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1. Introduction

Given a finite morphism between smooth curves one can associate to it a polar-
ized abelian variety (not necessarily principally polarized), called Prym variety.
This construction induces a map from the moduli space of coverings to the mod-
uli space of polarized abelian varieties, know as Prym map, depending on the
genus of the base curve, the degree of the map and its ramification pattern. The
classical Prym varieties revisited by Mumford in [25] are principally polarized
obtained from double coverings (étale or ramified in two points). Since then
they have been studied not only as a way of understanding abelian varieties and
their moduli space, but also as interesting objects on their own, see for instance
the recent work in [1, 9, 20, 21, 30, 31]. Prym maps in low genera often display
very rich geometry and interesting structure. These notes summarize the early
developments in the theory of Prym varieties which continue to inspire recent
work in algebraic geometry. As an introduction to the subject, we chose to
focus on the structure of the fibres of the Prym P6 for étale double coverings
over a genus 6 curve, which is generically finite of degree 27. The computation
of the degree of P6 is the ideal occasion to encounter classical algebraic objects
(cubic surfaces and threefolds, plane quintics, Fano surface of lines, etc.), geo-
metric constructions (tetragonal and trigonal constructions, conic bundles), as
well as moduli spaces (of coverings, abelian varieties, intermediate Jacobians).
We tried to put together the main ingredients for a good understanding of the
geometric structure of the fibres of P6.

These notes cover the material presented in the course “Prym Varieties”
of the Trieste Algebraic Summer School (TAGSS) 2021 given by the second
author. The series of lectures included exercise sessions run by the first author.
Some of the exercises can be found here. The main references are Beauville,
Donagi and Donagi-Smith papers [4, 5, 14, 15].

2. Basics on abelian varieties

Through this notes we work over C.

Definition 2.1. A complex torus A is a quotient V/Λ, with V ≃ Cg a C-
vector space and Λ ≃ Z2g a full rank lattice inside V . A polarization on A is
an ample line bundle1 L on A. An abelian variety is a complex torus admitting
a polarization, so (A,L) is polarized abelian variety.

Remark 2.2. In particular, with the addition operation inherited from V , an
abelian variety is an abelian group.

1In fact, the polarization depends only on the first Chern class c1(L)
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By definition of ampleness, given a line bundle L on A we have that the
map

φL⊗k : A ↪→ PH0(A,L⊗k)∗

x 7→ [s0(x) : s1(x) : · · · : sN (x)],

defined by the sections of L⊗k is an embedding for some k > 1. In fact, in the
case of polarized abelian varieties it suffices to take k = 3. Then an abelian
variety is also a projective variety.

Different incarnations of a polarization on A. The following data are equiv-
alent:

• A first Chern class c1(L) ∈ H2(A,Z) of an ample line bundle L on A.

• A non degenerated alternating form E : V×V → R such that E(Λ,Λ) ⊂ Z
and E(iv, iw) = E(v, w).

• A positive definite Hermitian form H : V × V → C with H(Λ,Λ) ⊂ Z.

• An isogeny ϕL : A→ Â := Pic0(A) that satisfies ’positivity’ properties.

• An effective Weil divisor Θ ⊂ A such that the subgroup {x ∈ A | t∗xΘ ∼
Θ} is finite.

Let E be an alternating form representing a polarization on A = V/Λ.
There exists a basis λ1, . . . , λg, µ1, . . . µg of Λ with respect to which E is given
by the matrix

(
0 D

−D 0

)
, where D is the diagonal matrix with positive integer

entries d1, . . . , dg satisfying di|di+1 for i = 1, . . . , g − 1.

Definition 2.3. The vector (d1, . . . , dg) is called the type of the polarization
of L and when it is of the form (1, . . . , 1) the polarization is principal and the
variety is called ppav.

Let C be a smooth curve and let H1(C,Z) ≃ Z2g be the group of closed
paths in C (which does not depend on the starting point) modulo homology.
This group can be seen as a full rank lattice inside of H0(C,ωC)

∗, via the
injective map

γ 7→
{
ω 7→

∫
γ

ω

}
assigning to a path γ the functional which integrates the holomorphic differen-
tials along γ.

Definition 2.4. The Jacobian of a smooth algebraic curve C (or a compact
Riemann surface) is the complex torus

JC = H0(C,ωC)
∗/H1(C,Z).
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The intersection product on H1(C,Z) induces an alternating form E on
V := H0(C,ωC)

∗. More precisely, if we choose a basis over Z, γ1, ..., γ2g of
H1(C,Z) as in the Figure 1, the intersection product has a matrix of the form(

0 1g

−1g 0

)
. As H1(C,Z) is a full rank lattice in V , the {γi} also form a basis

of V as an R-vector space. One verifies then that, with respect to this basis,
the intersection matrix gives an alternating form E on V defining a principal
polarization Θ.

Figure 1: Curve of genus g

A one-dimensional abelian variety also is an algebraic curve of genus one
(with a distinguished point), that is, an elliptic curve. The Jacobian of a genus
one curve is then isomorphic to the curve itself.

2.1. Abel-Jacobi map

Let Pic0(C) be the group of line bundles of degree 0 on C, it is the quotient
of the group of divisors Div0(C) of degree 0 modulo principal divisors. Define
the Abel-Jacobi map

Div0(C) → Pic0(C), D =
∑

(pν − qν) 7→
{
ω 7→

∑∫ pν

qν

ω

}
mod H1(C,Z).

Theorem 2.5. The Abel-Jacobi map induces an isomorphism Pic0(C) ≃ JC.

A variation of this Abel-Jacobi map is given by

αDn
: C(n) → JC,

∑
nνpν 7→

{
ω 7→

∑∫ pν

c

ω

}
mod H1(C,Z),

where Dn = nc for a fixed point c ∈ C and C(n) denotes the cartesian product
Cn of the curve modulo the symmetric group Sn, so its elements can be seen
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as effective divisors of degree n on C. For n = 1, we denote the map by αc.
Let β : C(n) → Picn(C) be the map D 7→ OC(D), so for a line bundle L of
degree n the fibre β−1(L) consists of all divisors in the linear system |L|. We
have the following commutative diagram

C(n) β //

αDn $$

Picn(C)

αO(Dn)

��
JC

Proposition 2.6. The projectivized differential of the Abel-Jacobi map αc :
C → JC is the canonical map φωC

: C → Pg−1.

Corollary 2.7. For any g ≥ 1 and c ∈ C the Abel-Jacobi map αc : C → JC
is an embedding.

Remark 2.8. Note that for any c, c′ ∈ C we have αc = t∗c′−cαc′ , where tD :
JC → JC is the translation map tD(D′) = D′ + D, so we sometimes omit a
base point c of the Abel-Jacobi map.

Algebraic geometers typically gather their objects of study in families to
investigate a general property or single out interesting elements. Ideally, the
set of all the objects forms itself an algebraic variety where one can apply
known tools. This leads to the notion of moduli space, which is the variety
parametrizing the objects. Fortunately, there exists a nice parameter space for
all principally polarized abelian varieties (ppav) of fixed dimension g (up to
isomorphism classes). Let hg be the Siegel upper half plane

hg := {τ ∈Mg×g(C) | τ t = τ, Im τ > 0}

(where Im τ > 0 means that the imaginary part is a positive definite 2-form)
and

Sp2g(Z) =
{
M ∈ GL2g(Z) : M

(
0 1g

−1g 0

)
tM =

(
0 1g

−1g 0

)}
the symplectic group, which acts on hg by

M =

(
a b
c d

)
∈ Sp2g(Z), M · τ = (a+ bτ)(c+ dτ)−1.

Thus, every point in the quotient hg/Sp2g(Z) represents an isomorphism class
of a principally polarized abelian variety of dimension g: for each τ ∈ hg set
Aτ = Cg/τZg ⊕ Zg, then

Aτ ≃ Aτ ′ as ppav ⇔ ∃ M ∈ Sp2g(Z) s.t. τ ′ =M · τ.
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In the sequel, we denote by Ag the moduli space of principally polarized abelian
varieties of dimension g. Observe that the dimension of this space is the same
as the dimension of the space of symmetric matrices of size g, thus dimAg =
g(g+1)

2 .

Let Mg be the moduli space of smooth projective curves of genus g > 1, it
is an irreducible algebraic variety of dimension 3g − 3. By associating to each
smooth curve [C] ∈ Mg its Jacobian we get the Torelli map:

t : Mg → Ag, [C] 7→ (JC,Θ).

