerate every-
where (represented by the form ω in the decomposition of the quaternionic
Hermitian form q = h+ ωj),

2. for all 0 ≤ p ≤ r,

H0(M,Ω2p+1
M ) = 0, H0(M,Ω2p

M ) = Cφp.
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Definition and Proposition 5.2. A compact Kähler manifold X is called
holomorphic symplectic if there exists an everywhere non-degenerate holomor-
phic 2-form on X. This is equivalent to: X is compact hyperkähler or X is
Kähler and Holg(X) ⊂ Sp(r).

A compact Kähler manifold X is called irreducible holomorphic symplectic
if X is simply connected and H0(X,Ω2

X) is generated by an everywhere non-
degenerate holomorphic 2-form. This is equivalent to: X is irreducible compact
hyperkähler X is Kähler and Holg(X) = Sp(r).

5.1. The case of surfaces

In dimension 2, Sp(1) = SU(2), so Calabi–Yau and hyperkähler are the same:
these are K3 surfaces and complex tori.

Definition 5.3. A K3 surface is a compact complex manifold of dimension 2
such that Ω2

X
∼= OX and H1(X,OX) = 0.

One can prove that K3 surfaces are simply connected and their integral
cohomology is torsion free.

It is a deep theorem of Siu that a K3 surface admits a unique Kähler metric.
Examples of algebraic K3 surfaces (see, e.g., [3]):

1. Double covers of P2 branched along smooth sextics.

2. Smooth quartics in P3.

3. (2, 3) complete intersections in P4.

4. (2, 2, 2) complete intersections in P5.

5.2. Hilbert schemes of points

Both infinite series of examples are constructed using the Hilbert schemes of
points, the first uses the Hilbert schemes of points of K3 surfaces, and the
second uses the Hilbert schemes of points of complex tori of dimension 2. The
construction begins by showing that these Hilbert schemes have natural holo-
morphic symplectic structures.

Suppose S is a compact complex manifold of dimension 2. Denote Sr the
r-th Cartesian power of S and

π : Sr →→ S(r) := Sr/Sr

its quotient by the action of Sr permuting the factors. Let ∆ij ⊂ Sr be the
diagonal where the i-th and j-th components are equal. The action of Sr is
not free on the diagonals ∆ij . The stabilizer of a generic point of ∆ij is the
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subgroup {1, (ij)} ⊂ Sr where (ij) is the transposition exchanging i and j.
The quotient morphism π is étale away from ∪i,j∆ij . For any i, j, the diagonal
∆ij has codimension 2 in Sr. Hence, by the theorem on the purity of the
ramification locus of a morphism of smooth varieties, the symmetric power
S(r) is singular along the diagonal D := π(∆ij) = π(∪i,j∆ij). Note that D is
irreducible.

The symmetric power S(r) has a natural desingularization: the Hilbert
scheme S[r] of length r Artinian subschemes of S. The natural map ϵ : S[r] →
S(r) sends a subscheme Z of length r to its underlying 0-cycle. Since, for any
r distinct points x1, . . . , xr ∈ S, there exists a unique Artinian subscheme sup-
ported on {x1, . . . , xr}, the map ϵ : S[r] \ ϵ−1(D) → S(r) \D is an isomorphism.

Let D∗ ⊂ D be the open subset where exactly two points of the K3 surface
are equal. Given a fixed 2x1 + x2 + . . .+ xr−1 ∈ D∗, the datum of an Artinian
subscheme of length r supported on 2x1 + x2 + . . . + xr−1 is equivalent to
the datum of a tangent line to S at x1. So the set of Artinian subschemes of
length r supported on 2x1 +x2 + . . .+xr−1 is naturally identified with PTx1S.

Let S
(r)
∗ , respectively Sr

∗ , be the open subset where at most two of the

coordinates coincide and let S
[r]
∗ be the inverse image of S

(r)
∗ in S[r]. The fiber

of ϵ : S
[r]
∗ → S

(r)
∗ at x = 2x1 + x2 + . . .+ xr−1 ∈ D∗ is naturally identified with

PTx1S. One can prove:

Theorem 5.4. 1. The complex analytic pair (S
(r)
∗ , D∗) is locally isomorphic

to (B × C,B × {O}), where B is a ball, C is a cone with vertex O over
a smooth conic in P2.

2. The complex manifold S
[r]
∗ is the blow up of S

(r)
∗ along D∗.

3. If we denote Bl∆(S
r
∗) the blow up of Sr

∗ along the union of its diagonals,
then the action of Sr lifts to Bl∆(S

r
∗) and

S
[r]
∗ = Bl∆(S

r
∗)/Sr.

So we have the Cartesian diagram

Bl∆(S
r
∗)

ρ
��

η
// Sr

∗

π
��

S
[r]
∗

ϵ // S
(r)
∗ .

Note that when r = 2, we have D∗ = D,S2
∗ = S2, S

(2)
∗ = S(2), S

[2]
∗ = S[2], and

S[2] is the blow up of S(2) along the diagonal.
Next we construct differential forms on S[r], starting from differential forms

on S.
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Given a holomorphic differential form ω on S, the form ψ := pr∗1ω + . . . +
pr∗rω and its pull-back η∗ψ to Bl∆(S

r
∗) are invariant under the action of Sr.

Hence there exists a holomorphic differential form φ on S
[r]
∗ such that

η∗ψ = ρ∗φ.

Proposition 5.5. If KS is trivial, then S[r] admits a holomorphic symplectic
form.

Proof. Let ω be a generator of KS . Defining ψ and φ as above, we show that
φ extends to S[r] as an everywhere non-degenerate form.

The form φ extends to all of S[r] because S[r] \S[r]
∗ has codimension ≥ 2 in

S[r]. The fact that φ is everywhere non-degenerate means that ∧rφ does not
vanish anywhere.

The form ∧rφ is a section of KS[r] , so the locus where it vanishes is a
canonical divisor on S[r].

Denote Eij := η∗∆ij . Then the divisors Eij are the exceptional divisors of
the blow up η : Bl∆(S

r
∗) → Sr

∗ and the ramification divisors of the morphism

ρ : Bl∆(S
r
∗) → S

[r]
∗ . Hence

KBl∆(Sr
∗)

= ρ∗K
S

[r]
∗

+
∑
i<j

Eij ,

and the divisor of zeros of ρ∗ ∧r φ is

Div(ρ∗ ∧r φ) = ρ∗ Div(∧rφ) +
∑
i<j

Eij .

