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1. Essential background

All operators considered here are linear but not necessarily bounded. If an
operator is bounded and everywhere defined, then it belongs to B(H) which is
the algebra of all bounded linear operators on H (see [14] for its fundamental
properties).

Most unbounded operators that we encounter are defined on a subspace
(called domain) of a Hilbert space. If the domain is dense, then we say that
the operator is densely defined. In such case, the adjoint exists and is unique.

Let us recall a few basic definitions about non-necessarily bounded oper-
ators. If S and T are two linear operators with domains D(S) and D(T)
respectively, then T is said to be an extension of S, written as S C T, if
D(S) ¢ D(T) and S and T coincide on D(S).

An operator T is called closed if its graph is closed in H & H. It is called
closable if it has a closed extension. The smallest closed extension of it is
called its closure and it is denoted by T' (a standard result states that a densely
defined T is closable iff 7* has a dense domain, and in which case T = T**).
If T is closable, then

ScT=ScT.

If T is densely defined, we say that T is self-adjoint when 7" = T™; symmetric
if ' C T™; normal if T is closed and TT* = T*T.

The product ST and the sum S + T of two operators S and T are defined
in the usual fashion on the natural domains:

D(ST)={x e D(T): Tz D(S)}
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and
D(S+T)=D(S)NnD(T).

In the event that S, T and ST are densely defined, then
T*S* C (ST)",
with the equality occurring when S € B(H). If S+ T is densely defined, then
S*+T*C(S+T)"

with the equality occurring when S € B(H).
Let T be a linear operator (possibly unbounded) with domain D(T") and let
B € B(H). Say that B commutes with T if

BT C TB.
In other words, this means that D(T') C D(T'B) and
BTz = TBz, Yz € D(T).

Let A be an injective operator (not necessarily bounded) from D(A) into H.
Then A~!:ran(A) — H is called the inverse of A, with D(A~!) = ran(A).

If the inverse of an unbounded operator is bounded and everywhere defined
(e.g. if A: D(A) — H is closed and bijective), then A is said to be boundedly
invertible. In other words, such is the case if there is a B € B(H) such that

AB =1 and BAC .

If A is boundedly invertible, then it is closed.
The resolvent set of A, denoted by p(A), is defined by

p(A) ={\ € C: A — Ais bijective and (A — A)~* € B(H)}.
The complement of p(A), denoted by o(A),
o(4) = C\ pl(4)

is called the spectrum of A.

2. Introduction

The aim of this paper is to obtain some generalizations of the Fuglede-Putnam
theorem involving unbounded operators.
Recall that the original version of the Fuglede-Putnam theorem reads:
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THEOREM 2.1 ([6, 20]). If A € B(H) and if M and N are normal (non-
necessarily bounded) operators, then

AN C MA= AN* C M*A.

The problem leading to the above theorem was first mooted by J. von
Neumann in [18] who had already established it in a finite-dimensional setting.
B. Fuglede was the first one to prove this theorem in [6] in the case N = M,
and where dim H = oo was allowed. It is important to tell readers that P. R.
Halmos obtained in [8] almost simultaneously as B. Fuglede a quite different
proof of the theorem above. More precisely, at the end of August 1949, B.
Fuglede communicated his proof to P. R. Halmos at the Boulder meeting of
the American Mathematical Society. Halmos’ proof dealt with the all bounded
version, however, P. R. Halmos indicated that only minor modifications were
needed to adapt his proof to the more general case of unbounded operators.

Then, C. R. Putnam [20] proved the above version. S. K. Berberian [3]
amazingly noted that the two versions were equivalent.

There are different proofs of the Fuglede-Putnam theorem. The most ele-
gant proof perhaps is the one due to M. Rosenblum [23|. For other proofs, see
e.g. [21] and [22].

There have been many generalizations of the Fuglede-Putnam theorem since
Fuglede’s paper. However, most generalizations were devoted to relaxing the
normality assumption (see e.g. [12], and the references therein). Apparently,
the first generalization of the Fuglede theorem to an unbounded A was estab-
lished in [19]. Then, the first generalization involving unbounded operators of
the Fuglede- Putnam theorem is:

THEOREM 2.2. Let A be a closed symmetric operator and let N be an unbounded
normal operator. If D(N) C D(A), then

AN C N*A = AN* C NA.