Theorem 2.9. The Torelli map t is injective.

Comparing the dimensions of both spaces, one deduces that a general prin-
cipally polarized abelian variety of dimension 2 and 3 is the Jacobian of some
curve.

2.2. The theta divisor

Let Wn := β(C(n)) ⊂ Picn(C) for n ≥ 1; it consists of the line bundles of
degree n with non-empty linear system. According to Riemann-Roch Theorem
Wn = Picn(C) for n ≥ g. For a general divisor D of degree 1 ≤ n ≤ g,
h0(C,OC(D)) = 1, that is, in this range β is birational onto Wn. Since β
is proper Wn is an irreducible closed subvariety of Picn(C) of dimension n,
so in particular Wg−1 is a divisor in Picg−1(C). For a fixed point c ∈ C we

set W̃n = αOC(nc)(Pic
n(C)) ⊂ JC. Recall that the fundamental class [Y ] of

an n-dimensional subvariety Y of a variety X, dimX = g is the element in
H2g−2n(X,Z), Poincaré dual to the homology class of Y in H2n(X,Z).

Theorem 2.10 (Poincaré’s Formula). [W̃n]=
1

(g−n)!

∧g−n
[Θ] for any 1≤n≤ g.

Corollary 2.11. There is a line bundle η∈Picg−1(C) such that Wg−1 = α∗
ηΘ.

Proof. By Poincaré Formula [W̃g−1] = [Θ] so c1(OJC(W̃g−1) = c1(OJC(Θ)).

There exists x ∈ JC ≃ Pic0(C) such that W̃g−1 = t∗xΘ. Hence

Wg−1 = α∗
OC((g−1)c)W̃g−1 = α∗

ηΘ

with η = OC((g − 1)c)⊗ x−1.

We recall that a theta characteristic on C is a line bundle κ such that
κ⊗2 ≃ ωC . A divisor D is called symmetric if (−1)∗D ∼ D.

Theorem 2.12. Riemann’s Theorem] For any symmetric theta divisor Θ there
is a theta characteristic κ on C such that

Wg−1 = α∗
κΘ .
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The divisor Wg−1 is called the canonical theta divisor.
Given a theta characteristic κ, the map ακ : Picg−1 → JC induces a bijec-

tion between the set of theta characteristics on C and the subgroup JC[2] =
{a ∈ JC[2] | 2a = 0}

Theorem 2.13 (Riemann’s Singularity Theorem). For every L ∈ Pic(g−1)(C)

multLWg−1 = h0(C,L).

3. Prym varieties

Consider a finite covering π : C̃ → C of degree d between two smooth projective
curves and let g and g̃ denote the genera of C and C̃ respectively. By the
Hurwitz formula these genera are related by

g̃ = d(g − 1) +
degR

2
+ 1 , (1)

where R denotes the ramification divisor of f , that is the set of points in C̃
(counted with multiplicities) where the map is not locally a homeomorphism.
The map π induces a map between the Jacobians of the curves, the norm map.
As a group, the Jacobian JC is generated by the points of the curve α(C),
and in fact, by Theorem 2.5, JC parametrizes classes of linear equivalence of
divisors of degree zero. With this in mind, one can simply define the norm map
as the push forward of divisors from C̃ to C:

Nmπ : JC̃ → JC,

[∑
i

nipi

]
7→

[∑
i

niπ(pi)

]
,

where the sum is finite,
∑
ni = 0 with ni ∈ Z and the bracket denotes the

class of linear equivalence. The kernel of Nmπ is not necessarily connected but
since Nmπ is a group homomorphism the connected component containing the
zero is naturally a subgroup of JC̃. This subgroup is the Prym variety of f
denoted by

P (π) := (KerNmπ)
0 ⊂ JC̃. (2)

Moreover, the restriction Ξ of the principal polarization Θ on JC̃ to P (π),

defines a polarization so (P (π),Ξ) is an abelian subvariety of the Jacobian JC̃
of dimension

dimP (π) = dim JC̃ − dim JC = g̃ − g.

The Prym variety can be regarded as the complementary abelian subvariety to
the image of π∗ : JC → JC̃ inside JC̃, see [8, p. 125].
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Theorem 3.1. Let π : C̃ → C be of degree d ≥ 2 with g ≥ 1. Then Ξ defines a
principal polarization if and only if one of the following cases occur:

(a) π is étale of degree 2, in this case Θ|P ≡ 2Ξ, with Ξ principal;

(b) π is a double covering ramified in exactly 2 points, so Θ|P ≡ 2Ξ;

(c) g(C̃) = 2, g = 1 (any degree);

(d) g = 2, d = 3, π is non-cyclic.

Proof. Uses that (π∗)∗Θ̃ ≡ nΘ and that P and π∗JC are complementary
subvarieties of a ppav. The cases (a),(b),(c) can be found in [8, Thm 12.3.3],
where the case (d) is omitted by mistake. The case (d) is considered in [19].

From now on, we assume that the covering π : C̃ → C is étale of degree 2.
Then the dimension of the corresponding Prym variety is dimP (π) = 2g −
1 − g = g − 1. If ι denotes the involution on C̃ exchanging the sheets of the
covering f , it induces an automorphism ι∗ on JC̃. We can also describe the
Prym variety of π as

P = Im(1− ι∗) ⊂ JC̃.

So P is the ι∗-anti-invariant part of JC̃ orthogonal to π∗JC. Further, the
addition map defines an isogeny

π∗JC × P → JC̃.

Let

Rg := {[C, η] | [C] ∈ Mg, η ∈ Pic0(C) \ {OC}, η⊗2 ≃ OC}

be the moduli space parametrizing all étale double coverings over curves of
genus g up to isomorphism. Given a pair [C, η] ∈ Rg the isomorphism η⊗2 ≃
OC endows OC ⊕ η with a ring structure (actually with a structure of OC-
algebra). Thus, the corresponding double covering is given by taking the

spectrum C̃ := Spec(OC ⊕ η) and the map π is just the natural projection
Spec(OC ⊕ η) → C = SpecOC , induced by the inclusion OC ↪→ OC ⊕ η. There
are finitely many “square roots” of OC , that is, line bundles η with η⊗2 ≃ OC .
In other words, the forgetful map

Rg → Mg, [C, η] 7→ η

is finite of degree 22g − 1 and hence dimRg = dimMg = 3g − 3. The Prym
map is then defined as

Pg : Rg → Ag−1 [C, η] 7→ (P (π),Ξ).
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By comparing the dimensions on both sides, one sees that for g ≤ 6, we have

dimRg ≥ dimAg−1 = g(g−1)
2 so it makes sense to ask if for low values of g the

Prym map is dominant, i.e. if we can realize a (general) principally polarized
abelian varieties of dimension ≤ 6 as the Prym variety of some covering.

In order to investigate when the map Pg is generically finite one has to check
if the differential map is injective at a generic point of Rg or equivalently, when
the codifferential map d∗Pg is surjective. On one side, the tangent space at
0 ∈ P (π) to the Prym variety can be identified with

T0P ≃ H0(C,ωC ⊗ η)∗,

which is the (−1)-eigenspace for the action of ι on H0(C̃, ωC̃)
∗. Further, we

have the identification T ∗
[P,Ξ]Ag−1 ≃ Sym2(T0P )

∗ of the cotangent space to

[P,Ξ]. On the other hand, notice that the forgetful map [C, η] 7→ [C] is finite
over the moduli spaceMg of smooth curves of genus g. Therefore the cotangent
space to a generic point [C, η] ∈ Rg can be identified to the cotangent space to
Mg at [C], that is,

T ∗
[C,η]Rg ≃ T ∗

[C]Mg ≃ H0(C,ω2
C).

Via these identifications one obtains that the codifferential of Pg at a generic
point [C, η] is given by the multiplication of sections

d∗Pg : Sym2(T0P )
∗ → H0(C,ω2

C ⊗O),

which is surjective for g ≥ 6 at a generic point [(C, η)]. More precisely, the
following theorem summarizes the situation for the classical Prym map:

Theorem 3.2. (a) The Prym map is dominant if g ≤ 6.
(b) The Prym map is generically injective if g ≥ 7.
(c) The Prym map is never injective.

