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1. Introduction

We consider the following Kolmogorov system{ .
x = xP (x, y),
.
y = yQ(x, y),

(1)

where P (x, y) and Q(x, y) are polynomials, the dot denotes derivative with
respect to the time t, and the coefficients are real numbers.

Generally, Kolmogorov system is introduced as the structure of many nat-
ural phenomena models. Their applications can be appear in several fields
such as, physics, biology, chemical reactions, hydrodynamics, fluid dynamics,
economics, etc. for more detail see [1, 7, 16, 17].

One of the most important topics in qualitative theory of planar dynamical
systems is related to the second part of the unsolved Hilbert 16th problem
which consisted to study the maximum number of limit cycles and their relative
distributions of the real planar polynomial system of degree n, see [12].

Many different methods have been used for proving the existence and nonex-
istence of limit cycles in simply connected region, for instance see [3, 11, 18].
In recent years, existence and nonexistence of limit cycle for some class of Kol-
mogorov system has been studied, see for instance [2, 4, 5, 6, 8, 13, 14]. In this
paper we will give a unifying characterization on the invariant algebraic curves
and first integrals to investigate existence and non existence of limit cycle for
system (1).
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Firstly, we need to give some necessary definitions. We define a vector field
associated to the system (1) as follows

X = xP (x, y)
∂

∂x
+ y Q(x, y)

∂

∂y
.

Let W ⊂ R2 be an open subset such that R2\W has zero Lebesgue measure.
We say that a non-constant real function H = H(x, y) : R2 → R, is a first
integral if H(x(t), y(t)) is constant on all solutions (x(t), y(t)) of X contained
in W, i.e. XH|W = 0.

A polynomial V(x, y) ∈ R [x, y] , the ring of the real coefficient polynomials
in x, y is called a Invariant algebraic curve for the system (1) if

X V = KV, (2)

for some real polynomial K(x, y), which is called cofactor of V.
The curve Γ =

{
(x, y) ∈ R2;V(x, y) = 0

}
, is non-singular of system (1) if

the equilibrium points of the system that satisfy the following system{
xP (x, y) = 0,
yQ(x, y) = 0,

(3)

are not contained on the curve Γ.
A solution (x(t), y(t)) for a differential system (1) is said to be T-periodic

solution, if its satisfies

(x(t), y(t)) = (x(t+ T ), y(t+ T )) ,

for all t, and for some T > 0.
A limit cycle is an isolated periodic solution of a differential equation, or is

a T-periodic solution of system (1), isolated with respect to all other possible
periodic solutions of the system and defined as

γ = {(x(t), y(t)) , t ∈ [0, T ]}.

Let γ be periodic orbit of system (1) of period T , then γ is an hyperbolic limit
cycle if ∫ T

0

div (X ) (γ(t)) dt ̸= 0,

for more detail see [18].
Let W ⊂ R and Ψ : W → R be a function, Ψ is said to be an inverse inte-

grating factor of (1) if it is not locally null and satisfies the partial differential
equation

XΨ = div (X )Ψ, (4)

where div (X ) =
∂ (xP (x, y))

∂x
+

∂ (yQ(x, y))

∂y
.
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2. Main Results

As a main result, we have the following theorem,

Theorem 2.1. We consider Kolmogorov system of degree m (m ≥ 5)
.
x = x

(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

)
,

.
y = y

(
V
(
cy2n−1x2k−1 + d

)
− αx2ny2n−1Vx

)
,

(5)

where V = V(x, y), is a polynomial function, and Vx and Vy denotes the partial
derivative of variables x and y respectively. The coefficients a, b, c, d, α are non
zero reals, and the degree n and k are positive integers. Then the following
statements are holds.

(1) Let Γ =
{
(x, y) ∈ R2, V(x, y) = 0

}
, be a degree l ≥ 2 invariant and non-

singular curve of the differential system (5). If b+d ̸= 0 and the bounded
components of Γ do not intersect the axes (x = 0, y = 0) , then the system
(5) admits all bounded components of Γ as hyperbolic limit cycles.

(2) If b+ d = 0 the system is integrable with first integral

H=


exp
(
(−2cn+c)x−2n+2k+(2an−a)y−2n+2k−2y−2n+1b x−2n+1(k−n)

2α(k−n)(2n−1)

)
V

if k ̸= n

y
a
α

x
c
α
exp

(
−b

(2n−1)αx2n−1y2n−1

)
V if k = n,

(6)

moreover the system has no limit cycle.

