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Abstract. It is known that a plane projective curve D consisting of a
union of degree n curves in the same pencil with a smooth base locus is
free if and only if D contains all the singular members of the pencil and
its Jacobian ideal is locally a complete intersection. Here we generalizes
this result to pencils having a singular base locus.
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1. Introduction

Let R = ⊕k≥0Rk = k[x, y, z] be the graded ring in three indeterminates. The
partial derivatives in these three variables are denoted ∂x, ∂y and ∂z. The R
graded-module of derivations is a rank 3 module DerR = ⊕k≥0[Rk∂x +Rk∂y +
Rk∂z]. The so-called Euler derivation is δE = x∂x + y∂y + z∂z.

To a reduced homogeneous polynomial of degree n ≥ 1, f ∈ Rn, one asso-
ciates its module of tangent derivations:

Der(f) = {δ ∈ DerR | δ(f) ∈ (f)}.

The Euler derivation belongs to Der(f) and there is a factorization

Der(f) = RδE ⊕Der0(f),

where
Der0(f) = {δ ∈ DerR | δ(f) = 0}.

Let ∇(f) = (∂xf, ∂yf, ∂zf) be the vector of partial derivatives. Then Der0(f)
is the kernel of the Jacobian map

R3 ∇(f)−−−−→ R[n− 1].

The modules Der(f) and Der0(f) could also be defined in higher dimensions
where instead of curves, we would have hypersurfaces. One reason to focus
on curves is that the module Der0(f) is locally free (its associated sheaf in P2

is reflexive and then it is a vector bundle for dimensional reasons). In some
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very particular cases, these modules can also be free (see the definition below).
This was first pointed out in [4] for reduced hypersurfaces and studied in [7] for
line arrangements (finite sets of distinct lines in P2) presenting a very special
combinatorics; for instance, a union of lines invariant under the action of some
reflection group or the Hesse arrangement of 12 lines through the 9 inflection
points of a smooth cubic curve (see [2] for detailed examples). Actually, in [2],
Terao conjectures that freeness of hyperplane arrangements depends only on its
combinatorics. This conjecture is still unsolved even for line arrangements; this
is certainly because we do not know enough examples of free line arrangements
and more generally of free curves to clearly understand what distinguishes a
free curve from a non free curve. Although combinatorics is not as relevant
for general curves as for line arrangements, understanding why a curve is free,
in addition to the interest of this result for itself, could help solve Terao’s
conjecture. Before going further on this subject, let us recall the definition of
freeness for a reduced plane curve.

Definition 1.1. The reduced curve V (f) is free if and only if Der0(f) (or
equivalently Der(f)) is a free module. More precisely Der0(f) is free with ex-
ponents (a, b) if Der0(f) = R[−a]⊕R[−b] where a and b are integers verifying
0 ≤ a ≤ b and a+ b+ 1 = deg(f) (or Der(f) = R[−1]⊕R[−a]⊕R[−b]).

Remark 1.2. A smooth curve of degree ≥ 2 is not free, an irreducible curve
of degree ≥ 3 with only nodes and cusps as singularities is not free (see [1,
Example 4.5]). Few examples of free curves are known and of course very few
families of free curves are known. One such family can be found in [6, Prop. 2.2].

One method to produce free curves given in [8] (suggested by E. Artal-
Bartolo and J. Cogolludo-Agustin in a personal communication), consists in
taking the union of all the singular curves in a generic pencil of curves of the
same degree ; generic means here that the base locus is smooth. More precisely,
it was proved that:

Theorem 1.3. Let f, g two reduced polynomials in Rn such that B = V (f) ∩
V (g) consists in n2 distinct points. Denote by Dk the union of k ≥ 2 curves and
by Ds the union of all the singular curves of the pencil ⟨f, g⟩ of degree n curves
generated by f and g. Then Dk is free with exponents (2n− 2, n(k − 2) + 1) if
and only if Ds ⊂ Dk and the singularities of Ds are quasihomogeneous.

Let us first give some classical examples.

Example 1.4. The Braid arrangement defined by xyz(x−y)(x−z)(y−z) = 0
is the union of the three singular curves of the pencil ⟨(x− y)z, y(x− z)⟩. It is
free with exponents (2, 3).