Proof. Let Bg−1 denote the image of Pg. Wirtinger showed [34] that the closure
Bg−1 is an irreducible subvariety in Ag−1 of dimension 3g− 3, so Bg−1 = Ag−1

for g ≤ 6, which implies part (a). Moreover, he also proved that the Jacobian
locus in Ag−1 (i.e. the image of the Torelli map t) is contained in Bg−1. In
this sense, Pryms are a generalization of Jacobians. Part (b) was first proved
by R. Friedman and R. Smith [16] and for g ≥ 8, by V. Kanev [18] by using
degeneration methods. More geometric proofs were given by G. Welters [33]
and later by O. Debarre [12], in the spirit of the proof of Torelli’s theorem.

The fact that the Prym map is non-injective was first observed by Beauville
[5]. Donagi’s tetragonal construction [13] provides examples for the non-injecti-
vity in any genus.

Open question. What is exactly the non-injectivity locus of the Prym
map Pg ?



(10 of 34) P. BORÓWKA AND A. ORTEGA

4. Allowable covers

We will focus now on the rich geometry of the fibres of the Prym map P6 :
R6 → A5. The following theorem is proved in [15].

Theorem 4.1. The degree of P6 : R6 → A5 is 27.

This number encodes the geometry of the fibres, which have the structure of
the 27 lines in a smooth cubic surfaces. Although the degree is the number of
étale double coverings mapping to a general element in A5, which in this case
is a Prym variety, the count is done over loci with positive dimensional fibers,
involving a very precise description of the blow ups. In order to compute the
degree we shall

1. extend the Pg to a proper map (Theorem 4.7),

2. study the Prym varieties on the boundary,

3. compute the local degree along the different loci.

Parts (2) and (3) will be treated in Sections 6,7 and 8.

Beauville introduced the notion of generalized Prym varieties in [4] to denote
Prym varieties associated with double coverings of stable curves, that is, lying
on the boundary of Rg. Since the objects in the compactification of Rg are
known as admissible covers, we use the terminology in [15] and denote those
covers in the boundary that give rise to a generalized Prym variety, allowable
covers.

Let Mg be the compactification of Mg by stable curves of genus g. Recall
that a (complete) curve C is stable if it is connected, the only singularities
are ordinary double points and |Aut(C)| < ∞. In particular, ρa(C) = g ̸= 1
(arithmetic genus) and every non singular rational component meet other com-

ponents in at least 3 points. Let C ∈ Mg, C̃ ∈ M2g−1 and π : C̃ → C be

a (possibly branched) double covering with an involution ι : C̃ → C̃. In or-
der to analyse the “good” coverings for the Prym map, we make the following
assumption:

(*) The fixed points of C̃ under the involution ι are exactly the singular points
and at a singular point the two branches are not exchanged under ι.

The reason for this assumption is that in this case the quotient C := C̃/ι
has only ordinary double points as singularities. We have the following com-
mutative diagram

Ñ

2:1π′

��

f̃ // C̃

π

��
N

f // C
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where f and f̃ are the normalization maps. Thus, π′ is ramified at the points
xi, yi ∈ Ñ lying over a singular point zi ∈ C̃. One can also show that π∗ωC ≃
ωC̃ ; as a consequence,

ρa(C̃) = 2ρa(C)− 1.

Let K̃ (resp. K) be the ring of rational functions on C̃ (resp. C). The

group of Cartier divisors on C̃ can be described as

Div C̃ =
⊕

x∈C̃sm

Zx⊕
⊕

s∈C̃sing

K̃∗
s /O∗

s .

Let s1, s2 ∈ Ñ be the points over a singular point s ∈ C̃. By choosing param-
eters t1, t2 around s1 and s2, we have the following isomorphism

K̃∗
s /O∗

s
∼−→ C∗ × Z× Z, a 7→ (uv ,m, n)

where a = utm1 and a = vtn2 are the local descriptions of a around s1, resp. s2.

Assuming that ι∗t1 = −t1 and ι∗t2 = −t2, the action of ι on K̃∗
s /O∗

s is

ι∗(z,m, n)s = ((−1)m+nz,m, n)s

which yields the commutative diagram

K̃∗ //

N
K̃/K

��

Div(C̃)

π∗

��

// Pic(C̃)

Nm

��

// 0

K∗ // Div(C) // Pic(C) // 0

where π∗(
∑

i xi) =
∑

i π(xi) for xi ∈ C̃sm and for singularities we have

π∗((z,m, n)s) = ((−1)m+nz2,m, n)π(s). The norm map Pic(C̃) → Pic(C) re-

stricts to a norm map between the generalized Jacobians Nm : JC̃ → JC.
We want to consider coverings such that the kernel of this map is an abelian
variety.

Example 4.2. Let X be a smooth genus g curve with two marked points p, q
and X1 = X2 = X be two copies with marked points pi, qi ∈ Xi. Define the
Wirtinger cover π : C̃ → C (see Figure 2) by

C̃ := X1 ∪X2/p1 ∼ q2, p2 ∼ q1, C = X/p ∼ q.

Let ν : X → C denote the normalization map and s ∈ C be the node. To
specify a line bundle L on C one has to specify L̃ := ν∗L and a descent data,
i.e. when a section of ν∗L is the pullback of a section of L. In this case it
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suffices to give the identification of the fibers φs : L̃p
∼→ L̃q over p and q, so

φs ∈ C∗. More generally, we have a short exact sequence

0 → (C∗)b → JC
ν∗

−→ JN → 0

where b is the first Betti number of the dual graph of C. As will see, this is an
example of an allowable cover.

Lemma 4.3. If L is a line bundle on C̃ such that Nmπ L = OC then L =
M ⊗ ι∗L−1 for some line bundle M on C̃ which can be chosen of multidegree
degM = (0, . . . , 0) or (1, 0, . . . , 0).

We define Prym variety of the covering π : C̃ → C as the connected alge-
braic subgroup

P := {M ⊗ ι∗L−1 | degM = (0, . . . , 0)}.

Proposition 4.4. The variety P is an abelian variety of dimension ρa(C)−1.

Proof. We have a commutative diagram

0

��

0

��

0

��
0 // T̃2 //

��

P × Z/2 //

��

R //

��

0

0 // T̃ //

Nm

��

JC̃

Nm

��

// JÑ

Nm

��

// 0

0 // T //

��

JC

��

// JN

��

// 0

0 0 0

Notice that Nm ◦π∗ is the multiplication by 2 and since π∗ : T → T̃ is an iso-
morphism the left vertical arrow Nm is surjective and its kernel T̃2 corresponds
to the points of order 2 in T̃ . The Kernel R is a complete subvariety of JÑ , so
P is also complete.

Choose a line bundle L ∈ Pic(C) with multidegree satisfying 2degL =
degωC̃ and define

ΘL := {M ∈ JC̃ | H0(C̃, L⊗M) ̸= 0}.

It turns out that, as in the smooth case, ΘL|P ≡ 2Ξ, with Ξ ∈ NS(P ) a

principal polarization. Thus (P,Ξ) is a ppav associated to (C̃, ι).
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Definition 4.5. A covering (C̃, ι) with C̃ ∈ M2g−1 and ι an involution, is

allowable if its associated Prym variety P is an abelian variety and ρa(C̃/ι) = g.

This definition is equivalent to any of these properties:

(a) The only fixed points of ι are the nodes where the two branches are not
exchanged and the number of nodes exchanged under ι equals the number
of irreducible components exchanged under ι.

(b) The components of C̃ can be grouped as C̃ = A ∪ A′ ∪ B̃ where ι inter-

changes A and A′ and fixes B̃, each A is tree-like and either

– B̃ = ∅, A connected and |A ∩A′| = 2, or

– A ∩ A′ = ∅, |B̃ ∩ Ai| = 1 for each connected component Ai of

A the fixed points of ι in B̃ are precisely the nodes and the two
branches there are never exchanged (so that B̃/ι) also has nodes at
the corresponding points.

Remark 4.6. The condition (*) is equivalent to (a) and (b) if there is no
exchanged components under ι.

Let us denote

Rg := {[π : C̃ → C] | [C̃] ∈ M2g−1, [C] ∈ Mg, π is an allowable cover},

which is an open subspace in the compactification by admissible coverings of
the moduli space Rg.

Theorem 4.7. The Prym map Pg : Rg → Ag−1, extends to a proper map

Pg : Rg → Ag−1

For the proof of this theorem we refer [15, Theorem 1.1]. Now the aim is
to compute the local degree of Pg along the relevant divisors (those which are
not contracted under the Prym map).