Proof of statement 1. Let Γ =
{
(x, y) ∈ R2, V(x, y) = 0

}
with degree l (l ≥ 2),

be a non-singular of system (5) and the bounded components of Γ do not
intersect the lines (x = 0, y = 0) . To show that all the bounded components
of Γ are hyperbolic limit cycles of system (5), we will prove that Γ is an invariant
curve of the system (5), and∫ T

0

div (X ) (γ(t)) dt ̸= 0,

see for instance Perko[15, Pages 216-217].
Its clearly V is an invariant curve of system (5), because

∂V
∂x

.
x+

∂U

∂y

.
y = Vxx

(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

)
+ Vyy

(
U
(
cy2n−1x2k−1 + d

)
− αx2ny2n−1Vx

)
= V

(
bVxx+ d y Vy + a x2ny2 k−1 Vx + c y2nx2 k−1Vy

)
,
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where the cofactor is

K =
(
a x2n−1y2 k−1 + b

)
xVx +

(
c y2n−1x2 k−1 − d

)
yVy.

To see
∫ T

0
div (X ) (γ(t)) dt is nonzero, we have show that∫ T

0

div (X ) (γ(t)) dt =

∫ T

0

K(x(t), y(t))dt, (7)

is non zero (see for instance Giacomini & Grau [10, theo 2]).∫ T

0

K(x(t), y(t))dt

=

∮
Γ

(
a x2n−1y2 k−1 + b

)
xVx

−αx2ny2nVx
dy +

∮
Γ

(
c y2n−1x2 k−1 + d

)
y Vy

αx2ny2nVy
dx

= −
∮
Γ

(
a x2n−1y2 k−1 + b

)
αx2n−1y2n

dy +

∮
Γ

(
c y2n−1x2 k−1 + d

)
αx2ny2n−1

dx,

by applying the Green formula,∮
Γ

(
c y2n−1x2 k−1 + d

)
αx2ny2n−1

dx−
∮
Γ

(
a x2n−1y2 k−1 + b

)
αx2n−1y2n

dy

=
1

α

∫∫
Int(Γ)

∂

(
(a x2n−1y2 k−1+ b)

x2n−1y2n

)
∂x

+

∂

(
(c y2n−1x2 k−1+d)

x2ny2n−1

)
∂y

 dxdy

= −2n− 1

α
(b+ d)

∫∫
Int(Γ)

1

y2nx2n
dxdy,

where Int (Γ) denotes the interior of Γ. As α ̸= 0, b+ d ̸= 0 and the bounded

components of Γ do not intersect the lines (x=0, y=0) then

∫ T

0

K(x(t), y(t))dt

is non zero.

To prove the second statement of Theorem 2.1, we will use the following
Theorem.

Theorem 2.2 ([11, Theorem 9]). Let Ψ : Ω → R be an inverse integrating
factor of system(1), if Γ ⊂ Ω is a limit cycle of (1) then Γ is contained in the
set Ψ−1(0) = {(x, y) ∈ Ω,Ψ(x, y) = 0} .

Proof of statement 2. For d = −b, we have a first integral in the form of equa-
tion (6). We separate the proof in two different cases . Firstly, if k ̸= n

H(x, y)=exp

(
(−2cn+c)x−2n+2k + (2an−a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k−n) (2n− 1)

)
V
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∂H
∂x

.
x+

∂H
∂y

.
y

=
1

α

((
by−2n+1x−2n − cx−2n+2 k−1

)
V + αVx

)
exp

(
(−2cn+ c)x−2n+2k + (2an− a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k − n) (2n− 1)

)
(
x
(
V
(
ax2n−1y2k−1 + b

)
+ αx2n−1y2nVy

))
+

1

α

((
ay−2n+2k−1 + b y−2nx−2n+1

)
V + αVy

)
exp

(
(−2cn+ c)x−2n+2k + (2an− a) y−2n+2k − 2y−2n+1b x−2n+1 (k − n)

2α (k − n) (2n− 1)

)
(
y
(
V
(
cy2n−1x2k−1 − b

)
− αx2ny2n−1Vx

))
= 0.

Therefore

ẋ
∂H
∂x

+ ẏ
∂H
∂y

= 0, then
ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= Ψ,

where Ψ is an inverse integrating factor. Thus

ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −αx2ny2n exp (U(x, y)) ,

where

U(x, y) =
(2n− 1)

(
−ay2kx2n + cy2nx2k

)
+ 2bxy (k − n)

2αx2ny2n (2n− 1) (k − n)
.

According to Theorem 2.2, the system has no limit cycle because the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣
− αx2ny2n exp

(
(2n− 1)

(
−ay2kx2n + cy2nx2k

)
+ 2bxy (k − n)

2x2ny2nα (2n− 1) (k − n)

)
= 0

}

contains no closed curve.

