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Products of sequentially compact spaces

with no separability assumption

Paolo Lipparini

Abstract. Let X be a product of topological spaces. We prove that
X is sequentially compact if and only if all subproducts by ≤ s factors
are sequentially compact. If s = h, then X is sequentially compact if
and only if all factors are sequentially compact and all but at most < s
factors are ultraconnected. We give a topological proof of the inequality
cf s ≥ h. Recall that s denotes the splitting number and h the distribu-
tivity number. Some corresponding invariants are introduced, relative
to an arbitrary topological property, more generally, relative to a subset
of a partial infinitary semigroup.
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1. Introduction

A countable product of sequentially compact spaces is still sequentially compact
[7, Theorem 3.10.35]. The problem whether the above assertion generalizes to
uncountable products involves the so-called combinatorial cardinal character-
istics of the Continuum [1, 2, 16]. These are cardinals which are provably un-
countable and less than or equal to the continuum c, but consistently strictly
smaller than c. In particular, they all equal c if the Continuum Hypothesis
holds.

A cardinal characteristic has a standard definition which involves infinite
combinatorics and frequently many equivalent formulations in different set-
tings. For example, P. Simon [15] proved that one of these characteristics, the
distributivity number h, is the smallest cardinal such that every product of < h
sequentially compact spaces is still sequentially compact. Thus the problem
mentioned at the beginning is dependent on set theory: in some models of set
theory h = ω1, in which case the classical result cannot be improved, but in
other models h = c > ω1 [2], hence there are uncountable products which are
sequentially compact.
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As another influence of cardinal characteristics on products, Booth [3]
showed that the splitting number s is the smallest cardinal such that the prod-
uct 2s is not sequentially compact. Here 2 denotes the discrete 2-element space.
Since any nontrivial T1 space contains a closed subspace isomorphic to 2, we
get that if h = s (an identity which is relatively consistent with the usual ax-
ioms of set theory [2]), then a product of T1 spaces is sequentially compact if
and only if all factors are sequentially compact and the set of nontrivial fac-
tors has cardinality < s. On the other hand, we are not aware of any former
result of this kind when separation axioms are not assumed, apart from some
partial results in S. Brandhorst thesis [4] under the strong assumption of the
Continuum Hypothesis.

While many topologists usually deal with Hausdorff spaces—possibly, even
with spaces satisfying higher regularity conditions—recently the interest on
spaces satisfying lower separability conditions has newly arisen, e. g. [8, 9, 19].
In particular, see [13] for an interesting recent manifesto in support of the study
of spaces satisfying lower separation axioms from a purely topological point of
view.

In this note we show that a product of topological spaces is sequentially
compact if and only if all subproducts by ≤ s factors are sequentially compact.
If h = s, then a product is sequentially compact if and only if all factors
are sequentially compact, and all but at most < s factors are ultraconnected.
While the proofs are elementary and do not rely on set theory, apart from the
mentioned known characterizations of the cardinals h and s, we believe that
the results deserve to be explicitly presented with the details of the proofs.

Finally, a longstanding open problem has been recently solved by Dow and
Shelah [6] who showed that it is consistent that s is singular. Here we present
a simple topological proof that the cofinality of s is ≥ h. The argument has
a general flavor and suggests the idea of attaching similar invariants to an
arbitrary property P of topological spaces. At the end of Section 3 we argue
that the right framework for the argument is the context of partial infinitary
semigroups with a specified subclass. While the ideas are simple, there is the
possibility that the arguments and the general framework turn out to be a
useful paradigm for many disparate situations. We exemplify the methods in
the case of chain compactness.

2. Products of sequentially compact spaces

For the sake of simplicity, all topological spaces are assumed to be nonempty.

Recall that a space X is called ultraconnected if no pair of nonempty closed
sets of X is disjoint.
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Definition 2.1. The splitting number s is the least cardinal such that 2s is
not sequentially compact, where 2 is the two-element discrete topological space.
Usually the definition of s is given in equivalent forms, but the present one is
the most suitable for our purposes. See Booth [3, Theorem 2] or van Douwen
[16, Theorem 6.1] for a proof of the equivalences. See [2, 16, 18] for further
information about s.

A proof of the next lemma can be found in [12, Lemmata 4.1 and 4.2].

Lemma 2.2. (i) A topological space X is both ultraconnected and sequentially
compact if and only if every sequence in X converges.