5. Computation of the local degree

Let f : Y → X be a proper dominant map between two varieties, with dimX =
dimY = n, so f is generically finite. Set d = deg f . Let W ⊂ Y be an
irreducible closed subvariety of codimension k, thus f−1(W ) consists of finitely
many irreducible components Zi of codimension li in X. The local degree of
di of f along Zi is the degree of the map obtained from f by localizing X at
Zi; thus d =

∑
i di. Let Z ⊂ X be one of these components, X̃ = BlZX (resp.
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Ỹ = BlZY ) the blow up fo X (resp. Y ) along Z. Consider the following
commutative diagram

Z̃ ⊂ X̃

��

f̃ // Ỹ ⊃ W̃

��
Z ⊂ X

f // Y ⊃W

The map f̃ induces a map between the exceptional divisors f∗ : Z̃ → W̃ ,
described as follows. Recall that Z̃ = P(NZ\X) and W̃ = P(NW\Y ) are the
projectivized normal bundles. Let z ∈ Z and w = f(z) ∈ W . The differential
dfz : TzX → TwW at z maps TzZ to TwW . therefore, this induces a map

f∗,z : NZ\X → NW\Y .

This lemma follows from the universal property of blow ups.

Lemma 5.1.

(a) The map f̃ is regular at a generic z ∈ Z̃ if and only if f∗,z is not identi-
cally zero at a generic z ∈ Z.

(b) The map f̃ is regular for all z̃ in the fiber over z ∈ Z̃ if and only if f∗,z is

injective on the normal space NZ\X,z to Z at z. In this case f̃|fiber over z

is the projectivization of the linear map f∗,z.

Lemma 5.2. Assume f∗,z is injective on NZ\X,z at each z ∈ Z. Then the local

degree of f along Z equals the degree of the map f∗ : Z̃ → W̃ on the exceptional
divisors.

Remark 5.3 (Warning). The lemma requires the injectivity for all z ∈ Z.

Otherwise f̃ is not regular on a neighbourhood of Z̃ and could involve a blow
up of some small dimensional subvariety onto W̃ , implying that Z̃ is only one
of several components of the graph f̃ over Z. In this case the degree of f∗ is
possibly smaller than the degree of f̃ restricted to f−1(neighbourhood of z),
that is, smaller than the local degree of f on Z.

Consider the locus J5 of Jacobians of smooth curves of genus 5, which is of
codimension 3 in A5. Given a generic curve X ∈ M5, Mumford [25] provided

a list of smooth double covers such that their Prym variety P (C̃/C) ≃ JX.
Later Donagi and Smith [15] extended this list to the allowable covers with the
same Jacobian. From this list only four cases are relevant for the computation
of the degree, since the rest of the cases involve covers mapping to smaller loci
in J5, that is whose image is of dimension < 12 = dimJ5, hence these loci do
not contain the generic Jacobian. These are the four relevant loci in Rg:
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(a) [C] ∈ M6 is a smooth plane quintic and π : C̃ → C is an even double

cover, that is, with the property h0(C̃, π∗OC(1)) = 0 mod 2 2. We will
denote this locus by RQ

3.

(b) Double covers over trigonal curves, denoted RT .

(c) Wirtinger covers, later denoted by RS .

(d) Elliptic tails, RE , given by : π : C̃ → C where

C̃ := X1 ∪ Ẽ ∪X2/p1 ∼ 0, p2 ∼ a, C := X ∪ E/p ∼ 0,

with [X] ∈ M5, X1 ≃ X2 copies of X and Ẽ an étale double cover of an
elliptic curve E. Here pi ∈ Xi, i = 1, 2 map to p ∈ X and intersection
points 0, a ∈ Ẽ map to 0 ∈ E.

The loci (a) and (b) are of dimension 12, whereas (c) and (d) are of dimen-
sion 14. In the next section we shall apply Lemma 5.2 to the computation of
the local degree along these loci mapping onto the Jacobi locus. We will prove
that their contributions to the degree are 1, 10, 16 and 0 respectively.

6. Plane quintics

Recall that a theta characteristic on a curve C of genus g is a line bundle
κ ∈ Picg−1(C) such that κ⊗2 ≃ ΩC ; κ is even or odd according to the parity
of h0(C, κ). Let [C] ∈ M6 be a smooth plane quintic. There is a natural odd
theta characteristic κ given by the pullback of the hyperplane class ℓ under the
embedding C ↪→ P2. Define

R′
Q = {[C, η] ∈ R6 | C is a plane quintic}.

We distinguish two types of coverings inR′
Q, if h

0(η⊗κ) = 0 mod 2 (respectively
= 1 mod 2) we say that the cover [C, η] is even (respectively odd). This gives
a decomposition of R′

Q into two irreducible components

R′
Q = RQ ⊔RC .

We will show that the locus of even coverings, RQ, maps onto J5 and odd
coverings, RC , maps to the locus of intermediate Jacobians of cubic threefolds.

Assume now, that JX = P6([C, η]) ∈ J5, with [X] ∈ M5 generic (non
hyperelliptic, nor trigonal), so (JX,Θ) ∈ A5. According to the Riemann Sin-
gularity Theorem

ΘSing = {L ∈ Pic4(X) | h0(X,L) ≥ 2}.

2 OC(1) denotes the restriction of the line bundle OP2 (1) to C.

3 In order to facilitate further reading, we keep the notation as in [15].
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On the other hand, the genericity of X implies that the image of the canonical
embedding X ↪→ P4 is given by the intersections of three smooth quadrics

X = Q0 ∩Q1 ∩Q2.

Any g14 on X is cut out by a 1-parameter family of 2-planes sweeping out a
quadric (of rank 3 or 4) in P4 containing X. Set

Π = ⟨Q0, Q1, Q2⟩ = {λ0Q0 + λ1Q1 + λ2Q2 | λ = (λ0, λ1, λ2) ∈ P2}

the net parametrizing all the quadrics containing X. The discriminant locus

{λ ∈ Π | Qλ is a singular quadric}

is a plane quintic C ⊂ P2 defined by the vanishing of 5× 5 linear determinant.
For a given λ ∈ C, the quadric Qλ possesses two 1-parameter families of planes
cutting a g14 . Let C̃ be the curve parametrizing the g14 ’s. By construction, this

defines an étale double cover C̃ → C. Actually, C̃ ≃ ΘSing.
In conclusion, one can recover uniquely a double covering [C, η] ∈ RQ from

the Jacobian of a generic genus 5 curve.

Remark 6.1. For X generic, C̃ is smooth and π is étale. This fails when
X possesses a vanishing thetanull, i.e., an even theta characteristic κ with
h0(C, κ) ≥ 2. In this case C̃ is singular. Masiewicki showed [24] that the
corresponding cover is allowable, extending the result to all the curves in M5.

In order to show that the local degree of P6 on RQ equals 1, we have to
show that P6 is not ramified on RQ. This is equivalent to showing that the
codifferential map

dP∗
6 : Sym2H0(C,ωC ⊗ η) → H0(C,ω⊗2

C )

is injective on the generic element of RQ. Using the identification (T0P )
∗ ≃

H0(C,ωC ⊗ η) one can show that the projectivized of the Abel-Prym map

C̃ → P is the composition [8, Prop. 12.5.3]

C̃
π→ C → P(H0(C,ωC ⊗ η)) ≃ P5.

Therefore, the injectivity of the map follows from:

Proposition 6.2. The Prym-canonical image Ψ(C) ⊂ P5 for a generic [C, η] ∈
RQ is contained in no quadrics.

Proof. Beauville proved [5, Prop. 7.10] that for a non-hyperelliptic curve X ∈
M5, the corresponding plane quintic C is contained in no quadrics. Since RQ

is irreducible [15, II.3.3], this suffices to to prove the proposition.
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7. Trigonal curves

Let us recall Recillas construction [32] that shows that the Jacobian of a tetrag-
onal curve is the Prym variety of a covering of a trigonal curve.

Let (X, g14) be a tetragonal curve of genus g − 1. Consider

C̃ := {p1 + p2 ∈ X(2) | ∃ p3, p4 ∈ X, p1 + p2 + p3 + p4 ∈ g14} .

