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Abstract. In the space of sextic forms in 4 variables with a decompo-
sition of length 18 we determine and describe a closed subvariety which
contains all non-identifiable sextics. The description of the subvari-
ety is geometric, but one can derive from that an algorithm which can
guarantee that a given form is identifiable.
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1. Introduction

The paper describes an application of geometric tools, mainly from the theory
of finite sets in projective spaces, to the study of Waring decompositions of
forms.

The tools have been introduced and employed, in a series of papers, mainly
for forms of degree 4 or for forms in three variables (see [2, 3, 4, 5, 11]). Since
quaternary forms of degree 5 are considered in a forthcoming paper [9], we turn
now our attention to forms of degree 6 in four variables.

Our starting point is the same starting point of the celebrated Kruskal’s
criterion for the minimality and uniqueness of a decomposition (to be precise,
in its version for symmetric tensors). We assume that we know a (Waring)
expression of a form F in terms of powers of linear forms, as the one given
in formula (1) below. The problem consists of determining if the expression
is minimal, in which case it computes the Waring rank of F. In addition, one
would like to know if the expression is unique (up to trivialities).

We attack the problem by considering the linear forms appearing in the
expression as a set of points A in a projective space P3, and analyzing the
existence of another set B, of length smaller or equal than the length of A,
whose 6−Veronese image spans F .
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It turns out that the union Z = A ∪ B must satisfy several geometric
and algebraic restrictions. This makes it possible to analyze the situation up
to rank 18. Indeed, we prove that when the length (= cardinality) of A is
strictly smaller than 18 and A is sufficiently general in a very precise sense (see
the statement of Proposition 4.4), then the expression is necessarily unique.
The geometric situation in this case is similar to the one treated in Kruskal’s
criterion (which, by the way, even in its reshaped version described in [12],
cannot work for r > 14 in the case of quaternary sextics).

The case r = 18 turns out to be different. For r = 18, even if A is completely
general, there are forms in the span of the 6−Veronese image of A for which a
second decomposition B exists. We can be more specific: when A is general, so
that cubic surfaces through A define a complete intersection irreducible curve C
of degree 9, then B is forced to be residual to A in a complete intersection of C
and a quartic surface. This allows us to parameterize the possible sets B,
and thus parameterize a (locally closed) subvariety Γ of the span of v6(A),
which contains the forms F of degree 6 in 4 variables, rank 18, which are not
identifiable. The closure of Γ is the image of a map from a subspace of the
projective space P((IA)4) to ⟨v6(A)⟩. We refer to Theorem 5.5 for a more
precise description.

In particular, we get that if F is a non-identifiable form, then the second
decomposition B is bounded to an invariant curve C, defined by A. This is a
case of confinement for decompositions of forms, as described in general in [1].

Since the generic rank of a form of degree 6 in four variables is 21, one may
wonder what happens for the missing cases r = 19, 20, 21. For r = 19, the same
procedure proves that a hypothetical second decomposition B must be bounded
to the unique cubic surface defined by A, but we are not able to characterize it
any more. For r = 20, 21 we have no precise characterization. This is probably
due to the fact that the theory of finite sets in P3 is far from being completely
understood, and also opens a series of questions on the structure of finite sets
in higher dimensional spaces, which could suggest directions to investigators in
the field.

2. Preliminaries

All polynomials in the paper are defined over the complex field.
We will often, by abuse, use the same letter to indicate a form in a poly-

nomial ring, the projective hypersurface defined by the form, and the point
defined by the form in the corresponding projective space.

Given a finite set A in a projective space, we denote by ℓ(A) its length (i.e.
its cardinality).

Consider a form F of degree 6 in 4 variables, over the complex field.
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Assume we know a Waring expression of F (of length r) as a linear combi-
nation of powers of linear forms

F =

r∑
i=1

aiL
6
i (1)

but we do not know a priori if the expression is minimal or unique (up to
trivialities). Thus we do not know if r is the (Waring) rank of F , and we do
not know whether F is identifiable or not.