However,

Div(ρ∗ ∧r φ) = Div(η∗ ∧r ψ) = Div(∧rη∗ψ) =
∑
i<j

Eij .

Indeed, choose z = (x1, . . . , xr) ∈ Sr, then

TzS
r = Tx1

S ⊕ . . .⊕ Txr
S.

The differential form ψ is a bilinear form on TzS
r, the decomposition TzS

r =
Tx1

S ⊕ . . . ⊕ Txr
S is orthogonal with respect to ψ and ψ is non-degenerate

at any z. Hence Div(∧rψ) = 0 on Sr. However, the differential of the blow
up η : Bl∆(S

r
∗) → Sr

∗ has image of dimension 2r − 1 along the union of the
diagonals, so η∗ψ is degenerate of rank 2r − 2 along ∪i<jEij . It follows that
Div(∧rη∗ψ) =

∑
i<j Eij .

So ρ∗ Div(∧rφ) = 0 and Div(∧rφ) = 0.
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To determine the type of S[r], we compute its fundamental group. The
map Sr → S(r) is a Galois cover with Galois group Sr. So we have the exact
sequence of fundamental groups

1 −→ Sr −→ π1(S
r) −→ π1(S

(r)) −→ 1.

We have

π1(S
r) = π1(S

r
∗) = π1(Bl∆(S

r
∗)), π1(S

(r)) = π1(S
(r)
∗ ), π1(S

[r]) = π1(S
[r]
∗ ).

The map Bl∆(S
r
∗) → S

[r]
∗ is also a Galois cover with Galois group Sr. So we

have the commutative diagram of exact sequences

1 // Sr
// π1(Bl∆(S

r
∗)) // π1(S

[r]
∗ )

��

// 1

1 // Sr
// π1(S

r) // π1(S
(r)) // 1.

Therefore, we also have π1(S
[r]
∗ )

∼=→ π1(S
(r)).

It is a fact from algebraic topology and group theory that π1(S
(r)) is the

largest commutative quotient of π1(S), hence it is isomorphic to H1(S,Z).

Lemma 5.6. 1. Hi(S(r),Q) = Hi(Sr,Q)Sr ,

2. H2(S[r],Q) = H2(S(r),Q)⊕Q[E],

3. H2(S(r),Q) = H2(S,Q)⊕ Λ2H1(S,Q).

Proof. 1. Standard.

2. Replace Sr by Sr
∗ , S

(r) by S
(r)
∗ and S[r] by S

[r]
∗ : the second cohomology

does not change. We compute

H2(S
[r]
∗ ,Q) = H2(Bl∆(S

r
∗),Q)Sr

=
(
H2(Sr

∗ ,Q)⊕ (⊕1≤i<j≤rQ[Eij ])
)Sr

= H2(Sr
∗ ,Q)Sr ⊕Q[ρ∗E].

3. We compute, using part (1),

H2(S(r),Q) = H2(Sr,Q)Sr ∼=
(
H2(S,Q)⊕r ⊕

(
H1(S,Q)⊗2

)⊕(r2))Sr

= H2(S,Q)⊕
(
H1(S,Q)⊗2

)τ ∼= H2(S,Q)⊕ Λ2H1(S,Q)

where, by skew-symmetry, τ sends a tensor v ⊗ w to −w ⊗ v.
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We immediately obtain.

Corollary 5.7. If S is a K3 surface, then S[r] is an irreducible holomorphic
symplectic manifold and

H2(S[r],Q) = H2(S,Q)⊕Q[E].

S[r] is Kähler by results of Varouchas.

5.3. Generalized Kummers

Now take S = A a complex torus of dimension 2. Then A[r+1] is a holomorphic
symplectic manifold. As in the case of K3 surfaces, it is Kähler. By the previous
results,

π1(A
[r+1]) = H1(A,Z) = π1(A) ̸= {1},

H2(A[r+1],Q) = H2(A,Q)⊕ Λ2H1(A,Q)⊕Q[E].

So in this case, the Hilbert scheme is not irreducible holomorphic symplectic.
We determine its factors according to the decomposition theorem.

Consider the addition map s : A(r+1) → A and its composition

ζ : A[r+1] ρ−→ A(r+1) s−→ A.

Definition 5.8. The (r + 1)-st generalized Kummer manifold of A is

Kr := ζ−1(0).

One can see that Kr is a manifold as follows.
The complex torus A acts on itself by translation, hence also on A[r+1] by

pull-back:
If Z ⊂ A is an analytic subspace of length r+1, then a ∈ A acts as Z 7→ t∗aZ

on A[r+1]. The map ζ is equivariant for this action on A[r+1] and the action of
A on itself via x 7→ t∗(r+1)ax. In other words we have the Cartesian diagram

A×A[r+1]

��

(a,Z)7→t∗aZ
// A[r+1]

ζ

��

A×A
(a,x)7→t∗(r+1)ax

// A

which induces the Cartesian diagram

A×Kr

��

(a,Z) 7→t∗aZ// A[r+1]

ζ

��

A
a 7→(r+1)a

// A.
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It follows that ζ is a smooth map and all its fibers are isomorphic to Kr which
is therefore also smooth.

Proposition 5.9. The holomorphic symplectic structure of A[r+1] restricts to
a holomorphic symplectic structure on Kr.

Proof. Since Kr is a fiber of a smooth morphism, its normal bundle is trivial:
the normal space at every point of Kr maps isomorphically onto T0A, so that
we have NKr|A[r+1]

∼= T0A⊗OKr . From the normal bundle sequence

0 −→ TKr
−→ TA[r+1] |Kr

−→ NKr|A[r+1] −→ 0

we obtain KKr
∼= KA[r+1] |Kr

∼= OKr
.

Recall the differential forms ψ = pr∗1ω⊕. . .⊕pr∗r+1ω and φ with η∗ψ = ρ∗φ.
The form ∧r(φ|Kr ) is a section of KKr

∼= OKr . We show that it remains
everywhere non-degenerate. As before, this means that ∧r(φ|Kr

) does not
vanish anywhere. Since KKr

is trivial, either ∧r(φ|Kr
) is zero everywhere or it

does not vanish anywhere. We prove that it is nonzero at one point.
Let Z = x1 + . . .+ xr+1 ∈ Kr be such that the xi are all distinct. Then

TZA
[r+1] ∼= T(x1, . . . , xr+1)A

r+1 ∼= Tx1
A⊕ . . .⊕ Txr+1

A ∼= (T0A)
⊕(r+1).