Note that there exists a natural involution σ : C̃ → C̃, σ(p1 + p2) = p3 + p4,

so we can define C = C̃/σ. For the construction, we assume that X is general
tetragonal, i.e. a map f : X → P1 induced by the g14 has in any fibre at least
three points. The assumption implies that σ is a fixed point free involution. A
technical lemma shows that C̃ is smooth [8, Lemma 12.7.1].

Note that C is trigonal. This is because 4 points can be divided to pairs
in 3 different ways, as in the following Diagram.

p1 oo //
OO

��

``

  

p2OO

��

>>

~~
p3 oo // p4

This gives a g13 and a map h : C → P1. The map h is ramified in exactly the
same locus as f , so one can apply Hurwitz formula to get g(C) = g−1+1 = g.

Then g(C̃) = 2g − 1 and the aim will be to show that P (C̃/C) = JX.
Now, we will show an inverse construction that will be drawn in Dia-

gram (3). Let π : C̃ → C be a double covering of a trigonal curve C of

genus g. Let π(3) : C̃(3) → C(3) be an induced 8 : 1 covering. Note that one
can embed P1 = g13 ∋ p1 + p2 + p3 ↪→ [p1 + p2 + p3] ∈ C(3) and restrict π(3) to

the preimage of P1, called X̃. An involution σ acts on C̃, hence on C̃(3) and
X̃ is σ-invariant. Hence, π(3)|X̃ factorises via X = X̃/σ which is a tetragonal
curve of genus g − 1.

X̃

2:1

ww

� � //

8:1 π
(3)

|X̃

��

C̃(3)

8:1 π(3)

��

X̃/σ = X

4:1 &&
P1 = g13

� � // C(3)

(3)

Trigonal construction allows us to define a map:

τ : J 1
4,g−1−→Rg

(X, g14) 7−→ [C̃ → C]
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that gives us an allowable covering. We have the following proposition.

Proposition 7.1. Recall that C̃ ⊆ X(2) and let α = αg1
4
: X−→JX be the Abel

map chosen such that α(x) = 4x− g14. We get:

1. Pg(τ(X, g
1
4)) = JX.

2. The map Ψ : C̃−→JX = Pg(C̃ → C) given by (a, b) 7→ α(a)+α(b) is the

Abel-Prym map of the covering C̃ → C.

Proof. Fix c̃ ∈ C̃. We will use the universal property of Prym varieties [8, Thm
12.5.1] to get the bottom row of the diagram:

C̃
αC̃

~~

Ψ //

Ψc̃

��

JX

t−Ψ(c̃)

��

JC̃

1−ι   
P

Ψ̃ // JX

(4)

and to show the Ψ̃ is an isomorphism.
Firstly, in order to get the diagram, we need to show that Ψ◦ ι = −Ψ. This

is satisfied since

Ψ ◦ ι(a, b) = Ψ(c, d) = α(c) + α(d) = −α(a)− α(b),

for a+ b+ c+ d ∈ g14 .
Now, by Matsusaka’s criterion [8, Rmk 12.2.5] it is enough to show that

ψ(C̃) =
2

(g − 2)!

(g−2)∧
ΘJX ∈ H2g−4(JX,Z)

(note that g(X) = g − 1, both JX and P are of the same dimension and the
polarisation on P is twice the principal one).

To prove it we will use a degeneration method. Let Xt degenerate to X0 ∪
P1 with X0 being trigonal curve and g14 degenerates to g13 on X0 and the
intersection pointX0∩P1 = p0. Let p0+p1+p2 ∈ g13 and consider C = X0/p1 ∼
p2 with the Wirtinger cover C̃ where q1 = p2, q2 = p1 as in Example 4.2. Note
that the class [Ψ(C̃)] does not change in the degeneration. We compute

[Ψ(C̃)] = [α(X0) + α(X0)] = 2[α(X0)] =
2

(g − 2)!

(g−2)∧
ΘJX0

.
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Denote by

RT,g = {[C̃ → C] ∈ Rg : C trigonal }.

Then RT,g ⊂ Rg and Im(τ) = RT,g.

Remark 7.2. By Brill-Noether theory, every curve of genus 5 has got a g14 .

We have the following diagram:

R̃T

P1−bundle

��

� � // BlRT
R6 = R̃6

P̃ //

bl

��

Ã5 = BlJ5
A5

bl

��

J̃5
? _oo

P2−bundle

��
RT
� � // R6

P6 // A5 J5
? _oo

(5)

where R̃T and J̃5 are exceptional divisors of the blow ups.
Recall that for X of genus g − 1

Φ : X−→PH0(X,ωX)∗ ≃ Pg−2

is the canonical map and for (C, η) ∈ Rg of genus g

Ψ : C−→PH0(C,ωC ⊗ η)∗ ≃ Pg−2

is called the Prym-canonical map. Consider again the map

dP∗
g : Sym2H0(C,ωC ⊗ η)−→H0(C,ω2

C).

Lemma 7.3. Let C̃ → C be a double covering of a trigonal curve C of genus g,
and X its corresponding tetragonal curve of genus g − 1. Then

(i) The image in Pg−2 of the 4 points a, b, c, d ∈ X under the canonical
embedding of each divisor D ∈ g14 are coplanar.

(ii) On each of these planes the 3 points of intersection of opposite lines, that
is, ab∩ cd, ac∩ bd, ad∩ bc are on Ψ(C) and as D varies in g14, they trace
Ψ(C) once, giving the g13 on C.

Lemma 7.4. The intersection of Φ(X)∩Ψ(C) in Pg−2 consists of 2g+4 points,
corresponding to the ramification points of the g14 and g13.

Proposition 7.5. Let [C, η] ∈ R̃T , then ker(dP∗
6 ) is the one-dimensional sub-

space corresponding to the unique quadric in P4 containing Φ(X) and the family
of planes cutting the given g14 on X.



(20 of 34) P. BORÓWKA AND A. ORTEGA

Proof. Recall that Ker(dP∗
6 ) = {quadrics in P4 containing Ψ(C)}. A g14 is

given by cutting out X with 1-dimensional family of plane of a quadric Q ⊂ P4.
By Lemma 7.3, Q contains Ψ(C) since Ψ(C) is contained in the union of these
planes. Moreover, every quadric in Ker(dP∗

6 ) also contains Φ(X). Suppose
that Ψ(C) is contained in another quadric Q′, so Ψ(C) ⊂ Q ∩ Q′ and let Q′′

be the quadric so that
Φ(X) = Q ∩Q′ ∩Q′′.

In the smooth case Ψ(C) has degree 2g − 2 = 10. Hence Ψ(C) ∩ Φ(X) =
Ψ(C) ∩ Q′′ has degree 20, but this contradicts Lemma 7.4, since the trigonal
map has 2g + 4 = 16 ramification points.

Theorem 7.6. The local degree of P6 at RT equals 10.

Proof. Identifying J5 to M5 via the Torelli map, we denote by N (M5\A5) the

normal subbundle to J5 in A5, and N (R̃T \R̃6) denotes the normal subbundle

to the exceptional divisor R̃T in the blowup R̃6. Consider the codifferential
map on the conormal subbundles

N ∗(M5 \ A5) → N ∗(R̃T \ R̃6).

Notice that the source bundle is of rank 3 and the target one is of rank 2. By
Proposition 7.5, the kernel of this map is at most of rank one, therefore the
map is surjective. According to Lemma 5.2 the local degree equals the degree
of the

P̃e : R̃T → M̃5,

where P̃e denotes the projectivization of the conormal map on the exceptional
divisors. Let [X] ∈ M5 be a generic curve and P2 the fiber over [X] in M̃5

and R = P̃−1
e ([X]) in R̃T . We shall describe the map

P̃e : R → P2 = P(NX(M5 \ A5)).

The target plane is dual to the plane Π containing the discriminant plane
quintic F parametrizing the singular quadrics containing the canonical embed-
ding of X. Thus, a point of P2 corresponds to a line in Π, that is a pencil
of quadrics. And viceversa, a line in P2 corresponds to a point in Π, that
is a quadric Q containing Φ(X). The quadric Q is singular if and only if,

p ∈ F ⊂ Π. We have that R is a P1-bundle over [F̃ → F ] ∈ RT . Moreover,

F̃ = SingΘX parametrizes the fiber of the Prym map over JX. Indeed, an
element L ∈ SingΘX corresponds to a g41 on X and the data (X, g14) produces,

via the trigonal construction, a double covering [C̃ → C] ∈ RT over a trigonal
curve whose Prym variety is isomorphic to JX. The map

P̃e : P1 → P2
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on the fibers is injective and its image is a line in P2, that is a point in Π
corresponding to a singular quadric in ker dP ∗

6 |[C̃→C].