(ii) A product of ≥ s spaces which are not ultraconnected is not sequentially
compact.

Proposition 2.3. If a product is sequentially compact, then the set of factors
with a nonconverging sequence has cardinality < s.

Proof. Suppose by contradiction that there are ≥ s factors with a nonconverg-
ing sequence. Since each factor is sequentially compact, then, by Lemma 2.2(i),
there are ≥ s factors which are not ultraconnected, and Lemma 2.2(ii) gives a
contradiction.

Theorem 2.4. A product of topological spaces is sequentially compact if and
only if all subproducts by ≤ s factors are sequentially compact.

Proof. Necessity is trivial, since we assume that all the spaces are nonempty
and sequential compactness is preserved by taking images of surjective con-
tinuous functions. For the other direction, suppose that each subproduct of
X =

∏
j∈J Xj by ≤ s factors is sequentially compact, and let J ′ = {j ∈

J | Xj has a nonconverging sequence}. If |J ′| ≥ s, choose J ′′ ⊆ J ′ with
|J ′′| = s. By assumption,

∏
j∈J′′ Xj is sequentially compact, and we get a

contradiction from Proposition 2.3. Thus |J ′| < s. Now X is homeomorphic to∏
j∈J′ Xj ×

∏
j∈J\J′ Xj . The first factor is sequentially compact by assump-

tion, since we have proved that |J ′| < s. For each j ∈ J \J ′, we have that every
sequence on Xj converges, thus in

∏
j∈J\J′ Xj , too, every sequence converges; a

fortiori,
∏

j∈J\J′ Xj is sequentially compact. Then X is sequentially compact,
being the product of two sequentially compact spaces.

In the context of T1 spaces, Theorem 2.4 is an immediate consequence of
Definition 2.1, since any nontrivial T1 space contains a closed subspace isomor-
phic to 2. Thus if a product of T1 spaces is sequentially compact, then all but
< s factors are one-element spaces. Then Theorem 2.4, restricted to T1 spaces,
follows, since if all subproducts of ≤ s factors are sequentially compact, then all
but < s factors are one-element spaces and the product of the nontrivial factors
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is sequentially compact by hypothesis. Thus the main point of Theorem 2.4 is
the case of spaces satisfying few separation axioms.

The value s in Theorem 2.4 is the best possible value: by Definition 2.1, all
subproducts of 2s by < s factors are sequentially compact, but 2s is not.

We now show that, under a relatively weak cardinality assumption, we can
replace “subproducts” with “factors” in Theorem 2.4.

Definition 2.5. The distributivity number h is the smallest cardinal such that
there are h sequentially compact spaces whose product is not sequentially com-
pact. Usually, the definition of h is given in some equivalent form: see Si-
mon [15] for the proof of the equivalence, and [2, 18], for further information.
Obviously, h ≤ s. It is known that h < s is relatively consistent [2].

Theorem 2.6. Assume that h = s. If X is a product of topological spaces, then
the following conditions are equivalent.

(i) X is sequentially compact.

(ii) All factors of X are sequentially compact, and the set of factors with a
nonconverging sequence has cardinality < s.

(iii) All factors of X are sequentially compact, and all but at most < s factors
are ultraconnected.

Proof. Conditions (ii) and (iii) are equivalent by Lemma 2.2(i).

Condition (i) implies Condition (ii) by Proposition 2.3.

The proof that (ii) implies (i) is similar to the proof of Theorem 2.4. Sup-
pose that (ii) holds, and thatX =

∏
j∈J Xj . SplitX as

∏
j∈J′ Xj×

∏
j∈J\J′ Xj ,

where J ′ = {j ∈ J | Xj has a nonconverging sequence}. By (ii) and the as-
sumption, |J ′| < s = h, hence, by the very definition of h (the one we have
presented),

∏
j∈J′ Xj is sequentially compact. Moreover

∏
j∈J\J′ Xj is sequen-

tially compact, since in it every sequence converges, hence alsoX is sequentially
compact.