We can choose the isomorphism above in such a way that the differential dζ :
TZA

[r+1] → T0A of ζ is the sum map. The form φ acts as ω on each summand
T0A of TZA

[r+1] and the summands are orthogonal to each for φ. It is then an
exercise in linear algebra to check that φ|Ker dζ is non-degenerate, i.e., ∧r(φ|Kr

)
is not 0.

Proposition 5.10. The manifold Kr is simply connected. For r ≥ 2, we have

H2(Kr,Q) ∼= H2(A,Q)⊕Q[E]

where E is the intersection of the exceptional divisor of A[r+1] with Kr.

Proof. Immediate from the definition of Kr and the description of the coho-
mology and fundamental group of A[r+1].

It now follows that the factors of A[r+1] in the decomposition theorem are
Kr and A itself.

Note that S[r] (for K3 surfaces S) and Kr have different Betti numbers,
hence are not deformation equivalent. These provide two infinite series of
families of hyperkähler manifolds.

There are two known examples of families of hyperkähler manifolds due
to O’Grady that are not deformation equivalent to Hilbert schemes of K3s or
generalized Kummers: these are hyperkählers of dimensions 6 and 10.

Question 5.11. Are there other families of compact irreducible hyperkählers?
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6. Moduli of hyperkählers, the Beauville-Bogomolov
form, the period domain and the period map

6.1. Moduli of complex structures and Teichmüller space

Given a differentiable manifold X, there can be many different complex struc-
tures on X. We define the Teichmüller space of X as

Teich(X) := {complex structures on X}/ ∼0

where two complex structures I, J on X satisfy I ∼0 J if there exists a diffeo-
morphism φ : X → X isotopic (or homotopic) to the identity IdX such that
φ∗I = J . The moduli space of complex structures on X is, by definition,

Mcx(X) := {complex structures on X}/ ∼

where two complex structures I, J on X satisfy I ∼ J if there exists a diffeo-
morphism φ : X → X such that φ∗I = J . If we denote Diff(X) the group of
diffeomorphisms of X and Diff0(X) its connected component of the identity,
then G := Diff(X)/Diff0(X) is the discrete group of components of Diff(X),
and

Mcx(X) = Teich(X)/G.

A priori, Mcx(X) is the space that we are interested in. However, it usually
does not have many good properties while Teich(X) does. So we will, most of
the time, work with small open sets of Teich(X) which describe small defor-
mations of given complex structures.

6.2. Universal families and Kuranishi’s theorem

Suppose given a complex manifold (X, I).

Definition 6.1. A family of complex manifolds is a smooth proper morphism
of complex spaces

π : X → S.

A deformation of (X, I) is a family of complex manifolds with a point s0 ∈ S
and an isomorphism X0 := π−1(s0) ∼= X.

A deformation is called universal if, for any deformation X ′ → S′, there
exists a unique morphism φ : S′ → S such that φ(s′0) = s0 and X ′ → S′ is the
pull-back of X → S under φ. In other words, we have the Cartesian diagram

X ′

��

// X

π

��

S′
φ
// S.
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It immediately follows from its definition that the universal deformation is
unique up to unique isomorphism and we denote it

X → Def(X).

Kuranishi’s theorem is the following.

Theorem 6.2. Suppose (X,I) is a compact complex manifold with H0(X,TX)=
0. Then a local universal deformation of (X, I) exists and it is universal for
all of its fibers.

Under the conditions of the theorem, the local universal deformation X →
Def(X) is sometimes called the Kuranishi family.

Note that the condition H0(X,TX) = 0 means that there are no global
holomorphic vector fields on X or X has no infinitesimal automorphisms: given
two complex manifolds X,Y and a holomorphic map f : X → Y , the tangent
space to the space of holomorphic maps Hom(X,Y ) at f can be identified with
H0(X, f∗TY ). This can be deduced from general results in deformation theory,
applied to the deformations of the graph of f in X × Y .

6.3. Unobstructedness for K-trivial Kähler manifolds

For any compact complex manifold X, if H0(X,TX) = 0, then X has a local
or small universal deformation denoted X → Def(X). By this we mean a germ
of a deformation, i.e., whose base is suitably small. Such a deformation is
universal for all its fibers, its base Def(X) is a “Kuranishi slice” ⊂ H1(X,TX).
For t ∈ Def(X) small, we have

Tt Def(X) = H1(Xt, TXt
).

The obstructions to deformations (to various orders) provide local analytic
equations for Def(X) in a neighborhood of 0 ∈ H1(X,TX). We say that the
deformations ofX are unobstructed if all the obstructions to deformations are 0.
If the deformations of X are unobstructed (i.e., dimT0 Def(X) = dimDef(X)),
then the base Def(X) is a small open neighborhood of the origin in H1(X,TX).
The following theorem is due to Bogomolov in the hyperkähler case and to
Tian-Todorov in the general case.

Theorem 6.3. If the canonical bundle KX is trivial (we say X is K-trivial),
then the deformations of X are unobstructed.

We have the following facts.

• If X is Kähler, then so is any small deformation of X.

• If X is Kähler and K-trivial, then small deformations Xt of X are also
Kähler and K-trivial and h1(TXt) is constant.
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• If X is holomorphic symplectic, then small deformations of X are also
holomorphic symplectic. If X is irreducible holomorphic symplectic, then
all fibers of any deformation of X are irreducible holomorphic symplectic.

6.4. The Beauville-Bogomolov form

The key to understanding the deformations of hyperkähler manifolds is the
period domain. Small open subsets of the period domain are isomorphic
to Def(X). We define the period domain using the second cohomology of
hyperkähler manifolds, together with a non-degenerate quadratic form: the
Beauville-Bogomolov form.

Suppose X is irreducible holomorphic symplectic (irreducible hyperkähler)
of dimension 2n and choose σ ∈ H0(Ω2

X) such that∫
X

(σσ)n = 1.

For α ∈ H2(X,C), define

qX(α) :=
n

2

∫
X

α2(σσ)n−1 + (1− n)

∫
X

σn−1σnα

∫
X

σnσn−1α.

One can show this is equal to

qX(α) = λµ+
n

2

∫
X

β2(σσ)n−1

where α = λσ + β + µσ with β ∈ H1,1(X).
Beauville showed that there exists dX ∈ N such that∫

X

α2n = dX(qX(α))n.