On the other hand, we can certainly assume that the expression is non-
redundant, in the sense that the powers L6

i ’s are linearly independent and no
coefficient ai is 0.

Call A = {L1, . . . , Lr} the set of linear forms involved in the expression,
considered as points in a projective space P3. If we denote with vd : P3 → PN

the d-Veronese map, the expression tells us that F (as we said above, identified
by abuse with one point of the space P83 of sextic forms in P3) belongs to
the span of the Veronese image v6(A). The non-redundancy of A is equivalent
to saying that, for all proper subsets A′ ⊂ A, F is not contained in the span
of v6(A

′).
We have full control on the set A, so we may assume that we know all its

invariants. Thus we can assume that

(∗) A is in General Position (GP )

which, in this setting, means that all subsets of A have maximal Hilbert func-
tion.

Notice that if A has this property, then all subsets of A also have it.

Remark 2.1. When r ≤ 14, then the celebrated Kruskal’s criterion, in its
reshaped version (see [12]) guarantees that r is the rank of F , and the expression
is unique (up to trivialities: product by a scalar or reordering).

Namely, if u = min{r, 10} then necessarily

r ≤ u+ u+ u− 2

2
,

thus we can take a partition 6 = 2 + 2 + 2 and consider F as a tensor of
Sym2(C4) ⊗ Sym2(C4) ⊗ Sym2(C4). Since the second Kruskal’s rank of A is
u by the genericity assumption, then a direct application of Kruskal’s criterion
guarantees that (1) is the unique expression of F of length r.

When r > 14, we assume the existence of another expression

F =

s∑
i=1

aiM
6
i , s ≤ r (2)
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and call B = {M1, . . . ,Ms} the consequent finite set in P3.

Again we may directly assume that also B is non-redundant.

When r ≥ 15 the Kruskal’s criterion cannot provide a proof of the minimal-
ity and uniqueness of the expression (1). Indeed in this case new expressions are
possible. A finer geometrical analysis is required to understand the situation.

Call hA, hB , hZ the Hilbert functions of A,B and Z = A ∪B respectively.

By assumptions we know that the difference DhA(i) = hA(i)− hA(i− 1) is
defined by the following table

i 0 1 2 3 4 5 . . .

DhA(j) 1 3 6 r − 10 max{0, r − 20} 0 · · ·

From [2, Proposition 2.19], we know that

dim(⟨v6(A)⟩ ∩ ⟨v6(B)⟩) = ℓ(A ∩B)− 1 + h1
Z(6).

where h1
Z(i) is defined by h1

Z(i) = ℓ(Z)− hZ(i).

In particular hZ(6) < ℓ(Z) when A,B are disjoint.

We recall the Cayley-Bacharach property of Z from [5] and [2, Section 2.4].

Remark 2.2. Since A,B are both non-redundant, if A∩B = ∅ then the set Z
satisfies the Cayley-Bacharach property. In particular for j = 0, 1, 2, 3,

j∑
i=0

DhZ(i) ≤
j∑

i=0

DhZ(7− j).

Proposition 2.3. Assume r ≤ 20. Then s = ℓ(B) ≥ r. If r = 15 then A,B
are disjoint. Moreover, for all r the ideals of A and Z agree up to degree 3.

Proof. If A ∩B = ∅, then by Remark 2.2 we must have:

ℓ(Z) = ℓ(A) + ℓ(B) ≥
7∑

i=0

DhZ(i)

≥ 2

3∑
i=0

DhZ(i) ≥ 2

3∑
i=0

DhA(i) = 2ℓ(A)

which proves s ≥ r. If r = s, the inequalities become equalities, and this
implies the result on the ideals of A and Z.

Assume A ∩B ̸= ∅, i.e. assume Li = Mi for i = 1, . . . , j, for some j > 0.
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Then

F = a1L
6
1 + · · ·+ ajL

6
j + aj+1L

6
j+1 + · · ·+ arL

6
r

= b1L
6
1 + · · ·+ bjL

6
j + bj+1M

6
j+1 + · · ·+ brM

6
r .