Example 1.5. The Hesse arrangement defined by∏
ϵ=0,1,j,j2

(x3 + y3 + z3 − ϵ xyz) = 0
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is the union of four triangles, that are all the singular curves of the pencil
⟨x3 + y3 + z3, xyz⟩. It is free with exponents (4, 7).

Example 1.6. The Fermat arrangement defined by

(xn − yn)(yn − zn)(xn − zn) = 0

is the union of three sets of n concurent lines that are all the singular curves
of the pencil ⟨xn − yn, yn − zn⟩. It is free with exponents (n+ 1, 2n− 2).

As a definition of quasihomogeneous singularity we follow the characteriza-
tion given in [5]:

Definition 1.7. Let f ∈ C[x, y, z] a reduced polynomial. Let C = V (f) its cor-
responding projective curve. A singular point p ∈ V (f) is a quasi-homogeneous
singularity if and only if τp(C) = µp(C), where τp(C) and µp(C) are the Tju-
rina and Milnor numbers of C at p.

Remark 1.8. The definition being local one can assume that p = (0, 0) and

C{x, y} is the ring of convergent power series ; then τp(C) = C{x,y}
(∂xf,∂yf,f)

and

µp(C) = C{x,y}
(∂xf,∂yf)

. This implies in particular that τp(C) ≤ µp(C).

Remark 1.9. When p is a smooth point of C, these numbers vanish.

Remark 1.10. These numbers play a crucial role here. Indeed, denoting by
Tf the logarithmic tangent sheaf associated to V (f) which is the sheafification
of Der0(f), and by Jf the sheaf of ideals, called Jacobian ideal, image of the
Jacobian map, one has

0 −−−−→ Tf −−−−→ O3
P2

∇(f)−−−−→ Jf (n− 1) −−−−→ 0.

Since the curve C = V (f) is reduced, its singular locus is a finite scheme and
the Jacobian ideal defines a finite scheme of length

c2(Jf ) =
∑
p∈C

τp(C).

The sum τ(C) :=
∑

p∈C τp(C) is called the total Tjurina number of C. This
gives also the following relation:

c2(Tf ) = (n− 1)2 − τ(C).

The proof of Theorem 1.3 was based on the following observations:

1. there exists a canonical derivation δ = det[∇f,∇g,∇] = ⟨∇f ∧ ∇g | ∇⟩
(where ⟨ | ⟩ is the usual scalar product of vectors in C3) associated to a
pencil ⟨f, g⟩ of degree n curves; this canonical derivation induces for any
k ≥ 2 a non zero section sk ∈ H0(TDk

(2n− 2));
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2. the zero locus of this section sk is empty if and only if Dk ⊂ Ds and at
each singular point p of Ds one has τp(D

s) = µp(D
s).

The smoothness of the base locus B is necessary to certify that its contribution
to the length of the Jacobian scheme is

n2∑
i=1

(k − 1)2 = n2(k − 1)2.

1.1. Objectives

We would like to extend this construction of free curves to more general pencils,
i.e. pencils with a singular base locus. Here we focus on two cases.

1. The fat case: pencils generated by two powers ⟨f b, ga⟩ where V (f) and
V (g) are two curves of degree a and b such that (a, b) = 1 and V (f)∩V (g)
is a smooth set of ab distinct points. In such pencils any curve is singular
along the base locus B when a > 1 and b > 1. The interest for this case
comes from the celebrated example of the two types of 6-cusped sextics
with non-isomorphic fundamental groups given by Zariski [9]; indeed the
six cusps belong to a smooth conic for the first type and do not belong
to a conic for the second type. The sextic of the first type is a general
curve in a pencil ⟨f3, g2⟩ where f = 0 is a smooth conic and g = 0 is a
smooth cubic.

2. The tangential case: pencils of degree n curves such that the general
one is smooth but with a singular base locus B, i.e. card(B) < n2.
The complete description of these pencils remains difficult and we will
concentrate in this text on the case of pencils generated by conics.