In fact dX =
(
2n
n

)
by [22, 23.4]. Therefore, if rX is the positive real root of dX ,

then q̃X := rXqX is an n-th root of the n-th power cup-product on H2(X,C).
Beauville [2] and Fujiki [20] proved that the quadratic form q̃X is non-

degenerate of signature (3, b2 − 3) on H2(X,R). Furthermore,

q̃X(σ) = 0, q̃X(σ + σ) > 0

and
q̃X(σt) = 0, q̃X(σt + σt) > 0

for t close to 0 in any deformation of X.
The form q̃ is called the Beauville-Bogomolov form of the hyperkähler man-

ifold. The inspiration for the Beauville-Bogomolov form came from the study
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of the Fano variety of lines of a cubic fourfold. There, it naturally appears as
the intersection form on the fourth cohomology of the cubic threefold which
is isomorphic to the second cohomology of its Fano variety of lines which is a
hyperkähler manifold.

Note that for n = 1, q̃X = 2qX is the usual intersection form on H2(X,Z).
Beauville and Fujiki, loc. cit., also proved that q̃X has a positive real multi-

ple, say q′X , which is integer valued and indivisible onH2(X,Z). The Fujiki con-
stant is the positive rational number cX such that

∫
X
α2n = cX

(2n)!
2nn! (q

′
X(α))n

for all α ∈ H2(X,R). The reason for the factor (2n)!
2nn! is that, in all known

examples of compact hyperkählers, the Fujiki constant as defined is in fact an
integer, see, e.g., [40] and [8].

6.5. The local period domain and the local Torelli
theorem

Define

QX := {α | qX(α) = 0, qX(α+ α) > 0} ⊂ QX ⊂ PH2(X,C).

We saw that for t ∈ Def(X) close to 0, qX(σt) = 0, qX(σt + σt) > 0. Hence we
can define the local period map

PX : Def(X) −→ QX

t 7−→ [σt].

This is holomorphic because ⟨σt⟩ = H2,0(Xt) = H0(Ω2
Xt

) varies holomorphi-
cally with t: H0(Ω2

Xt
) is the fiber of the holomorphic line bundle π∗Ω

2
X/Def(X)

on Def(X).
We have the local Torelli theorem [2]:

Theorem 6.4. The local Torelli map PX is a local isomorphism, i.e., dPX is
an isomorphism at 0.

6.6. The period domain

We now construct the global period domain for hyperkähler manifolds. For
this we first fix the discrete data of a lattice which will usually be abstractly
isomorphic to the second integral cohomology of a hyperkähler manifold with
its Beauville-Bogomolov form.

Definition 6.5. A lattice is the data of a free Z-module Γ of finite rank with
an integral non-degenerate quadratic form qΓ.

Definition 6.6. Given a lattice (Γ, qΓ), the period domain QΓ is

QΓ := {α | qX(α) = 0, qX(α+ α) > 0} ⊂ QΓ ⊂ P(Γ⊗Z C).
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6.7. The moduli space of marked holomorphic symplectic
manifolds and local period maps

We will construct a moduli space of marked holomorphic symplectic manifolds
and a global period map on it which is, roughly speaking, a glueing of local
period maps.

Definition 6.7. 1. A marking of an irreducible holomorphic symplectic
manifold is a lattice isomorphism

φ : (H2(X,Z), q̃X)
∼=−→ (Γ, qΓ).

2. The pair (X,φ) is called a marked manifold.

3. Two marked manifolds (X,φ), (X ′, φ′) are isomorphic if there exists f :
X → X ′ such that φ′ = φ ◦ f∗. We write (X,φ) ∼= (X ′, φ′).

4. The moduli space of marked irreducible holomorphic symplectic manifolds
is the set

MΓ := {(X,φ)}/ ∼= .

We use the local period map to show that MΓ is a smooth (non-Hausdorff)
complex analytic space.

Given an irreducible holomorphic manifold X, we choose a marking
φ : H2(X,Z) → Γ. The Kuranishi family X → Def(X) is locally isomor-
phic to the period domain QΓ, and the marking φ : H2(X,Z) → Γ induces
isomorphisms forming the commutative diagram

QX� _

��

∼= // QΓ� _

��

PH2(X,C)
∼= // P(Γ⊗Z C).

Hence an open ball in the Kuranishi space Def(X) is isomorphic to an open ball
in QΓ. Such open balls cover MΓ and the analytic structures on intersections
coincide because the Kuranishi family is the local universal deformation of all
of its fibers. Hence we obtain a well-defined smooth complex analytic structure
on MΓ.

6.8. The global period map and Verbitsky’s global Torelli
theorem

Definition 6.8. The global period map is

P : MΓ −→ QΓ ⊂ QΓ ⊂ P(Γ⊗Z C)
(X,φ) 7−→ [φ(σ)].
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Verbitsky’s global Torelli theorem [44] (also see [25] and [32]) for compact
hyperkähler manifolds is the following.

Theorem 6.9. The map P is generically injective on each connected component
of MΓ.

Note that the datum of the line H2,0(X) ⊂ H2(X,C) determines the Hodge
structure on H2(X,Z): H0,2(X) = H2,0(X) (complex conjugate), H2,0(X)⊥ =
H2,0(X)⊕H1,1(X), H1,1(X) =

(
H2,0(X)⊕H1,1(X)

)
∩ (H2,0(X)⊕H1,1(X)).

We say that the global Torelli theorem holds for a class of manifolds, if a
manifold is determined by its Hodge structure, possibly together with the data
of a polarization (such as the form q̃X in the hyperkähler case). For instance,
two complex tori are isomorphic if and only if their first cohomologies are
isomorphic as Hodge structures. Two Riemann surfaces are isomorphic if and
only if their first cohomologies are Hodge isometric, i.e., they are isomorphic
as Hodge structures and, under the given Hodge isomorphism, the intersection
forms for the two curves coincide. Similarly, two K3 surfaces are isomorphic if
their second cohomologies are Hodge isometric.

In fact we have stronger Torelli theorems in the above cases: for complex
tori, any Hodge isomorphism between the first cohomologies of two tori is
induced by an isomorphism of the tori. For curves, any Hodge isometry between
their first cohomologies is induced by an isomorphism between the curves up
to a change of sign. For generic K3 surfaces, any Hodge isometry between the
second cohomologies is induced by an isomorphism of the surfaces up to a sign.

For hyperkähler manifolds of dimension > 4, none of the above stronger
versions of Torelli hold. There are examples of

1. non-isomorphic (but bimeromorphic) compact hyperkähler manifolds
with Hodge isometric second cohomologies [16],

2. non-birational projective hyperkähler manifolds of dimension 4 with
Hodge isometric second cohomologies, [36].