Now, let p ∈ P2 be a generic point, then

deg P̃e = |{P̃e}|

= |{[C̃ → C] ∈ F̃ | p ∈ P̃e(P1
C)}|

= |{[C̃ → C] ∈ F̃ | π(C) ∈ ℓ(p)}| ,

where ℓ(p) is the dual line to p in Π and π : F̃ → F is the double covering.
Hence,

deg P̃e = deg(F̃ → Π) = deg(π) · degF = 2 · 5 = 10 .

8. Boundary components

In this section we will describe the Prym map on the boundaryR6\R6 mapping
onto the Jacobian locus J5. Denote by:

RS = {[C̃ → C] ∈ R6 : [C] ∈ Mg is irreducible with one node and its

degenerations}

RE = {[C̃ → C] ∈ R6 : [C] ∈ Mg has an irreducible component of

genus g − 1 and an elliptic tail and its degenerations}

The general element of RS is a Wirtinger cover and in fact RS is a boundary
component over M5 (see Figure 2). Let RE,S denote the intersection of RS

and RE .

Lemma 8.1. The only irreducible components of R6 \R6 whose image contains
J5 are RS, RE and RT \ RT .

A fine analysis is required to study the Prym map near the singular curves
(for instance one needs to distinguish the dualising sheaf ωC from the Kähler
differentials ΩC). Donagi and Smith avoid the difficulties arising along the
locus RE and RE,S by constructing a new compactification M′

6 of M6 and a
space R′ over M′

6, such that P6 factorises through R′:

R6

β   

P6 // A5

R′

>>

such that the map β blow downs the component RE . This shows that RE has
no contribution to the degree of P6. The details of these constructions can be
found in [15, IV.§2,§4]
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                                         General elements of the boundary components





                         Wirtinger cover                                                     Elliptic tail 


Figure 2: Stable covers

In this section we will use the genericity of X ∈ M5 (1) to ignore families in
R6 of dimension smaller than 12 ( = dimM5) and (2) to assume that [X] ∈ M5

is smooth (in particular has no automorphisms).

Note that P6|RS
: RS−→J5 is proper and surjective. The fibre of a general

JX is naturally isomorphic to S2(X), since all you need is to choose p, q ∈ X
where you glue.

Lemma 8.2. For an element [C, η] ∈ RS \RE,S over a generic [X] ∈ Mg−1 we
have

Ker dP ∗
g−1 = {Quadrics Q containing Φ(X) and the chord Φ(p)Φ(q)}.

For [C, η] ∈ RS with p = q

Ker dP ∗
g−1 = {Quadrics Q containing Φ(X) and its tangent line at

the normalisation of the cusp}.

Proposition 8.3. For C = X/p ∼ q we have that ker dP ∗ is two dimensional.

Proof. Recall that for the canonical model X ⊂ P4 we have X = Q1 ∩ Q2 ∩
Q3, for some quadrics Q1, Q2, Q3. The secant pq (or the tangent line if p =
q) imposes 1 linear condition on the quadrics. The proposition follows from
Lemma 8.2.

Theorem 8.4. The local degree of the Prym map P6 at the boundary of R6

equals 16.
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Proof. The degree can be computed after blowing up M5 ↪→ A5 and restricting
the map to the exceptional divisor. On the fiber over a fixed generic [X] ∈ M5

the map becomes

f : S2X → P2 = P(NX(M5 \ A5)),

sending the (p, q) ∈ S2X to the pencil of quadrics trough the line Φ(p)Φ(q).
Therefore the degree is computed by the number of chords of Φ(X) contained
in the intersection of two quadrics in general position. The theorem follows
from Lemma 8.5 and 8.6.

Lemma 8.5. The intersection of two quadrics in general position in P4 contains
16 lines.

This is the number of lines on a del Pezzo surface of degree 4 obtained as
the blow up of 5 points in general position on P2.

Lemma 8.6. The canonical curve Φ(X) ⊂ P4 meets each of the 16 lines twice.

Proof. Recall that Φ(X) is a complete intersection of Q0 ∩ Q1 ∩ Q2 ∈ P4 of
three quadrics. Let ℓ be a line in Q1 ∩Q2. The result follows from

|(Φ(X) ∩ ℓ)|Q1∩Q2
| = |(Q0 ∩ ℓ)|P4 | = 2.

9. Cubic threefolds and their intermediate Jacobians

In this section we study the fiber of the Prym map on the locus of inter-
mediate Jacobians. Although the preimage of an intermediate Jacobian is
2-dimensional, after blow up the Prym map displays the structure of the finite
fiber. The tetragonal construction provides a beautiful geometric way of recov-
ering the fiber starting from one element in the preimage identifying it with
the structure of the 27 lines on a smooth cubic surface. The original references
for the theory of cubic threefolds are [11, 27, 28].

Let X ⊂ P4 be a smooth cubic hypersurface. Since a generic hyperplane
section intersects X in 27 lines, there is a 2-dimensional family of lines lying in
X parmetrized by the Fano surface F (X). The intermediate Jacobian

JX = H1,2(X,C)/H3(X,Z)

of X is isomorphic as a ppav to the Albanese variety Alb(F (X)). The theta
divisor Θ in JX is the image of the map

F (X)× F (X) → JX, (ℓ, ℓ′) 7→ [ℓ]− [ℓ′] ,
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which collapses the diagonal to 0 ∈ JX giving the only singularity in Θ (a
triple point). One can identify the projectivized tangent space P(T0(JX)) with
the ambient P4.

Let C be the 10-dimensional moduli space parametrizing the smooth cubic
threefolds. The construction of the intermediate Jacobian yields a map C →
A5. Since one can recover X from its tangent cone to Θ at 0, this map is
an embedding (Torelli Theorem for cubic threefolds [11], see [6] for a proof
involving Prym varieties).

Let (X, l0) be a pair consisting of a cubic threefold X and a generic line
l0 ⊂ X ⊂ P4. Let πl0 be a projection from l0 to P2 and bl the blowing up map
of X along ℓ0. We have the following diagram

Bll0X = X̃

bl

zz

pr

$$
X

πl0 // P2

where (X̃, pr) can be seen as a conic bundle over P2. It is because a point
p ∈ P2 is the image of a plane that contain l0, so its intersection with X (that
is of degree 3) is the union of l0 and a conic, either smooth, or degenerated to
two lines.

We define the discriminant locus and denote it as

C := {p ∈ P2 : pr−1(p) contains 2 lines}.

Note that C is a plane quintic, smooth for generic l0, since a generic hyperplane
section of X contains 5 pairs of lines coplanar with l. We also have a natural
line bundle L = OP2(1)|C of degree 5.

Let
C̃ = {l ∈ F (X) : l ∩ l0 ̸= ∅}

be the curve of lines intersecting l0. The plane generated by l0, l intersects X
in the third line l′ and hence there is a natural 2 : 1 map π = pr|C̃ : C̃ → C

that sends a line l to l ∩ l′ ∈ C. One checks that C̃ is also smooth and the
covering π is unramified. For any line l0 one obtains an allowable cover.

Proposition 9.1. The Prym variety of the covering C̃ → C is isomorphic to
P (C̃/C) ≃ JX. Moreover the fibre P−1

6 (JX) ≃ F (X) is 2-dimensional.

Proof. We give a sketch of the proof (a complete proof is available in [5]). Since

C̃ parametrizes a family of lines on X, there exists a map (an Abel-Prym map)

ψ : C̃ → JX, l 7→ [l]− [l0]
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defined up to translation. This induces a homomorphism a : JC̃ → JX. The
family of fibres of pr is parametrized by P2, hence its corresponding Abel-Jacobi
map is constant. Therefore, a is zero on π∗JC and it gets factorized through
a map u:

JC̃
a //

1−σ ##

JX

P (C̃/C)

u

;;

were σ is the involution exchanging the lines on the fiber of π. One shows
that u is an isomorphism by means of cohomology properties and that u pulls
back the principal polarization of JX to the principal polarization of the Prym
variety [5, §2.6].

Since C̃ is defined via a line l0 ⊂ X one can get that P−1
6 (JX) ≃ F (X).