2. The fat case

In this section we do not study all the singular pencils but only those defined
by two multiple structures on reduced curves with primary degrees meeting
along a smooth set. More precisely, we prove:

Theorem 2.1. Let a, b be two positive integers such that gcd(a, b) = 1, f ∈ Ra,
g ∈ Rb be two reduced polynomials such that the corresponding curves V (f)
and V (g) meet along ab distinct points. We consider the pencil Cab = ⟨f b, ga⟩
of degree ab curves. Then,

1. if a > 1 and b > 1 then all curves of Cab are singular at B;
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2. there is a finite number of curves in Cab, disjoint from V (f b) and V (ga),
that are singular outside B. We call these curves the +singular curves
and their union is denoted by D+s ; the length of the scheme of all the
singular points of these +singular curves, including the singularities of
V (f) and V (g) when these generators are not smooth, is

(a− 1)2 + (b− 1)2 + (a− 1)(b− 1);

3. if V (f) and V (g) are smooth, a union Dk of k curves of the pencil Cab is
free with exponents (a+ b− 2, kab− (a+ b) + 1) if and only if D+s ⊂ Dk

and any singularity of D+s outside B is quasihomogeneous;

4. if V (f) is not smooth (resp. or/and V (g)), the curve Dk ∪ V (f) (resp.
Dk ∪ V (g) and Dk ∪ V (f) ∪ V (g)) where Dk is a union of k curves
of the pencil Cab is free with exponents (a + b − 2, kab − b + 1) (resp.
(a+ b− 2, kab− a+1), (a+ b− 2, kab+1)) if and only if D+s ⊂ Dk and
any singularity of D+s outside B is quasihomogeneous.

Proof. Let us prove each assertion.

(1) If (x, y) is a local system of coordinates at any base point p ∈ B, then
any curve of the pencil is contained in the ideal (xa, yb) then singular at p.

(2) Let us consider a curve H = λf b + µga with λµ ̸= 0 with a singular
point p /∈ B. Since p is singular we obtain ∇H(p) = 0. We have by Liebniz’s
rule:

∇H(p) = bλf b−1(p)∇f(p) + aµga−1(p)∇g(p) = 0.

Since p /∈ B, f b−1(p) ̸= 0 and ga−1(p) ̸= 0. This is equivalent to say that
∇f(p) and ∇g(p) are proportional, in other words that the two by two minors
of the matrix [∇f,∇g] vanish simultaneously at p. Moreover since f and g
meet transversally at B, these minors do not vanish at any point in B. The
scheme Γ of singular points outside B is then defined by the following exact
sequence

0 −−−−−→ OP2(1− b)⊕ OP2(1− a)
[∇f,∇g]−−−−−→ O3

P2
∇f∧∇g−−−−−→ JΓ(a+ b− 2) −−−−−→ 0.

Reciprocally, if p ∈ Γ then one can find easily two non zero constants λ and µ
such that ∇(λf b + µga)(p) = 0. The length of Γ is the number by

c2(JΓ) = (a− 1)2 + (b− 1)2 + (a− 1)(b− 1).

(3) Let Dk, defined by Hk = 0, be a union of k curves in the pencil that
contains D+s. We consider the canonical derivation

δ = det[∇f,∇g,∇] = ⟨∇f ∧∇g | ∇⟩.
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Since by Liebniz’s rule, we have δ(Hk) = 0 for any k ≥ 2, this derivation induces
a non zero section of H0(TDk

(a+ b− 2)) and gives a commutative diagram:

0 0y y
OP2 (2−a−b) OP2 (2−a−b)

sδ

y [∇f∧∇g]

y
0 −−−−−→ TDk

−−−−−→ O3
P2 −−−−−→ JDk

(kab−1) −−−−−→ 0y y ∥∥∥
0 −−−−−→ JZ(sk)

(a+b−kab−1) −−−−−→ F −−−−−→ JDk
(kab−1) −−−−−→ 0y y

0 0

where the sheaf F is a rank two sheaf singular along Γ, the scheme of +singular
points defined above. Dualizing the last exact sequence we obtain:

0 −−−−−−→ OP2 (1−kab)
[U,V ]t−−−−−−→ OP2 (1−a)⊕OP2 (1−b)

[−V,U]−−−−−−→ OP2 (1−a−b+kab)

−−−−−−→ ωDk
−−−−−−→ OΓ −−−−−−→ OZ(sk) −−−−−−→ 0,

where ωDk
is the dualizing sheaf of the Jacobian scheme associated to Dk, U

and V are the polynomials of degree kab− a and kab− b such that

∇Hk = U∇f + V∇g.