Under the stronger assumption of the Continuum Hypothesis, we have
learned of the equivalence of (i) and (ii) in Corollary 2.6 from Brandhorst [4].
See also Brandhorst and Erné [5]. As mentioned in the introduction, when
restricted to T1 spaces, Theorem 2.6 follows immediately from Definitions 2.1
and 2.5 (for a T1 space X the following are equivalent: all sequences converge;
X is ultraconnected; X is trivial, that is, a one-point space). On the other
hand, we are not aware of any former result of this kind when no separation
axiom is assumed, apart from the mentioned partial result in [4].
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Notice that the assumption h = s is necessary in Theorem 2.6. Indeed, it
is now almost immediate to show that Conditions (i) and (ii) in Theorem 2.6
are equivalent if and only if h = s.

Corollary 2.7. The following conditions are equivalent.

(i) h = s

(ii) For every product X of topological spaces, condition (i) in Theorem 2.6
holds if and only if condition (ii) there holds.

(iii) For every product X with h factors, condition (ii) in Theorem 2.6 implies
condition (i) there.

Proof. (i) ⇒ (ii) is given by Theorem 2.6 itself, and (ii) ⇒ (iii) is trivial.
To prove (iii) ⇒ (i) we shall prove the contrapositive. Suppose that (i)

fails. By the definition of h there is a not sequentially compact product X
by h sequentially compact factors. If h < s, then condition (ii) in Theorem 2.6
trivially holds for such an X, while condition (i) there fails. Thus condition (iii)
in the present corollary fails.

3. A topological proof that cf s ≥ h and a generalization

We begin this section by giving a curious and purely topological proof of the
inequality cf s ≥ h. The proof does not use any of the results proved before,
but relies heavily on the characterizations of the cardinals s and h that we have
presented as Definitions 2.1 and 2.5. See Blass [1, Corollary 2.2] for another
proof of cf s ≥ h. Andreas R. Blass (personal communication, June 2014) has
kindly communicated us a direct simple proof which uses the combinatorial
definitions of s and h.

By the way, Dow and Shelah [6] have recently showed that it is consistent
that s is singular, solving a longstanding problem.

Proposition 3.1. cf s ≥ h.

Proof. Suppose by contradiction that cf s = λ < h, hence we can express s as⋃
α∈λ sα, with |sα| < s, for α ∈ λ; moreover, without loss of generality, we can

take the sα’s to be pairwise disjoint. Thus 2s is (homeomorphic to)
∏

α∈λ 2
sα .

By the definition of s (the one we have given) and since |sα| < s, for α ∈ λ, then
each 2sα is sequentially compact. By the definition of h, and since λ < h, we
have that

∏
α∈λ 2

sα is sequentially compact. But then 2s ∼=
∏

α∈λ 2
sα would

be sequentially compact, contradicting the definition of s.

As we mentioned in the introduction, the arguments in the proofs of Propo-
sition 3.1 have a general form and work for every property P of topological
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spaces. We could work as well with some property (= a subclass) of objects in
a category in which some infinite products or coproducts are defined. However,
the right ambient in which the results can be stated in their full generality ap-
pears to be the context of partial infinitary semigroups. We shall sketch here
a basic result. For more details and further invariants, see Section 7 in the
unpublished manuscript [11] from which the present note has been extracted.

Definition 3.2. A partial infinitary semigroup is a Σ-algebra satisfying prop-
erties (U) and (P), in the terminology from [10].

For short, in a partial infinitary semigroup we have a partially defined in-
finitary operation

∑
i∈I ai, for every index set I. Property (U) asserts that if

|I| = 1, then
∑

i∈I ai is defined and its outcome is the only element ai of the
sequence.

Property (P) asserts that if
∑

i∈I ai is defined, then, for every partition
(Jk)k∈K of I, all the sums in the following equation are defined, and equality
actually holds:

∑
i∈I ai =

∑
k∈K

∑
i∈Jk

ai.
With the customary foundational caution, classes of topological spaces mod-

ulo homeomorphism and with the Tychonoff product form a partial infinitary
semigroups.

Definition 3.3. If S is a partial infinitary semigroup and P ⊆ S, let H(P ) be
the class of all cardinals κ ≥ 2 such that the following holds. There are some I
of cardinality κ and some sum

∑
i∈I ai which is defined, whose outcome is not

in P , while
∑

i∈J ai ∈ P , for every J ⊆ I with |J | < κ, J ̸= ∅.
Notice that property (P) implies that if

∑
i∈I ai is defined, then

∑
i∈J ai is

defined, for every nonempty J ⊆ I.
Let H∗(P ) be the class of all cardinals κ ≥ 2 such that there are some I

of cardinality κ and some sum
∑

i∈I ai which is defined, whose outcome is not
in P , while ai ∈ P , for every i ∈ I. In most examples, if κ ∈ H∗(P ), then
λ ∈ H∗(P ), for every λ ≥ κ. In this case H∗(P ), if nonempty, is determined by
h(P ) = inf H∗(P ). However, we shall not need to assume this further property
of H∗(P ) in what follows.