For a generic p ∈ C, pr−1(p) is a conic in X meeting l0 in two points. For
p ∈ C ⊂ P2, we denote

pr−1(p) = l1(p) ∪ l2(p)

with l1(p) ∪ l2(p) coplanar to l0.

Proposition 9.2. The map C → X ⊂ P4 sending

p 7→ l1(p) ∩ l2(p)

is the Prym-canonical map of (C, η)

Proof. The Abel-Prym map ψ : C̃ → P (C̃, C) ≃ JX ≃ Alb(F (X)) is just the

restriction to C̃ of the map

F (X) → JX, l 7→ [l]− [l0].

The Prym-canonical image of l1(p) ∈ C̃ is the projectivized of the derivative
of ψ at l1(p) and corresponds to a point of l1(p) ⊂ P4 and similarly for l2(p).
Hence this point should be the intersection of both lines.

Proposition 9.3. The 2-torsion point η ∈ JC defining the covering π : C̃ → C
satisfies h0(C, η ⊗ L) = 1, so (C, η) ∈ RC .

Proof. The Prym-canonical map Ψ of (C, η) is given by the line bundle

ωC ⊗ η ≃ OP2(2)|C ⊗ η

and after projecting from l, C is mapped to P2 by OP2(1)|C = L. Hence, the

line bundle OP2(1)|C ⊗ η has a unique effective divisor given by the 5-points
intersection of the image of l with Ψ(C).
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Let RX := P−1
6 (JX)∩RC . We will see that the codifferential is of maximal

rank so RX is isolated in P−1
6 (JX), that is, it is a connected and irreducible

component. Therefore RX = P−1
6 (JX).

As we have seen the choice of a line in the Fano variety F (X) produces
an étale double covering whose Prym variety is isomorphic to the intermediate
Jacobian JX. Thus F (X) parametrizes a subvariety R′

X ⊂ RX . It can be
shown that the closure of the union of ∪XR′

X for all the smooth cubic threefolds
X equals the locus RC of pairs (C, η) with η odd. Let AC ⊂ A5 be the closure of
the locus of intermediate Jacobians of cubic threefolds. We have the following
blow up diagram:

(C, η, L) ∈ R̃C

P2−bundle π1

��

� � // R̃6
P̃6 //

��

Ã5

��

C̃ ∋ (X,H)? _oo

P4−bundleπ2

��
(C, η) ∈ RC

� � // R6
P6 // A5 C ∋ X? _oo

(6)

where R̃C and C̃ are the exceptional divisors, H = OP4(1)|X is a hyperplane

section and L ∈ F (X). We will see that P̃−1
e (X,H) = {l ∈ F (X) : l ∈ X ∩H}.

We can find the following dimensions of spaces and general fibres of maps that
appears in Diagram (6)

14

2

��

� � // 15
P̃6 //

0

��

15

0

��

14? _oo

4

��
12 �
� // 15

P6 // 15 10? _oo

The cotangent space

T ∗
JXA5 = Sym2 T ∗

0 (JX)

consists of all quadrics in P4 = P(T ∗
0 (JX)). The quadrics corresponding to the

conormal space N ∗
JX(AC \A5) are those Xp polar to points p ∈ P4 with respect

to X (see [17]). Thus

π−1
2 (JX) ≃ P(N ) ≃ (P4)∗.

Since R′
C is an unramified cover over the moduli space of plane quintics, we

can identify the fiber of π1 over (C, η) ∈ R′
C with the dual of the ambient P2

of C. In terms of given pair (X, l) with l ∈ F (X) this P2
l is the space of planes

through l in P4 and (P2
l )

∗ is the subspace of (P4)∗ dual to l.

Lemma 9.4. Let R̃X = π−1(R′
X) and PX be the restricted map. Then

PX : R̃X = ∪l∈F (X)(P2
l )

∗ → (P4)∗

is the natural injection on each (P2
l )

∗.
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This lemma shows that P̃e is of maximal rank and it is of degree 27, since a
generic hyperplane section of X contains 27 lines. Hence, an element in (P4)∗

has 27 planes in its preimage.

10. Tetragonal construction

As we have seen, the fiber of P̃6 over an intermediate Jacobian corresponds
to the 27 lines on a smooth cubic surface, so it carries also a structure of the
incidence correspondence of the lines. The tetragonal construction on elements
(C, η) ∈ RC on the fiber reflects this correspondence.

Let C denote a tetragonal curve of genus g (with f : C → P1 given by a g14)

and let π : C̃ → C be an étale double covering. As usual, we have the following
construction.

C̃0 ⊔ C̃1 = X̃

2:1

uu
2:1

yy

� � //

16:1 π(4)|
X̃

��

C̃(4) ∋ p̃1 + p̃2 + p̃3 + p̃4

16:1 π(4)

��

C0

4:1 ))

C1

4:1

%%
P1 = g14

� � // C(4) ∋ p1 + p2 + p3 + p4

(7)

Note that for D,D′ ∈ Pic(X̃) we have D ∼ D′ if and only if they push down
to the same divisor on C(4) and they share an even number of points in each
orbit. This shows in particular that X̃ has two connected components C̃0 and
C̃1.

We have so called triality (C̃, C, f), (C̃0, C0, f0), (C̃1, C1, f1) because
the construction does not depend from which curve we have started.
This phenomenon can be explained by the monodromy representation
π(P1 \{branch points})−→WD4 , whereW (D4) is the Weyl group of D4. Note
that S3 acts on W (D4) as the group of outer automorphisms. The outer auto-
morphism of order 3 is responsible for the appearance of the three tetragonally
related double covers.

Theorem 10.1. The tetragonal construction commutes with the Prym map,
that is,

Pg(C̃, C) ≃ Pg(C̃0, C0) ≃ Pg(C̃1, C1)

are isomorphic as ppav (for any genus g ≥ 5).

Proof. One can use Masiewicki’s criterion to prove the isomorphisms. Instead,
we sketch here the degeneration argument given in [14]. Consider RTet

g ⊂
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Figure 3: Stable cover

Rg the space parametrizing pairs (C̃, C) of étale double coverings with C a
tetragonal curve of genus g. This is an irreducible space and the construction
varies continuously with (C̃, C), so we can make the computation for a single
pair. Consider the allowable covering

C̃ := P1 ∪q′ T̃ ∪q′′ P1, C := T ∪q P1

with T̃ → T an étale double cover over a trigonal curve T as in Figure 3.
The tetragonal construction applied to the cover produces other two

Wirtinger covers C̃i, Ci, i = 0, 1, such that the normalization of Ci is the
tetragonal curve N associated to (T̃ , T ) via the trigonal construction. In this
sense, the trigonal is a degeneration of the tetragonal construction. We have
then isomorphisms of ppav

JN ≃ Pg(T̃ , T ) ≃ Pg(C̃, C)

such that image of the Abel-Prym map αi : Ci → Pg(C̃, C) consists of the
image of the Abel-Jacobi map φ : N → JN and its involution. Thus the
fundamental class is twice that of φ(N).

Curves of genus 6 are tetragonal and the generic one possess 5 g14 ’s. Let
MTet

6 denote the moduli space parametrizing pairs of genus-6 curves with a g14 .
So the forgetful map MTet

6 → M6 is generically finite of degree 5. By base
change we get the following diagram

RTet
6

��

// R6

��
MTet

6
//M6
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The tetragonal construction induces a (2, 2) correspondence on RTet
6 whose

image in R6 is a (10, 10) correspondence Tet ⊂ R6 ×R6.

Theorem 10.2. The correspondence Tet on the fiber P−1
6 (A) for a generic

A ∈ A5 is isomorphic the the incidence correspondence of the lines on a smooth
cubic surface. Moreover, the Galois group of the Galois closure of R6 → A5 is
the Weyl group W (E6), the symmetry group of the incidence of the 27 lines on
the cubic surface.

Proof. The generically finite map RTet
6 → R6 has 1-dimesional fibers over the

locus of double coverings C̃ → C with C trigonal or a plane quintic. After
blowing up and normalizing one gets generically finite fibers over the corre-
sponding exceptional loci. One checks that the tetragonal correspondence lifts
to a generically finite (10, 10) correspondence

T̃et ⊂ R̃6 × R̃6.

It suffices to identify the structure over a point over which P̃6 and T̃et are étale.
For instance over a generic (X,H) ∈ C̃, where the group W (E6) acts on the
line of the cubic surface X ∩H. So the monodromy is contained in W (E6).