Denoting by T the complete intersection defined by {U = 0} ∩ {V = 0}, we
find finally a shorter exact sequence:

0 −−−−→ OT −−−−→ ωDk
−−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0.

Cutting this exact sequence in two short exact sequences we get

0 −−−−→ OT −−−−→ ωDk
−−−−→ R −−−−→ 0 (s1)

and
0 −−−−→ R −−−−→ OΓ −−−−→ OZ(sk) −−−−→ 0. (s2)

The complete intersection T is supported by B. Since Γ ∩ B = ∅ the exact
sequence (s2) proves that the scheme R is supported on a subset of Γ and does
not meet B. The exact sequence (s1) then shows that R is supported by all
the +singular points appearing in Dk.

If D+s ⊂ Dk both schemes R and Γ have the same support ; if the singu-
larities of D+s are quasihomogeneous then these schemes coincide. The curves
V (f) and V (g) meeting transversally, the scheme Γ is lci (see [8, proof of The-
orem 2.7]) ; this proves that R = OΓ and finally, this implies Z(sk) = ∅.
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2.1. Example

Consider the pencil ⟨f3, g2⟩ of sextic curves where

Cf = V (f) = {y2 − xz = 0} and Cg = V (g) = {x3 + y3 + z3 = 0}.

The smooth conic Cf and the smooth cubic Cg meet in six different points
pi = (a2i , ai, 1) where a6i + a3i + 1 = 0. All curves of this pencil are singular in
the six points pi. Let us describe now the +singular curves of this pencil with
more details.

Proposition 2.2. In the pencil ⟨f3, g2⟩ there are exactly five curves that are
singular in a point not belonging to the pi’s. Two of these five curves C1,0 and
C0,1 are defined respectively by the equation f3 = 0 g2 = 0, the three other
are C1,−1, C4,1 and C4,−3 defined respectively by the equations f3 − g2 = 0,
4f3 + g2 and 4f3 − 3g2 = 0.
The additional singular point of C1,−1 is (0, 1, 0).
The additional singular points of C4,1 are (1, 0, 1), (1, 0, j) and (1, 0, j2).

The additional singular points of C4,−3 are (−1
2 , 1, −1

2 ), (−j2

2 , 1, −j
2 ) and

(−j
2 , 1, −j2

2 ).

The curve C1,−1 ∪ C4,1 ∪ C4,−3 is free with exponents (3, 14).

Proof. The singular points p = (a, b, c) ̸= pi of Cλ,µ := λf3+µg2 = 0 are those
verifying:

∇(λf3 + µg2)(p) = 3λf2(p)∇(f)(p) + 2µg(p)∇(g)(p) = 0⃗.

• If f(p) = 0 then (λ, µ) = (1, 0) and the corresponding curve is f3 = 0.

• If g(p) = 0 then (λ, µ) = (0, 1) and the corresponding curve is g2 = 0.

• If f(p)g(p) ̸= 0 then ∇(f)(p) = (−c, 2b,−a) and ∇(g)(p) = (3a2, 3b2, 3c2)
are proportional. More precisely, (a, b, c) verifies the equations:

 3b(bc+ 2a2) = 0
c3 − a3 = 0

3b(ab+ 2c2) = 0.

Solving this system by elementary computations, we find the additional
singular points and the singular curves associated. According to Theo-
rem 2.1 the curve C1,−1 ∪C4,1 ∪C4,−3 is free with exponents (3, 14).
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2.2. Example

This second example corresponds to the case (4) of the main theorem.

We consider the pencil ⟨f3, g2⟩ of sextic curves where

f(x, y, z) = x2 + y2 + z2 and g(x, y, z) = xyz.