Question 6.10. Is there a good characterization of irreducible holomorphic
symplectic manifolds that are Hodge isometric but not isomorphic?

We have the following maps of moduli spaces

Teich(X)

��

{complex structures on X}/ ∼0

MΓ(X)

��

{marked complex structures on X}/ ≈

Mcx(X) {complex structures on X}/ ∼ Teich(X)/G
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and the period map

Teich(X)
local isom. //MΓ(X)

PΓ // QΓ ⊂ QΓ ⊂ P(Γ⊗ C).

The spaces Teich(X) and MΓ(X) are non Hausdorff smooth analytic spaces
and QΓ is a (Hausdorff) simply connected complex manifold. Verbitsky con-
structed a new (Hausdorff) complex manifold Ms

Γ(X) which is obtained by
identifying all non-separated points of MΓ(X). In other words

Ms
Γ(X) = MΓ(X)/ ≡

where, for two points p, q ∈ MΓ(X), p ≡ q when every neighborhood of p
contains q and every neighborhood of q contains p. The period map then
factors through Ms

Γ(X):

PΓ : MΓ(X)
local isom. //Ms

Γ(X)
P s

Γ // QΓ.

Verbitsky proved

Theorem 6.11. The map P s
Γ is surjective from any connected component of

Ms
Γ(X) to QΓ.

Combined with the facts that P s
Γ is a local isomorphism and QΓ is simply

connected, this implies

Corollary 6.12. The map P s
Γ induces an isomorphism from any connected

component of Ms
Γ(X) to QΓ.

Verbitsky’s proof uses twistor conics which we will describe in the next
section.

The following results of Huybrechts help us understand the difference be-
tween MΓ(X) and Ms

Γ(X).

Proposition 6.13. If two marked hyperkähler manifolds (X,φ) and (X ′, φ′)
correspond to two non-separated points of MΓ(X), then X and Y are bimero-
morphic and their period PΓ(X,φ) = PΓ(X

′, φ) is contained in the hyperplane
QΓ ∩ α⊥ for some α ∈ Γ.

Proposition 6.14. Suppose given a bimeromorphism f : X → X ′ between
compact, hyperkähler manifolds. Then there exist families of compact hy-
perkähler manifolds

X −→ D, X ′ −→ D

over a complex disc D such that

1. X0
∼= X and X ′

0
∼= X ′,
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2. there exists a bimeromorphism F : X → X ′ commuting with the pro-
jections to D which is an isomorphism over D \ {0} and induces f on
X0

∼= X 99K X ′
0
∼= X ′.

Proposition 6.15. For any x ∈ QΓ, the set of hyperkähler complex structures
on a differentiable manifold X with period x ∈ QΓ consists of a finite number
of bimeromorphic equivalence classes.

7. Twistor spaces and twistor conics

7.1. Hyperkähler structures

Given X hyperkähler, let g be the hyperkähler metric of X. We saw that there
exist complex structures I, J,K such that g is Kähler with respect to I, J,K
and IJK = −1. In fact g is Kähler with respect to any linear combination
λ = aI + bJ + cK such that a2 + b2 + c2 = 1. The Kähler form associated to λ
is ωλ(·, ·) := g(λ·, ·). So we have a family {(X,λ) | λ ∈ S2} of compact Kähler
manifolds.

7.2. Twistor spaces

With the notation above, the twistor space X → P1 of (X, g) is the product
X × P1 (as a real manifold) endowed with the almost complex structure

IX×P1 : TxX ⊕ TλP1 −→ TxX ⊕ TλP1

(v, w) 7−→ (λ(v), IP1(w))

which is integrable by a result of Hitchin, Karlhede, Lindström, Roček.

7.3. Twistor conics

Fix a lattice (Γ, qΓ), isometric to (H2(X,Z), q̃X). Recall that the signature of
qΓ⊗R is (3, b2−3) where b2 is the second Betti number of X. Since P1 is simply
connected, we can choose consistent markings on all the fibers of X → P1 to
obtain the period map

Pg : P1 −→ QΓ

λ 7−→ [σ(X,λ)]

whose image is a twistor conic.
One can show that it is the intersection of a linearly embedded P = P2 with

QΓ in P(Γ⊗ C). Furthermore P = P(W ⊗ C) where W is a three dimensional
real subspace of Γ⊗ R totally positive for the intersection form qΓ.
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Conversely, one can show that each choice of a 3-dimensional real space
W ⊂ Γ⊗ R positive for qΓ gives a twistor conic:

C := P(W ⊗ C) ∩QΓ ⊂ QΓ.

Recall the following

Definition 7.1. A Kähler class is the cohomology class of a (1, 1) form which
is Kähler with respect to some metric. The Kähler cone is the cone generated
by all Kähler classes.

By Corollary 4.6, given the family {(X,λ) | λ ∈ S2} as in 7.1, for every
Kähler class α ∈ H1,1(M), there exists a unique hyperkähler metric gλ, Kähler
with respect to λ, such that [ωgλ ] = α.

For each such metric gλ, we can construct a twistor family Xλ → P1. In
other words, through each point [(X, I)] of the twistor conic there passes an-
other twistor conic.

One can show [22, §25.4]

Proposition 7.2. QΓ is twistor path connected, i.e., any two points of QΓ can
be joined by a connected sequence of twistor conics.

From which it follows (again see Huybrechts’ lecture notes [22, §25.4])

Corollary 7.3. The period map PΓ : MΓ → QΓ is surjective on any connected
component of MΓ.

7.4. Hyperholomorphic bundles

Verbitsky studied conditions under which a holomorphic bundle which is stable
for a particular Kähler class λ is hyperholomorphic, i.e., extends to a holomor-
phic bundle on the twistor family Xλ → P1. Verbitsky’s results form the basis
for Markman’s proof of the Hodge conjecture for abelian fourfolds of Weil type
with discriminant 1 [33]. We start with the precise definition of hyperholomor-
phic bundles.

Definition 7.4. Given a hermitian vector bundle B on X, with hermitian
connection θ, we say (B, θ) is hyperholomorphic if it is compatible with all the
complex structures λ ∈ S2 = P1.

Definition 7.5. A C∞ vector bundle B on X is hermitian if it has a hermitian
metric (denoted ⟨, ⟩). A connection

θ : B −→ B ⊗ T ∗
X
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is hermitian if the metric is (covariantly) constant with respect to θ. If we are
given a complex structure I on B, we say that θ and I are compatible if the
curvature form

Θ : B −→ B ⊗ Λ2T ∗
M

is a (1, 1)-form with respect to I.