For instance, for an element (C, η, l) ∈ R̃C (that is a plane quintic C with
an odd 2-torsion point η and l a line in P2), the 5 g14 ’s correspond to the
projections of the plane quintic C from one of the 5 points of the intersection
C ∩ l. We have the identification of P̃6(X,H) with the set of lines of the cubic
surface X ∩ H, which for generic X and H there are 27 lines. For each l of
these lines the conic bundle construction (blow up of the projection from l)

gives a double cover π : C̃ → C, with L = π(H) ⊂ P2. In order to corroborate
Theorem 10.2, we need to check that for two given lines l, l′ ∈ F (X) they
intersect each other if and only if the corresponding objects (C, η, l), (C ′η′, l′)

are tetragonally related, that is, the pair belongs to T̃et. If l ∩ l′ ̸= ∅, let
A ⊂ P4 be the plane containing l, l′ and l′′ the line such that A∩X = l∪ l′∪ l′′.
The conic bundle construction gives then 3 plane quintics C,C ′, C ′′ with their
respective double covers C̃, C̃ ′, C̃ ′′. Note that the l, l′ map to a point p ∈ C and
this point determines a 4:1 map f : C → P1 by projecting from it. Similarly,
for C ′, C ′′ we obtain tetragonal maps f ′, f ′′. These 3 maps can be realised
simultaneously via the pencil of hyperplanes Sλ ⊂ P4 containing A. For a
generic λ, Sλ∩X =: Yλ is a smooth cubic surface. A line m ∈ Yλ, with m /∈ A,
m∩l′ ̸= ∅ also meets 4 of the 8 lines in Yλ\A meeting l. This gives the injection

C̃ ′ ↪→ C̃(4), m 7→ {m′ : m′ ∩ l ̸= ∅, m′ ∩m ̸= ∅}.

This shows that the three covers are tetragonally related, hence

(C̃, C, f), (C̃ ′, C ′, f ′) ∈ T̃et.
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Since both, the line incidence and the tetragonal correspondence are of bidegree
(10, 10) and we have the inclusion, they must be equal.

11. Exercises

The course has been supplemented with the exercise sessions. The idea was to
compute some examples in low genera and show that Prym theory combines
constructions from curve theory and theory abelian varieties. We would like to
show some ideas of what was covered.

Exercise 11.1. Show that if C is a genus 2 curve and f : C → E is an n : 1
covering of an elliptic curve, then there is another n : 1 covering g : C → E′.

Proof. By dimension count, one gets that the Prym variety P (f) is of dimension
1, hence an elliptic curve, say E′. Since we have an inclusion j : E′ → JC, we
can dualize it to get ĵ : JC → E′ and restrict to an image of an Abel Jacobi
map to get a map g = ĵ ◦ αC : C → E′. Here, we have used the fact that both
JC and E′ are principally polarized, hence isomorphic to their duals. It is also
worth noting that a change of the base point of an Abel Jacobi map results in
a map that differs by a translation on E′, so the map g is (up to translation on
E′) unique. Since f is n : 1, we have that E′ has restricted polarization being
n times the principal one, so g is of order n.

Remark 11.2. The locus of Jacobians of curves mentioned in Exercise 11.1
coincides with the locus of abelian surfaces that are polarized isogenous to a
product of elliptic curves of exponent n and is called the Humbert surface of
degree n2.

From the proof of Exercise 11.1, we get an immediate corollary.

Corollary 11.3. An elliptic curve E can be embedded in a Jacobian JC with
exponent n if and only if there exists an n : 1 covering C → E (that does not
factorize via C → E′ → E with E′ → E an isogeny).

Before showing next exercise, we need to recall result from [7] that deals
with curves on surfaces.

Lemma 11.4 ([7, Prop 4.3]). Let C be a smooth curve and (JC,Θ) its Jacobian.
Let (A,H) be a polarised abelian surface and suppose fC : C → A is a morphism
and f : JC → A is the canonical homomorphism defined by the universal
property of Jacobians. Then the following are equivalent:

• f̂∗(Θ) ≡ Ĥ;

• (fC)∗[C] = H in H2(A,Z).
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If C is of genus 3, we can use the fact that if JC contains an abelian
subvariety, then it contains an elliptic curve and therefore C is a covering of
an elliptic curve. We will recall Barth’s result [3] in the following exercise.

Exercise 11.5. Show that a smooth genus 3 curve C can be embedded in a
(1, 2) polarized abelian surface if and only if it is a double covering of an elliptic
curve. In such a case, the curve C is hyperelliptic if and only if C is an étale
double covering of a genus 2 curve.

Proof. Note that by [2], a general section of a polarization of type (1, d) is a
smooth curve and by Riemann-Roch, it is of genus d+1. Hence, if fC : C → A
is an embedding of a genus 3 curve, then fC(C) has to generate A as a group
and hence O(fC(C)) is a (1, 2) polarization. Now, by Universal Property of
Jacobians, we can extend fC to a map f : JC → A which will be surjective
and hence Ker(f) = E is an elliptic curve. Since E is complementary to Â in
JC, its exponent equals 2 and so there exists a double covering C → E.

On the other hand, if g : C → E is a double covering then Nmg : JC → E
has kernel Ker(Nmg) = A that is a (1, 2) polarized abelian surface. If we take

the dual map to the inclusion, we get a map JC → Â and by composing with
an Abel-Jacobi map, using Lemma 11.4 we get that the image is of arithmetic
genus 3 and hence it is a desired embedding of C.

As for the second part, it is well known that an étale double covering of a
genus 2 curve is bielliptic, i.e. hyperelliptic and a double cover of an elliptic
curve (see [25]). On the other hand, if C is hyperelliptic, we can use the
hyperelliptic involution ι to show that for any degree 0 divisor D, we have that
D + ι∗D is a principal divisor. In particular ι extends to −1 on the Jacobian
JC. Now, if τ is the involution defining the covering f : C → E, then ιτ defines
another double covering π : C → C ′ and one can compute

E = Im(Nm(f)) = Im(1 + τ) = Im(1− (−τ)) = P (C/C ′)

and in particular C ′ is of genus 2 and π an étale double covering.

Remark 11.6. A trick of composing an involution with the hyperelliptic in-
volution used in the proof of Exercise 11.5 can be generalised to any genus.
If C is hyperelliptic and f ′ : C → C ′ and f ′′ : C → C ′′ are double cover-
ings given by involutions τ and ιτ respectively then the Prym varieties equals
P (f ′) = (f ′′)∗(JC ′′) and P (f ′′) = (f ′)∗(JC ′).

One may suppose that if a Jacobian contains an abelian subvariety, then
there is a covering of curves involved. The aim of the last exercise is to show
that it may not be the case.

Exercise 11.7. Show that there exists a Jacobian of a curve that contains
abelian subvarieties but does not come from the Prym construction (i.e. the
curve is not a covering of a positive genus curve).
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Proof. Here, we will show a heuristic argument. Let C be a smooth genus 4
curve embedded in a (1, 3) polarised abelian surface A. Then we can construct
the exact sequence 0 → K → JC → A → 0 and its dual sequence 0 → Â →
JC → K̂ → 0. Since K and Â are complementary to each other in JC and
therefore of the same type (1, 3) we get that C is also embedded in K̂. The
moduli of abelian surfaces is three dimensional and on a fixed surface there is
a two dimensional family of genus 4 curves (since h0(A,L) = 3), hence there is
a five dimensional family of such curves (locally). Note that any curve can be
embedded in only finitely many surfaces, since for a fixed abelian variety (in
this case a Jacobian) there is only finitely many abelian subvarieties of a fixed
exponent. Because of that, we can assume that all A, Â,K, K̂ do not contain
elliptic curves. In such a case, C is not a covering of an elliptic curve. Now,
the only possible covering is a triple étale covering of a genus 2 curve but there
are only finitely many such curves on a fixed A.

An explicit example when we additionally assume that C is hyperelliptic
and get that K = A and a precise proof that C is not a covering of a positive
genus curve can be found in [10].

To show that the inverse to the Torelli map is mysterious even in dimensions
2 and 3, we have finished the exercises with two open questions:

Exercise 11.8. Can you find an explicit example (i.e. a hyperelliptic equation)
of a smooth genus 2 curve that is a 2021 : 1 covering of an elliptic curve? Can
you find an explicit example (i.e. a bivariate quartic equation) of a smooth
genus 3 curve that is a 2021 : 1 covering of an elliptic curve?
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