Define F ′ by

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ arL

6
r

= bj+1M
6
j+1 + · · ·+ bsM

6
s .

F ′ has two disjoint decomposition. The former can have some vanishing coef-
ficients, but its length in any case is at least r − j, while the latter has length
≤ s− j.

If r = 15 we obtain a contradiction by the reshaped Kruskal’s criterion
(Remark 2.1) or by what we concluded above in the disjoint case. Then, arguing
by induction on r, we get that s ≥ r.

If A0, B0 are the two decompositions of F ′ defined above, then by induction
the ideals of A0 and Z0 = A0∪B0 agree up to degree 3. Since A,B are obtained
from A0, B0 by adding the same subset S, then also the ideals of A and Z agree
up to degree 3.

The minimality of the expression (1) proved in the previous result indeed
also follows from [6, Theorem 1.2], or by [14, Theorem 3.1] .

3. The case r = 15

We know from Proposition 2.3 and its proof that if F has two decompositions
A,B, then A ∩B = ∅.

We show an example in which the second decomposition B exists.

Example 3.1. Assume that A is a general set of 15 points in a general ellip-
tic quintic curve C. The 6-Veronese map maps C to a normal elliptic curve
of degree 30 which spans a P29. In P29 a general point has two different de-
compositions with respect to the elliptic curve C (see [10, Proposition 5.2]).
Thus one gets that a general F in the span of v6(A) has exactly two different
decompositions.

It is easy indeed to construct examples of forms F with two decompositions
of this type. A general set A of 15 points in an elliptic quintic and a general F
in the span of v6(A) will do.

On the other hand, it is also simple to realize that a general setA of 15 points
in P3 does not lie in an elliptic quintic. This is just a count of parameters:
the Hilbert scheme of elliptic quintics has dimension 5 · 4 = 20, so the sets
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of 15 points in such curves cannot depend on more than 20+ 15 = 35 parame-
ters; on the other hand, the family of sets of 15 points in P3 has dimension 45.

One can easily exclude that a given set A of 15 points in P3 lies in an elliptic
quintic by considering the base locus of the system of cubics through A which,
by assumption, has dimension 5.

Proposition 3.2. Assume r = 15 and assume that the base locus of the sys-
tem of cubics through A contains no curves. Then A is the unique minimal
decomposition of F .

Proof. Assume there exists a second decomposition B of length ≤ 15. Arguing
as in the final part of the proof of Proposition 2.3, since we can apply the
reshaped Kruskal’s criterion for decompositions of length ≤ 14, we see that
A,B must be disjoint. We know that the ideal of Z = A∪B coincides with the
ideal of A in degree 3. Since the base locus of the system of cubics through A
contains no curves, then by Bézout Z has length at most 27. Thus ℓ(B) ≤ 12,
which is excluded by Proposition 2.3.

One checks easily the dimension of the base locus of the system of cubics
through A, by standard computer algebra packages.

4. The cases r = 16, 17

The situation for r = 16, 17 is quite similar to the case r = 15, except that now
an intersection between the two decompositions is allowed.

Example 4.1. Let A0 be a general set of 15 points lying in a general elliptic
quintic curve C. We saw in Example 3.1 that a general form F0 in the span
of v6(A0) has a second decomposition B0 of length 15, disjoint from A0. If
L0 is a general linear form, then {L0} ∪ A0 and {L0} ∪ B0 are two different,
non-disjoint, decompositions of length 16 of L6

0 + F0.
Arguing as in Proposition 2.3, one sees that these two decompositions are

minimal, when A0, B0, L0 are general.

Also examples with different disjoint decompositions are possible.

Example 4.2. Let A be a general set of 16 points lying in a general rational
quintic curve C. By Bézout, since C is irreducible, the ideal of C and the ideal
of A agree in degree 3. The Veronese map v6 maps C to P30. Since no curves
are defective, a general point F of P30 has infinitely many (mostly disjoint)
decompositions of length 16 with respect to v6(C).