In fact, the previous result was established in [10] under the assumption of
the self-adjointness of A. However, and by scrutinizing the proof in [10] or [11],
it is seen that only the closedness and the symmetricity of A were needed.
Other unbounded generalizations may be consulted in [1], [2], and [13], as well
as some of the references therein. In the end, readers may wish to consult
the survey [16] exclusively devoted to the Fuglede-Putnam theorem and its
applications.

3. Generalizations of the Fuglede-Putnam theorem

If a densely defined operator N is normal, then so is its adjoint. However, if N*
is normal, then N** does not have to be normal (unless N itself is closed). A
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simple counterexample is to take the identity operator Ip restricted to some
unclosed dense domain D C H. Then Ip cannot be normal for it is not closed.
But, (Ip)* = I which is the full identity on the entire H, is obviously normal.
Notice in the end that if N is a densely defined closable operator, then N* is
normal if and only if N is.

The first improvement is that in the very first version by B. Fuglede, the
normality of the operator is not needed as only the normality of its closure will
do. This observation has already appeared in [4], but we reproduce the proof
here.

THEOREM 3.1. Let B € B(H) and let A be a densely defined and closable
operator such that A is normal. If BA C AB, then

BA* C A™B.
Proof. Since A is normal, A~ = A* remains normal. Now,
BA C AB =-B*A* C A*B* (by taking adjoints)
= B*A C AB* (by using the classical Fuglede theorem)
= BA* C A*B (by taking adjoints again),
establishing the result. O

REMARK 3.2. Notice that BA* C A*B does not yield BA C AB even in the
event of the normality of A* (see [15]).

Let us now turn to the extension of the Fuglede-Putnam version. A similar
argument to the above one could be applied.

THEOREM 3.3. Let B € B(H) and let N, M be densely defined closable opera-
tors such that N and M are normal. If BN C M B, then

BN* C M*B.

Proof. Since BN C M B, it ensues that B*M* C N*B*. Taking adjoints again
gives BN C M B. Now, apply the Fuglede-Putnam theorem to the normal N
and M to get the desired conclusion BN* C M*B. O

Jabloniski et al. obtained in [9] the following version.

THEOREM 3.4. If N is a normal (bounded) operator and if A is a closed densely
defined operator with o(A) # C, then:

NA C AN = g(N)A C Ag(N)

for any bounded complex Borel function g on o(N). In particular, we have
N*A C AN*.
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REMARK 3.5. It is worth noticing that B. Fuglede obtained, long ago, in [7] a
unitary U € B(H) and a closed and symmetric 7" with domain D(T") C H such
that UT' C TU but U*T ¢ TU*.

Next, we give a generalization of Theorem 3.4 to an unbounded NN, and as
above, only the normality of N is needed.

THEOREM 3.6. Let p be a one variable complex polynomial. If N is a densely
defined closable operator such that N is normal and if A is a densely defined
operator with o[p(A)] # C, then

NACAN = N*AC AN*
whenever D(A) C D(N).

REMARK 3.7. This is indeed a generalization of the bounded version of the
Fuglede theorem. Observe that when A, N € B(H), then N = N, D(A) =
D(N) = H, and o[p(A)] is a compact set.

Proof of Theorem 3.6. First, we claim that o(A) # C, whereby A is closed.
Let A be in C\ o[p(A)]. Then, and as in [5], we obtain

P(A) = M = (A =y I)(A = ) -+ (A = i)

for some complex numbers p1, fig, - -, pn. By consulting again [5], readers see
that o(A) # C.
Now, let A € p(A). Then

NACAN = NA—- AN C AN — AN = (A—-XI)N.
Since D(A) C D(N), it is seen that NA — AN = N(A — A\I). So
NA-X)C(A=X)N = (A= X)"'NC NA- ).
Since N is normal, we may now apply Theorem 3.1 to get
(A= X)"'N* C N*(A—-AI)™*
because (A — AI)~! € B(H). Hence
N*A—-AN*" CN* (A= M) C(A—X)N*"=AN" — AN".
But
D(AN*) C D(N*) and D(N*A) C D(A) C D(N) C D(N) = D(N*).
Thus, D(N*A) C D(AN*), and so
N*A C AN™,
as needed. O
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Now, we present a few consequences of the preceding result. The first one
is given without proof.