Intuitively, considering the twistor family

X × P1

C∞ X

��

B × P1

C∞
oo

P1,

the C∞ vector bundle B × P1 on X has a structure of complex vector bundle
holomorphic on each fiber (X,λ) of X → P1.

Stability conditions allow us to construct moduli spaces of bundles.

Definition 7.6. Fix a Kähler form ω on X. For a coherent sheaf F on X, put

deg(F ) :=
1

vol(X)

∫
X

c1(F ) ∧ ωn−1

where n is the complex dimension of X and vol(X) :=
∫
X
ωn. Define

slope(F ) :=
deg(F )

rank(F )

where rank(F ) is the complex rank of F . We say F is stable with respect to ω
if for all subsheaves F ′ ⊂ F with rank(F ′) < rank(F ), we have

slope(F ′) < slope(F ).

We say F is semi-stable with respect to ω if for all subsheaves F ′ ⊂ F , we have

slope(F ′) ≤ slope(F ).

Verbitsky (see [45]) proved that, given a stable vector bundle B on (X, I),
if c1(B) and c2(B) are of type (1, 1) and (2, 2) with respect to all complex
structures λ ∈ S2 = P1 on X, then B is hyperholomorphic. In particular, the
class c2(B) is analytic on each (X,λ).

A useful characterization of stable bundles is given by the Hitchin-
Kobayashi correspondence. To state it, we first need the following definition.

Definition 7.7. Let ω be the Kähler form ofM and denote by Λ : Ω1,1
M ⊗B → B

the adjoint of cup-product with ω. A hermitian metric with curvature form
Θ : B → B ⊗ Ω1,1

M is Hermitian-Einstein if the composition ΛΘ : B → B is a
multiple of the identity.
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The Hitchin-Kobayashi correspondence, proved by Donaldson, Uhlenbeck
and Yau is the following theorem.

Theorem 7.8. Suppose B is an indecomposable bundle on a compact Kähler
manifoldM . Then B is stable if and only if B has a Hermitian-Einstein metric.

8. Examples of hyperkählers in dimension 2 and beyond,
by Samir Canning

8.1. Betti and Hodge numbers of K3 surfaces

The purpose of this exercise is to compute the Betti and Hodge numbers of a
complex K3 surface X, which is the simplest example of a hyperkähler mani-
fold. Feel free to add the additional assumption that X is algebraic if you are
more comfortable in that setting.

Problem 8.1. Show that H0(X,Z) = H4(X,Z) = Z, H1(X,Z) = 0, and
H3(X,Z) is torsion. (Hint: use the exponential exact sequence.)

Problem 8.2. Show that H2(X,Z) is torsion free. Conclude that H3(X,Z) =
0. (Hint: continue analyzing the exponential exact sequence, using that Pic(X)
is torsion free. Prove this if you know about Riemann-Roch. For the second
statement, use the universal coefficient theorem for cohomology.)

Recall the Hirzebruch–Riemann–Roch Theorem.

Theorem 8.3 (Hirzebruch–Riemann–Roch). Let F be a (holomorphic) vector
bundle on a compact complex manifold X. Then,

χ(X,F ) =

∫
X

ch(F ) td(X).

When we write ci(X), we mean ci(TX), where TX is the tangent bundle.
Here are the first few terms of the Chern character and Todd class for reference:

ch(F ) = rank(F ) + c1(F ) +
1

2
(c1(F )

2 − 2c2(F )) + · · ·

and

td(F ) = 1 +
1

2
c1(F )

2 +
1

12
(c1(F )

2 + c2(F )) + · · ·

Problem 8.4. Compute c2(X) for X a K3 surface. (Hint: set F = OX .)

Problem 8.5. Compute H2(X,Z). (Hint: take F = ΩX .)

You have now computed all of the Betti numbers. Next, we will compute
the Hodge numbers.
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Definition 8.6. Let X be a compact Kähler manifold. The Hodge numbers of
X are

hp,q = dimHq(X,Ωp
X).

Theorem 8.7 (The Hodge Decomposition). Let X be a compact Kähler man-
ifold. There is a direct sum decomposition

Hi(X,Z)⊗ C = Hi(X,C) =
⊕

p+q=i

Hq(X,Ωp
X).

Moreover hp,q = hq,p.

Problem 8.8. Compute all of the Hodge numbers of a compact complex K3
surface X.

Further remarks 8.9. The same ideas, especially the use of the Hirzebruch–
Riemann–Roch Theorem, can be used to give restrictions on the Betti and Hodge
numbers of higher dimensional hyperkähler manifolds. For more in this direc-
tion, see the paper of Salamon [41] and Debarre’s exposition thereof [15]. For
even further restrictions on the Betti numbers of hyperkähler fourfolds, see the
paper of Guan [23]. For sixfolds, see the paper by Sawon [42].

8.2. Identifying hyperkähler manifolds

One of the most interesting areas of research in hyperkähler geometry is the
construction of examples. This exercise will focus on identifying examples. We
begin with some basic problems.

Problem 8.10. Convince yourself that any holomorphic two-form σ on a com-
plex manifold X induces a morphism of bundles

σ : TX → Ω1
X .

where TX is the tangent bundle and Ω1
X is the cotangent bundle.

We call σ non-degenerate if the morphism above is an isomorphism.

Problem 8.11. Can you convince yourself that K3 surfaces are irreducible
hyperkähler? (Hint: the tricky part is probably the simply connectedness. It
may require some extra background knowledge.)

Problem 8.12. Show that h2,0 = h0,2 = 1, KX
∼= OX , and that dim(X) is

even for any irreducible compact hyperkähler manifold X.

Now that we know that KX is trivial for compact hyperkähler manifolds
X, a natural question is: given a KX -trivial manifold, how can we show that
it is hyperkähler, if it is? We will focus on a real-life example due to Debarre–
Voisin [17]. The same type of argument works for another famous example of
Beauville–Donagi [7] (the Fano variety of lines on a cubic fourfold.)
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Let V10 be a 10-dimensional complex vector space. Let ω ∈ ∧3V ∨
10 be a

3-form on V10. We define a subvariety of G(6, V10):

Xω := {[W ] ∈ G(6, V10) : ω|W×W×W ≡ 0}.

Problem 8.13. Show that for a general choice of ω, Xω is a smooth fourfold.
(Hint: show that Xω is given by the vanishing of a section of a certain globally
generated vector bundle.)