The smooth conic V (f) and the singular cubic V (g) meet in six different points
(1, i, 0), (1,−i, 0), (1, 0, i), (1, 0,−i), (0, 1, i) and (0, 1,−i). Using the same
method than in the previous example, we find that the locus V (∇f ∧∇g) con-
sists in 7 points that are the three vertices of the triangle, (1, 0, 0), (0, 1, 0),
(0, 0, 1) and the four singular points of f3 − 27g2 = 0. Then the curve
xyz(f3 − 27g2) = 0 is free with exponents (3, 5).

3. The tangential case

The pencil is generated by two curves of degree n that do not meet transversally
(i.e. the cardinality of the set B is < n2). At the point p ∈ B where V (f) and
V (g) share the same tangent line, the canonical derivation δ = det(∇f,∇g,∇)
verifies δ(p) = 0. This is the main difficulty here. Indeed the computation of
the length of the Jacobian scheme becomes harder and we could have µp(Hk) ̸=
τp(Hk) at such a point p ∈ B for a union of k curves in the pencil. If V (f) and
V (g) are two smooth conics such that B consists in a subscheme of length 3
and a distinct simple point. Then V (fg(af + bg)), where V (af + bg) is also
smooth, is free with exponents (2, 3). So it is possible for a union of smooth
curves of the same pencil to be free. It is also possible to be free when instead
of containing all the singular curves the union contains only some irreducible
components of some singular curves. For instance, if V (f) and V (g) are two
smooth conics tangent in a point p. Then V (fg(af +bg)h) where V (af +bg) is
also smooth and V (h) is the line passing through the two smooth points in B,
is free with exponents (2, 4).

p p
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We will focus on pencil of conics. Our aim is to

1. determine the “smaller” free union of conics for each kind of pencil;

2. compute the Tjurina numbers at the base points for any kind of pencil.

3.1. Pencil of conics

There are different regular pencils (the general conic of the pencil is smooth)
generated by two conics C andD with no component in common. Let us precise
now for any of this different pencils what generators ⟨f, g⟩ can be chosen. Recall
that the canonical derivation is δ = det[∇f,∇g,∇]. The pencil is

1. generic when C ∩D consists of 4 distinct points. Then, up to a linear
transformation, C and D can be defined by x2 − z2 = 0 and y2 − z2 = 0.
The canonical derivation δ has degree 2 ; among the intersection points
appearing in the picture, the base points are blue and the singular points
are red;

2. tangent when C ∩ D consists of 3 points, one double and two simple
points. Then, up to a linear transformation, C and D can be defined by
x2 − z2 = 0 and yz = 0. The canonical derivation δ has degree 2; now
base points and singular points are not disjoint;
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3. bitangent when C ∩D consists of 2 double points. Then, up to a linear
transformation, C and D can be defined by x2 − z2 = 0 and y2 = 0.
The canonical derivation δ can be factorized by y, i.e. δ = yν where the
derivation ν has degree 1;

4. osculating when C ∩ D consists of 2 points, one simple and one triple
point. Then, up to a linear transformation, C and D can be defined by
xy = 0 and y2 − xz = 0. The canonical derivation δ has degree 2;

5. +osculating when C ∩D consists of one quadruple point. Then, up to
a linear transformation, C and D can be defined by y2 − xz = 0 and
x2 = 0. The canonical derivation δ can be factorized by x, i.e. δ = xν
where the derivation ν has degree 1.
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3.2. A free union of curves remains free by deleting a
smooth curve

Proposition 3.1. Assume that A is a union of curves V (λf +µg) of a regular
pencil of degree n curves ⟨f, g⟩ in P2. Assume also that A contains a singular
member V (h1h2) (h1h2 ∈ ⟨f, g⟩) which is a normal crossing divisor at the points
V (h1) ∩ V (h2) and that V (h1) is smooth. Then if A is free the arrangement
A \ V (h1) is also free.