Sets A of this type lie in the Terracini locus, as defined in [7]: the differential
of the map from the abstract 16-secant variety to the space P83 of v6(P3) drops
rank over a general F ∈ ⟨v6(A)⟩.
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Example 4.3. Starting with forms with two decompositions of length 16, as
e.g. in Example 4.2, and adding one point as in Example 4.1, one finds easily
examples of non-disjoint different decompositions of length 17 for some sex-
tics F .

As in the case r = 15, if the system of cubics through A has no curves in
the base locus, then the decomposition A of F is unique.

Proposition 4.4. Assume r = 16 or r = 17 and assume that the base locus
of the system of cubics through A contains no curves. Then A is the unique
minimal decomposition of F .

Proof. The proof is given only for r = 16, since the other case is completely
analogous.

Assume there exists a second decomposition B of length 16. If A ∩B = ∅,
since the ideal of Z = A∪B coincides with the ideal of A in degree 3, by Bézout
Z has length at most 27. Thus ℓ(B) ≤ 11, which is excluded by Proposition 2.3.

If the intersection A ∩B contains j > 0 points, then as above write

F = a1L
6
1 + · · ·+ ajL

6
j + aj+1L

6
j+1 + · · ·+ a16L

6
16

= b1L
6
1 + · · ·+ bjL

6
j + bj+1M

6
j+1 + · · ·+ b16M

6
16.

Define F ′ by

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ a16L

6
16

= bj+1M
6
j+1 + · · ·+ b16M

6
16 .

F ′ has two disjoint decompositions, one for which A′ is contained in A. Thus
the system of cubics through A′ has no curves in the base locus. Even if the
length of A′ is 15, we have a contradiction with Proposition 3.2.

Since for r ≤ 17 and A very general the system of cubics through A has
no curves in the base locus, the previous proposition excludes the existence of
a second decomposition, except for sets A contained in a Zariski closed subset
of (P3)r.

5. The case r = 18

For r = 18 and A general, the base locus of the system of cubics through A is
a complete intersection curve C of degree 9 and genus 10. There is no way to
use a strategy similar to the statement of Proposition 4.4 in order to prove the
identifiability of F .

Remark 5.1. From Proposition 3.2 and Proposition 4.4 it turns out that, when
r = 15, 16, 17 and the system of cubics through A has no curves in the base
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locus, then all forms F in the span of v6(A) are identifiable of (Waring) rank r,
unless the decomposition A is redundant for F , i.e. unless F sits in the span
of some strict subset of v6(A).

We can see immediately that the situation changes completely for r = 18.

Example 5.2. Let A be a general set of 18 points in P3. Then A is contained
in the complete intersection of two cubics G1, G2. Consider the complete inter-
section curve C = G1∩G2 and let G be a general quartic not containing C. The
intersection of C with the surface G consists of 36 points Z = A∪B. B is thus
a set of 18 points in the curve C, disjoint from A. By the Cayley-Bacharach
property of complete intersections, one knows that h1

Z(6) > 0. Thus by [2,
Proposition 2.19], we know that ⟨v6(A)⟩ and ⟨v6(B)⟩ meet in some point F .
Such F ∈ ⟨v6(A)⟩ has a second decomposition B of length 18.

Remark 5.3. By [4, Proposition 3.9], when A,B are disjoint decompositions
of F , then the sum of the homogeneous ideals IA + IB does not coincide with
the polynomial ring R in degree 6, and F is dual to IA + IB

Consider again the sets A,B described in Example 5.2.
The ideal of B can be found from G and the ideal of A as a result of the

mapping cone process (see [13]). By the Minimal Resolution Conjecture, which
holds in P3 (see [8]), a resolution of the ideal IA is given by 0 → R8(−6) →
R18(−5) → R2(−3)⊕R9(−4) → IA → 0. Combining with the Koszul complex
of G1, G2, G one obtains a diagram

0 → R(−10)
α′

→ R(−6)⊕R2(−7)
β′

→ R2(−3)⊕R(−4) → IZ → 0
γ ↓ γ′ ↓ γ′′ ↓

0 → R8(−6)
α→ R18(−5)

β→ R2(−3)⊕R9(−4) → IA → 0

(3)

where the map γ′′ is defined by G1, G2, G. From the diagram one obtains a
resolution of IB by the dual of the mapping cone:

0 → R8(−6) → R18(−5)
(α⊕γ′)∨−→ R2(−3)⊕R9(−4)

(α′⊕γ)∨−→ IB → 0

Thus there is a standard way to compute IB , hence IA + IB , from IA and G.