Problem 8.14. Show that KXω
∼= OXω . (Hint: use adjunction.)

Now that we know we have a KX -trivial variety, we want to show it’s
hyperkähler. Using something called the Koszul resolution, one can compute
the Euler characteristic of the structure sheaf:

χ(Xω,OXω ) = 3.

Definition 8.15. A strict Calabi–Yau manifold is a simply connected projective
manifold X such that H0(X,Ωp

X) = 0 for 0 < p < dim(X).

Problem 8.16. Show that any simply connected smooth KX -trivial compact
Kähler fourfold with χ(X,OX) = 3 is irreducible compact hyperkähler. (Hint:
use the nice multiplicative properties of χ(X,OX).)

Further remarks 8.17. The proof that Xω above is hyperkähler is done dif-
ferently (more geometrically) in [17]. I also highly recommend the classic pa-
per [7]. It turns out in both cases, the resulting hyperkähler is deformation
equivalent to the Hilbert scheme of 2 points on a K3 surface.

9. Basic properties of Lagrangian fibrations of
Hyperkählers, by Yajnaseni Dutta

The following exercises are based on a couple of fundamental results from [34]
and [35]. Given a Lagrangian fibration f : X → B of a Hyperkähler manifold
X, the geometry and topology of B are heavily influenced by X. In fact,
Matsushita conjectured that B ≃ Pn. It is known by work of Hwang [28] that
if B is smooth then B ≃ Pn. The conjecture is known to be true if dimB = 2
by recent results of [9, 27, 39]

9.1. Lagrangian fibrations

Let S be a K3 surface and f : S → C a proper surjective morphism onto a
smooth irreducible curve with connected fibres 1.

1we will call such a morphism a fibration throughout the rest of these exercises.
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Problem 9.1. Show that C ≃ P1. (Hint: Use that S is simply connected.)

Problem 9.2. Show that the general fibres of f are elliptic curves. (Hint: Use
Adjunction.)

Problem 9.3. Find an explicit fibration of the Fermat quartic (x4 + y4 + z4 +
w4 = 0) ⊂ P3. (Hint: rewrite as an equality of two fractions.)

Let X be a hyperkähler manifold of dimension 2n. The following exercises
show how similar the situation is in higher dimensions. The quadratic space
(H2(X,R), qX) controls much of the geometry of X and is a central gadget in
the study of hyperkähler manifolds.

Recall that qX is a priori dependent on the symplectic form σ ∈ H0(X,Ω2
X),

however, up to scaling, it is independent of σ. Here are some key properties of
qX (we denote the associated bilinear form again by qX).

• The symplectic form σ, upto a normalization, satisfies qX(σ) = 0 and
qX(σ + σ) = 1.

• More generally, for αi ∈ H2(X), we have∫
X

α1 · · ·α2n = cX
∑
s∈Sn

qX(αs(1), αs(2)) . . . qX(αs(2n−1), αs(2n−2))

for some constant cX depending only on X. As a consequence, we obtain∫
X
σσω2n−2 = c′qX(ω)n−1.

• If a line bundle L is ample, then qX(c1(L)) > 0. The Kähler cone is
contained in a connected component of {α ∈ H1,1(X,R) | qX(α) > 0}.
Partial converses to these statements exist. For instance, if L is a line
bundle with qX(L) > 0 then X is projective [22, Prop. 26.13]. Further-
more, if qX(α) > 0 and, for every rational curve C ⊂ X,

∫
C
α > 0, then

α is a Kähler class [11, Théorème 1.2].

• H1,1(X,C) is orthogonal to H2,0(X,C)⊕H0,2(X,C) with respect to qX .

• By [10, 43] whenever there exists 0 ̸= β ∈ H2(X,C) that satisfies qX(β) =
0, we have βn ̸= 0 and βn+1 = 0

We begin with a Hodge index type theoerem.

Problem 9.4. Given a divisor E on X, show that if E satisfies E2n = 0 and
E ·A2n−1 = 0 for some ample bundle A, then E ∼ 0. (Hint: Use qX(tE+A) =
t2q(E)+2tq(E,A)+ q(A) for any variable t and that (tE+A)2n = cXqX(tE+
A)n.)
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Problem 9.5. Given a divisor E on X, show that if E satisfies E2n = 0 and
E · A2n−1 > 0 for some ample line bundle A, then qX(E,A) > 0 and the
following are true

Em ·A2n−m = 0 ; for m > n

Em ·A2n−m > 0 ; for m ≤ n.

(Hint: Expand qX(tE +A) as in the previous exercise.)

Problem 9.6. Let f : X → B be a fibration of a hyperkähler manifold X2.
Using the previous exercise show that dimB = n. (Hint: Apply the previous
exercise to the pull-back of an ample class H on B.)

Problem 9.7. Show that Pic(B) is of rank 1. (Hint: Show that any divisor E
on X that satisfies E2n = 0 and En · (f∗H)n = 0 is in fact a rational multiple
of f∗H.)

For the next exercise we need the definition of a Lagrangian (possibly singular)
subvariety. Recall that

Definition 9.8. A subvariety Y ⊂ X is said to be a Lagrangian subvariety if
dimY = 1

2 dimX and there exists a resolution of singularities µ : Y ′ → Y such
that µ∗σ|Y ′ = 0.

Problem 9.9. Show that a general fibre of f is Lagrangian. By a classical
theorem, the general fibres of f are then complex tori. A more recent result
of Voisin [12, Prop. 2.1] or, more generally, [31, Theorem 1.1], shows that even
if X is not projective, a Lagrangian subvariety of a hyperkähler manifold is
always projective. Thus, a general fibre F is isomorphic to an abelian variety.
(Hint: Let A be an ample class on X.)

Problem 9.10. Show that every fibre of f is Lagrangian and hence f is equidi-
mensional. (Hint: Use the map H2(X,OX) → H0(B,R2f∗OX) induced by the
Leray spectral sequence and that R2f∗OX is torsion free.)

Problem 9.11. Show that B is Q-factorial with at worst Kawamata log ter-
minal singularities. (Hint: see [26, Prop. 5.10] or use that f is equidimensional
and [30, Lemma 5.16] which states that if the source of a finite surjective map
between normal varieties is Q-factorial and klt then so is the target.)