Proof. Let δ be the canonical derivation associated to the pencil ⟨f, g⟩. If
the pencil does not contain any multiple curve the degree of δ is αn = 2n −
2. If it contains a multiple curve then one can factorize it to define a new
“canonical” derivation (vanishing along any curve of the pencil) with degree
αn < 2n − 2. Since V (h1h2) belongs to the pencil ⟨f, g⟩ one gets δ(h1h2) =
det(∇(f),∇(g),∇(h1h2)) = 0. Then h1δ(h2) = −h2δ(h1). Hence there exists
a polynomial k such that δ(h2) = −kh2 and δ(h1) = kh1. The derivation
δ′ = δ − k

deg(h1)
δE verifies δ′(h1) = 0 and it has the same degree than δ. Since

V (h1h2) is a normal crossing divisor at p ∈ V (h1)∩V (h2) then k(p) ̸= 0 ; indeed
h1(p) = k(p) = 0 implies that δ(h1) vanishes at p at the order two contradicting
the normal crossing at p. Then δ′(p) ̸= 0 and the section induced by δ′ does
not vanish at p. Hence when the component V (h1) is deleted from A, p is
removed from the scheme defined by the Jacobian ideal J∇A and also removed
from Z(sδ′) the zero scheme of the section induced by δ′. Then Z(sδ′) = ∅ and
A \ V (h1) is also free.

Example 3.2. The following arrangement of four lines can be seen as a union of
two singular conics, the dashed one and the black one. It is free with exponents
(2, 1).
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The following arrangement of lines is still free by Proposition 3.1 with exponents
(2, 0).

Example 3.3. Pappus arrangement consists in 9 lines given by the well known
configuration 93. The 9 lines are the sides of the 3 triangles passing through 9
points. In the pencil generated by two triangles, singular curves are missing.
In general three nodal cubics are missing but in the following example there is
only one singular cubic missing: it consists in the union of a line union and a
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smooth conic; indeed let us consider the pencil generated by one set of three
concurrent lines and one triangle [x(x2 − z2), (x+ y)(x− 2y + z)(x− 2y − z)].
It still contains another triangle (x − y)(x + 2y − z)(x + 2y + z) = 0 and a
conic+line y(3x2 − 4y2 + z2) = 0.

eq1eq2f gh

i j

k

l

p

The union of all the singular members of the pencil is free with exponents
(4, 7) (by [8], Theorem 1.3). By Proposition 3.1 we obtain a new arrangement
which is free with exponents (4, 6) by removing the line from the conic+line
member:

x(3x2 − 4y2 + z2)(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0 .

By Proposition 3.1 again, we obtain a new arrangement which is free with
exponents (4, 5) by removing the conic from the conic+line member:

xy(x2 − y2)(x2 − z2)((x+ 2y)2 − z2)((x− 2y)2 − z2) = 0.

3.3. A free union of curves remains free by adding a
smooth curve

Proposition 3.4. Let C be a smooth curve in a pencil ⟨f, g⟩ of degree n curves,
A be an arrangement of curves, or components of curves, of this pencil. Assume
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that the section of TA(αn) induced by the canonical derivation δ (of degree αn)
does not vanish. Then A is free with exponents (αn,−αn − c1(TA)) and A∪C
is free with exponents (αn,−αn − c1(TA∪C)).

Proof. There is a short exact sequence:

0 −−−−→ TA∪C −−−−→ TA −−−−→ L −−−−→ 0,

where L is a line bundle over C. Indeed on an open affine neighborhood U ⊂ P2

the first arrow is given by a 2 × 2 matrix

(
a b
c d

)
where a, b, c, d ∈ OU

and C|U = {ad − bc = 0}. Assuming that the rank of Lp is > 1 at some
p ∈ C means that a(p) = c(p) = b(p) = d(p) = 0. But this would imply that
∇(ad− bc)(p) = 0 which contradicts the smoothness of C.

Since C belongs to the pencil the canonical derivation δ induces a non zero
section of TA(αn) but also a non zero section of TA∪C(αn). This gives the
following commutative diagram:

0 0y y
OP2(−αn) OP2(−αn)

s1

y ys

0 −−−−−→ TA∪C −−−−−→ TA −−−−−→ L −−−−−→ 0y y ∥∥∥
0 −−−−−→ JZ(s1)(c1(TA∪C)+αn) −−−−−→ OP2(c1(TA)+αn) −−−−−→ L −−−−−→ 0y y

0 0

Then A is free with exponents (αn,−αn−c1(TA))) and L = OC(c1(TA)+αn)).
This proves

JZ(sk+1)(c1(TA∪C) + αn)) = OP2(c1(TA∪C) + αn).