We have then all the ingredients to study the existence of a second decom-
position for F .

Proposition 5.4. Assume that the decomposition A of length 18 of F , satisfy-
ing condition (∗), also satisfies the following condition: for all subsets A′ ⊂ A
of length 17, the linear system of cubics through A′ has base locus of dimension
0. Then any other decompositions of length 18 of F is disjoint from A.

Proof. Assume there exists another decomposition B of length 18 with ℓ(A ∩
B) = j > 0. Then arguing as in the proof of Proposition 2.3 one finds another
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sextic form F ′ with decompositions

F ′ = (a1 − b1)L
6
1 + · · ·+ (aj − bj)L

6
j + aj+1L

6
j+1 + · · ·+ a18L

6
18

= bj+1M
6
j+1 + · · ·+ b18M

6
18,

where A = {L1, . . . , L18} and ai, bi ̸= 0 for all i. If some coefficient ai −
bi, i = 1, . . . , j, is non-zero, then the second decomposition of F ′ has length
smaller than the first one, which is contained in A. We get a contradiction
with Proposition 2.3. Thus ai = bi for all i = 1, . . . , j. But then F ′ has two
disjoint decompositions of length 18− j, and one of them A′ = {Lj+1, . . . , L18}
is contained in A. By assumption the system of cubics through A′ has no
curves in the base locus. Then we get a contradiction with either the Reshaped
Kruskal’s Criterion, or Proposition 3.2, or Proposition 4.4.

Theorem 5.5. Let F be a sextic in 4 variables, with a non-redundant decom-
position A of length 18. Assume that A satisfies the following properties.

(*) A is in General Position;

(**) for all subsets A′ ⊂ A of length 17, the linear system of cubics through
A′ has base locus of dimension 0;

(***) the base locus of the pencil of cubics through A is an irreducible curve C.

Then A is minimal, and any other decomposition B of length 18 of F (if any)
is disjoint from A, and Z = A ∪ B is a complete intersection of surfaces of
degrees 3, 3, 4.

Proof. The unique thing that remains to prove is the last assertion, i.e. that
A ∪B is the intersection of C with a quartic surface.

If B exists, Z = A ∪B lies in the pencil of cubics containing A, by Propo-
sition 2.3. If all the quartics containing Z are composed with the pencil, then
hZ(4) = 35 − 8 = 27, so that DhZ(4) = 9. But then DhZ(5) + DhZ(6) +
DhZ(7) ≤ 9 < DhZ(2) + DhZ(1) + DhZ(0), which contradicts the Cayley-
Bacharach property. hence there is a quartic containing Z and not C. The
claim follows.

Remark 5.6. For a given form F and a decomposition A of length 18, one
can produce a procedure which tests if A is unique i.e. if F is identifiable of
rank 18, as follows.

1. Control if A is in GP .

2. Control that the system of cubics through any subset of length 17 of A
has 0-dimensional base locus.
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3. Control that the system of cubics through A has an irreducible nonic
curve as base locus.

4. Consider a linear space W in (IA)4 orthogonal to the 8-dimensional sub-
space spanned by the cubics through A.

5. For all G ∈ W compute the generators of the residue B of A in G ∩ C,
in terms of coordinates of G ∈ W .

6. Prove that for no choice of the coordinates of G the form F is dual to
IA + IB .

Notice that the generators of IB , mod the cubics containing C, are 9 quartics,
by the resolution following diagram 3.

One of the most expensive points in the procedure is step (1), which requires
to control that none of the

(
18
8

)
= 43, 758 subsets of length 10 of A is contained

in quadrics.
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