For the next exercise, recall and use the following

Definition 9.12 (Kodaira Dimension). Let X be a Q-factorial variety. Then

κ(X) = sup
m

dimϕm(X)

2you may assume both X and B are projective, although the results presented here work
in a more general setting.
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where ϕm : X 99K PPm is the rational map defined by the global sections of
ω⊗m
X and Pm = dimH0(X,ω⊗m

X ). Another way to interpret this is

κ(X) := trdeg
k

(⊕
m

H0(X,ω⊗m
X )

)
− 1

where the algebra structure on the right side is given by the multiplication map.

Iitaka’s Cn,m conjecture then states that

Conjecture 9.13. Let f : X → B be a fibration of smooth projective varieties,
and let F be a general fibre of f . Then,

κ(X) ≥ κ(F ) + κ(B).

By a result of Kawamata [29, Theorem 1.1(2)], the conjecture is known when
F is a minimal variety.

Problem 9.14. Assume B is smooth, show that B is Fano, i.e., the inverse of
the canonical bundle of B is ample. (Hint: use that the Picard rank of B is 1
and Kawamata’s result above.)

Problem 9.15. Assume B is smooth. Let B0 be the open set where f is
smooth. Let X0 := f−1(B0). Show that Rif0∗OX0 = Ωi

B0 . (Hint: Use Ω1
X0 ≃

TX0 to conclude that f∗TB0 ≃ Ω1
X0/B0 .)

Matsushita [35] (also see [34]) extends this equality to the big open set U
which includes the smooth points of the discriminant divisorDf , using Deligne’s
canonical extension. Then, using the reflexivity of Rif∗OX and the isomor-
phism Rnf∗OX ≃ ωB , he shows that Rif∗OX ≃ Ωi

B .

10. Rational curves on K3 surfaces and Euler
characteristics of Moduli spaces, by David Stapleton

We follow a paper of Beauville [4], inspired by work of Yau and Zaslow [46],
which uses hyperkähler geometry to count the number of rational curves in a
very general K3 surface of degree 2d.

Problem 10.1. Assume that a K3 surface X admits an elliptic pencil – that
is a map

π : X → P1

so that the general fibers are smooth genus 1 curves. Assume that all the fibers
that do not have geometric genus 1 are irreducible rational curves with a single
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node. Count the number of rational fibers. (Hint: If R = ⊔n
i=1Ri is the union of

rational curves, compute the topological Euler characteristic using the formula:

e(X) = e(R) + e(X \R)

and compute e(Ri).)

10.1. Hyperkählers as moduli spaces of sheaves on K3
surfaces.

Let X be a very general K3 surface of degree 2d with primitive line bundle L
(with L2 = 2d) and let Π = P(H0(X,L)) ∼= Pd−1. Moduli spaces of sheaves on
X are frequently hyperkähler manifolds. Here are two examples:

1. Hilbert schemes of n points on X – denoted X [n], this space compact-
ifies the space of unordered distinct points on X by considering length n
subschemes as their limits.

2. Compactified Jacobians – denoted J d
(X) – parametrizing coherent

sheaves supported on curves C ∈ Π, which when thought of as sheaves on
C are line bundles (or torsion-free sheaves of rank 1 when C is singular)
of degree d.

Problem 10.2. Show that if X is a K3 surface, then Π contains only finitely
many rational curves (curves with geometric genus 0).

Problem 10.3. Compute the dimension of X [n] and J d
(X).

Problem 10.4. Show that the hyperkählers X [g] and J g
(X) are birational.

There is a natural map
π : J g

(X) → Π

which sends a coherent sheaf F to the curve in Π that it is supported on.

Problem 10.5. Show that the general fiber of π is an Abelian variety. Describe
the fibers over a general point C ∈ Π.

Problem 10.6. (this is [4, Prop. 2.2]) Let C be an integral curve such that

the normalization Ĉ has genus ≥ 1. We show that e(J d
(C)) = 0 as follows.

1. Find a line bundle M on C which is torsion of order m (for any m > 0).

(This uses the comparison between the Jacobian of C and of Ĉ.)

2. Show that tensoring by M is a free action of Z/mZ on J d
(Ĉ).

3. Conclude that m divides e(J d
(C)) for all m > 0.
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It follows by the scissor property of Euler characteristics that

e(J g
(X)) =

∑
Ri∈Π

e(J g
(Ri))

where Ri ∈ Π is a rational curve and π−1(Ri) is the fiber over Ri (i.e., the set
of torsion free sheaves of rank 1 and degree g supported on Ri).

Problem 10.7. Show that
e(J g

(Ri)) = 1

if Ri is a nodal, irreducible rational curve. Thus by a result of Xi Chen [13], if
X is very general then

e(J g
(X)) = #{Ri ∈ Π}.

Hint: Locally at a node p ∈ Ri there are only 2 types of rank 1 torsion
free sheaves (1) line bundles and (2) the ideal sheaf of a point. Show that if
p1, · · · , pg ∈ Ri are the nodes then J g

(Ri) is stratified into loci J g

S ⊂ J g
(Ri)

consisting of torsion-free sheaves that are not locally free exactly at the points
in a subset S ⊂ {p1, · · · , pg}. Conclude that the only stratum where e(J g

S) ̸= 0
is when S = {p1, · · · , pg} (a single point). See also [4, §3].

It remains to actually calculate the Euler characteristic of J g
(X). This

relies on

1. The birational invariance of Euler characteristic for hyperkählers (see [24]
or use the birational invariance of betti numbers of Calabi–Yaus [1]).

2. The computation of the Euler characteristic of X [n] by Göttsche [21] (see
[14] for a nice explanation of these results).

In particular, for a K3 surface, by (1) and (2) we have:∑
(# rational curves on a K3 of genus g)qg =

∑
g≥0 e(J

g
(X))qg

=
∑

g≥0 e(X
[g])qg = Π∞

k=1

(
1

1−qk

)e(X)

where the sum over g ≥ 0 is understood to take a very general K3 surface of
genus g.

Problem 10.8. Compute the Euler characteristic of X [2] for any complex sur-
face using that

1. there is a birational map

h : X [2] → X(2)

to the symmetric product X(2) := X2/Σ2 which is given by blowing up
the diagonal locus and
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2. the exceptional divisor of h is a P1-bundle over X.

Problem 10.9. Find the number of bitangents to a very general plane sextic
curve C ⊂ P2 using that a very general K3 surface of genus 2 is a double cover
of P2 branched at such a sextic.
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[16] O. Debarre, Un contre-exemple au théorème de Torelli pour les variétés sym-

plectiques irréductibles, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 14,
681–684.

[17] O. Debarre and C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry,
J. Reine Angew. Math. 649 (2010), 63–87.

[18] M. P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications,
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