Example 3.5. By Proposition 3.4 the following arrangement (three concurrent
lines with one of them tangent to a smooth conic) is free with exponents (2, 2).
Computing the Chern classes of the logarithmic vector bundle associated, this
implies that τp(A ∪ C) = 10. Computing the Milnor number at p we find
µp(A ∪ C) = 11 showing that the tangent point p is not a quasihomogeneous
singularity.
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p

3.4. Tjurina number for pencils of conics

Proposition 3.6. Let p be the double point of a tangent pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 3 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 2((k − 1)2 + 1).

Proof. By a direct computation, using for instance Macaulay 2, one can prove
that the union of three smooth conics and a line through the two simple points
of the base locus B is free with exponents (2, 4). Adding smooth conics of the
same pencil does not change the freeness and the arrangement A consisting in
k ≥ 3 smooth conics plus one line through the two simple points is free with
exponents (2, 2k − 2). Then

c2(TA) = 4k − 4 = (2k)2 − τ(A).

The total Tjurina number is the sum of the two normal crossing singular points
in B counting each of them as k2 and the Tjurina number at the double point
which is τp(

⋃k
i=1 Ci). This means

τ(A) = 4k − 4 = 4k2 − 2k2 − τp

(
k⋃

i=1

Ci

)
,

proving the result.

Proposition 3.7. Let p be one of the two double points of a bitangent pencil
⟨f, g⟩. Let C1, . . . , Ck be k ≥ 2 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 2k2 − 3k + 1.
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Proof. By a direct computation, using for instance Macaulay 2, one can prove
that the union of two smooth conics and the tangent lines along p and q, the two
base points, is free with exponents (1, 4) (the degree of the canonical derivation
is 1 instead of 2 because of the double line in the pencil). By Proposition 3.4
adding smooth conics of the same pencil does not change the freeness and the
arrangement A consisting in k ≥ 2 smooth conics plus the two tangent lines is
still free with exponents (1, 2k). Then

c2(TA) = 2k = (2k + 1)2 − τ(A) = (2k + 1)2 − 1− τp(A)− τq(A)

= (2k + 1)2 − 1− 2τq(A).

Then we find τq(A) = k(2k + 1). By Proposition 3.1, removing one of these
two lines we get a new free arrangement A′ with exponents (1, 2k − 1). Then

c2(TA′) = 2k − 1 = (2k)2 − τ(A′) = (2k)2 − τp(A′)− τq(A′).

Since τq(A′) = τq(A) = k(2k + 1), we find τp(A) = 2k2 − 3k + 1. At p the
Tjurina number of A coincide with the one of k smooth conics in a bitangent
pencil. This proves the assertion.

Proposition 3.8. Let p be the triple point of an osculating pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 3 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 3((k − 1)2 + 1).

Proof. The union of three osculating smooth conics is a free divisor with expo-
nents (2, 3). This is verified for instance with Macaulay2. Then adding smooth
conics remains free, more precisely for k ≥ 3 smooth osculating conics, this
union is free with exponents (2, n(k − 2) + 1). The second Chern class of the
logarithmic bundle associated is 2× (n(k − 2) + 1). This number is also com-
puted with the total Tjurina number. There are two points of intersection,
p the osculating point and q where the k conics meet transversally. At q the
Tjurina number is the Milnor number (k − 1)2. This gives τp(

⋃k
i=1 Ci).

Proposition 3.9. Let p be 4-uple point of a +osculating pencil ⟨f, g⟩. Let
C1, . . . , Ck be k ≥ 2 smooth conics in the pencil ⟨f, g⟩. Then

τp

(
k⋃

i=1

Ci

)
= 4k2 − 6k + 3.

Proof. The union of two +osculating smooth conics is a free divisor with ex-
ponents (1, 2). This is verified with Macaulay2. Then adding smooth conics
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remains free, more precisely for k ≥ 2 smooth overosculating conics, this union
is free with exponents (1, 2(k − 1)). The second Chern class of the logarith-
mic bundle associated is 2(k − 1). This number is also computed with the
total Tjurina number. There is only one point of intersection, p. This gives
τp(
⋃k

i=1 Ci).
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