Secondly, if k = n, then

H(x, y) =
y

a
α

x
c
α
exp

(
−b

(2n− 1)αx2n−1y2n−1

)
V(x, y) .
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is first integral and satisfies the following equation

∂H
∂x

.
x+

∂H
∂y

.
y =

((
− 1

x
1
α (c+α+2nα)

y
1
α (a−2nα)

α

(
cx2ny2n−bxy

))
V +

y
a
α

x
c
α
Vx

)

exp

(
−b

(2n− 1)αx2n−1y2n−1

)(
x
(
V
(
ax2n−1y2n−1 + b

)
+ αx2n−1y2nVy

))
+

((
1

x
1
α (c+2nα)y

1
α (α−a+2nα)α

(
ax2ny2n + bxy

))
V +

y
a
α

x
c
α
Vy

)
exp

(
−b

(2n−1)αx2n−1y2n−1

)(
y
(
V
(
cy2n−1x2n−1 − b

)
−αx2ny2n−1Vx

))
= 0.

Thus
ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −x
1
α (c+2nα)

y
1
α (a−2nα)

α exp

(
bx1−2n y1−2n

α (2n− 1)

)
.

By using Theorem 2.2, the system has no limit cycle because the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣ − x
1
α (c+2nα)

y
1
α (a−2nα)

α exp

(
bx1−2n y1−2n

α (2n− 1)

)
= 0

}

contains no closed curve.

Now, we present two examples for illustrating the result.

Example 2.3. Let a = b = c = d = α = n = 1, V(x, y) = 2
(
x2 + y2 − 2

)2 −
4x2y2 + 2xy + 1. The system (5) reduced to

.
x = x

(
(2 (x2 + y2 − 2)2 − 4x2 y2 + 2xy + 1) (xy + 1)

+y2x
(
8 (x2 + y2 − 2)y − 8x2y + 2x

))
,

.
y = y

(
(2 (x2 + y2 − 2)2 − 4x2 y2 + 2xy + 1) (yx+ 1)

−x2y
(
8 (x2 + y2 − 2)x− 8xy2 + 2 y

))
,

(8)

Γ =
{
(x, y) ∈ R2, 2

(
x2 + y2 − 2

)2 − 4x2y2 + 2xy + 1 = 0
}
, does not inter-

sect the axes (x = 0, y = 0) , and b + d ̸= 0, then the system (8) admits all
bounded components of Γ as hyperbolic limit cycles. So the system (8) admits

four limit cycles represented by the curve 2
(
x2 + y2 − 2

)2−4x2y2+2xy+1 = 0
and nine singular points where (0, 0) is an unstable node, (0.16868,−1.4441)) is
saddle point, (−0.16868, 1.4441) is a saddle point, (1.1170, 1.4373) is a strong



ANALYSIS OF LIMIT CYCLES FOR KOLMOGOROV SYSTEMS (7 of 10)

unstable focus, (−1.1170,−1.4373) is a strong unstable focus, (1.3788,−1.5843)
is a strong unstable focus, (−1.3788, 1.5843) is a strong unstable focus, (1.4235,
0.46345) is a saddle point, (−1.4235,−0.46345) is a saddle point. See Figure 1.

Figure 1: Limit cycles and singular points of system(8).

Example 2.4. Let a = b = c = k = 1, d = −1, n = 2, α = 1
2 , and V(x, y) =

(x− 2)
2
+ (y − 2)2 − 1. Then system (5) becomes as follows

.
x = x

((
(x− 2)

2
+ (y − 2)2 − 1

) (
x3y + 1

)
+ x3y4(y − 2)

)
,

.
y = y

((
(x− 2)

2
+ (y − 2)2 − 1

) (
y3x− 1

)
− x4y3 (x− 2)

)
,

(9)

it has a first integral as follows

H(x, y) = exp

(
− 1

3x3y3
(
3x3y − 3xy3 + 2

))(
(x− 2)

2
+ (y − 2)2 − 1

)
,

It’s clearly aforementioned H(x, y) satisfies the definition of first integral. Then

ẏ
∂H
∂x

=
ẋ

−∂H
∂y

= −1

2
x4y4 exp

(
1

3x3y3
(
3x3y − 3xy3 + 2

))
,
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and the set

Ψ−1(0) =

{
(x, y) ∈ R2

∣∣ − 1

2
x4y4 exp

(
1

3x3y3
(
3x3y − 3xy3 + 2

))
= 0

}
contains no closed curve. The system (9) admits three singular points, where
(0, 0) is a saddle point, (1.85773, 2.110525) is a strong stable focus and (1.99589,

0.777487) is a saddle point. The circle (x− 2)
2
+(y−2)2−1 = 0 is an invariant

curve for system, but the system has not a limit cycle. See Figure 2.

Figure 2: Phase portraits of system(9) in Poincaré disk.

3. Conclusion

In this paper, we investigate existence and non nonexistence of limit cycle for
a class of Kolmogorov system (1). We characterized all conditions for the
suggested system in order to find hyperbolic limit cycle. In addition, for in-
vestigating non existence limit cycle the general form of the first integral for
system (1) has been found under suitable conditions of the coefficients.
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Remark 3.1. All figures are plotted on the Poincaré disc by using polynomial
planar phase portraits program, see for instance [9, pages 233-257].
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