Proposition 3.4. Suppose that S is a partial infinitary semigroup and P ⊆ S.
Then

(i) H(P ) ⊆ H∗(P ).

(ii) If κ ∈ H(P ), then 1 + cf κ ∈ H∗(P ).

(iii) If H∗(P ) is not empty, then inf H∗(P )∈H(P ), thus H(P ) ̸=∅, inf H∗(P ) =
inf H(P ), and inf H∗(P ) is a regular cardinal.
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Proof. (i) follows from the definitions and Property (U).

(ii) If κ is an infinite regular cardinal, then κ = cf κ = 1 + cf κ, hence (ii)
follows from (i).

If κ is finite, say, κ = n ≥ 2 and
∑

i<n ai witnesses κ ∈ H(P ), then an−1 +∑
i<n−1 ai witnesses 1 + cf n = 1 + 1 = 2 ∈ H∗(P ).

The remaining case is similar to Proposition 3.1. Suppose that κ is sin-
gular, thus κ =

⋃
k∈K Jk, for some sets K and pairwise disjoint Jk such that

|K|, |Jk| < κ, for k ∈ K. Let c =
∑

γ∈κ aγ witness κ ∈ H(P ). For k ∈ K, let
bk =

∑
γ∈Jk

aγ . Since |Jk| < κ, for k ∈ K, then, by the definition of H(P ), each
bk is in P . By Property (P), c =

∑
k∈K bk and this sum witnesses cf κ ∈ H∗(P ).

(iii) Let κ = inf H∗(P ) and let
∑

γ∈κ aγ witness κ ∈ H∗(P ). By assumption,
κ ≥ 2 and each aγ is in P . If there is J ⊆ κ such that 2 ≤ |J | < κ and

∑
j∈J aj /∈

P , then
∑

j∈J aj witnesses |J | ∈ H∗(P ), contradicting the minimality of κ.
Thus, by (U), for every J ⊆ κ with 1 ≤ |J | < κ, we have

∑
j∈J aj ∈ P . This

means that
∑

γ∈κ aγ witnesses κ ∈ H(P ). The rest follows from (i) and (ii).

If S is the class of topological spaces modulo homeomorphism with Ty-
chonoff products and P is the class of sequentially compact spaces, then h =
inf H∗(P ), by Definition 2.5. Moreover, s ∈ H(P ), by Definition 2.1. Thus
Proposition 3.4(ii) generalizes Proposition 3.1. Moreover, the last assertion in
Proposition 3.4(iii) generalizes the known fact that h is a regular cardinal.

By Theorem 2.4, s = supH(P ), hence H(P ) ⊆ [h, s], where [h, s] is the set
of those cardinals λ such that h ≤ λ ≤ s. It is an open problem whether the
inclusion H(P ) ⊆ [h, s] may be strict (of course, this is a nontrivial problem
only when h < s).

As an application of Proposition 3.4, one can consider chain compactness. If
λ ≤ µ are infinite cardinals, a topological spaceX is [λ, µ]-chain compact [17] if,
for every cardinal ν such that λ ≤ ν ≤ µ, every ν-indexed sequence of elements
of X has a converging cofinal subsequence. Thus [ω, ω]-chain compactness is
the same as sequential compactness.

A product of countably many [λ, µ]-chain compact spaces is still [λ, µ]-chain
compact [17]. Thus if P[λ,µ]-c is the property of being [λ, µ]-chain compact,
then h(P[λ,µ]-c) = inf H∗(P[λ,µ]-c) > ω. By Proposition 3.4, h(P[λ,µ]-c) is a
regular cardinal, and if κ ∈ H(P[λ,µ]-c), then cf κ ≥ h(P[λ,µ]-c). To the best
of our knowledge, it is an open problem to explicitly characterize the cardinal
h(P[λ,µ]-c) and the class H(P[λ,µ]-c). Some results about products of [ω, µ]-chain
compact spaces can be found in [14]. If follows from [11, Theorem 3.1] that
supH(P[λ,µ]-c) ≤ 2µ.
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