COROLLARY 3.8. If N is a densely defined closable operator such that N is
normal and if A is an unbounded self-adjoint operator with D(A) C D(N),
then

NAC AN — N*A C AN™.

COROLLARY 3.9. If N is a densely defined closable operator such that N is
normal and if A is a boundedly invertible operator, then

NACAN = N"A C AN™.
Proof. We may write
NACAN = NAAT' CANA™' = A"'NCc NA™"
Since A=! € B(H) and N is normal, Theorem 3.1 gives
A'N*c N*A7! and so N*A C AN*,
as needed. 0

A Putnam’s version seems impossible to obtain unless strong conditions are
imposed. However, the following special case of a possible Putnam’s version
is worth stating and proving. Besides, it is somewhat linked to the important
notion of anti-commutativity.

PROPOSITION 3.10. If N is a densely defined closable operator such that N is
normal and if A is a densely defined operator with o(A) # C, then

NAC —AN = N*A C —AN*
whenever D(A) C D(N).

Proof. Consider

~ N 0 = 0 A
N_<O —N) and A—(AO)
where D(N) = D(N) @ D(N) and D(A) = D(A) &

and A is closed. Besides 0(A) # C. Now

- 0 NA 0 —AN .
NA:(—NA 0 )C<AN 0 )ZAN

D(A). Then N is normal

for NA C —AN. Since D(A) € D(N), Theorem 3.6 applies, i.e. it gives N*A C
AN* which, upon examining their entries, yields the required result. O
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We finish this section by giving counterexamples to some "generalizations".

ExAMPLE 3.11 ([13]). Consider the unbounded linear operators A and N which
are defined by

Af(x) = (1 + |z f(x) and Nf(2) = —i(1 + |z[) f'(z)
(with i = —1) on the domains
D(A)={f € L*(R): (1 +|2])f € L*(R)}
and
D(N)={f € L*(R) : (1 +|=])f" € L*(R)}

respectively, and where the derivative is taken in the distributional sense.
Then A is a boundedly invertible, positive, self-adjoint unbounded operator.
As for N, it is an unbounded normal operator N (details may consulted in [13]).
It was shown that such that

AN* = NAbut AN ¢ N*A and N*A ¢ AN

(in fact ANf # N*Af for all f #0).

So, what this example is telling us is that NA = AN* (and not just an
"inclusion"), that N and N* are both normal, o(A) # C (as A is self-adjoint),
but NA ¢ AN*.

This example can further be beefed up to refute certain possible general-
izations.

EXAMPLE 3.12 (Cf. [17]). There exist a closed operator T and a normal M
such that TM C MT but TM* ¢ M*T and M*T ¢ TM*. Indeed, consider

N* 0 0 0
M—(O N) and T_<AO>
where N is normal with domain D(N) and A is closed with domain D(A) and
such that AN* = NA but AN ¢ N*A and N*A ¢ AN (as defined above).

Clearly, M is normal and T is closed. Observe that D(M) = D(N*) @& D(N)
and D(T) = D(A) © L?(R). Now,

(00 N* 0\ _{( Opwy Opay Y _ [ O Opuw
A0 0 N AN* 0 AN* 0

where e.g. Op(y) is the zero operator restricted to D(N). Likewise

= (0 ) (5 6)=(Wa o)
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Since D(TM) = D(AN*)®D(N) C D(NA)® L?*(R) = D(MT), it ensues that
TM Cc MT. Now, it is seen that

and

. (0 0 N 0\ _ [ 0 Opuwe
mr =5 0 ) (8 4 )= (ar 8)

e (N O 00\ ([ 0 0
wr=(0 ) (4 0)=(ata o)

Since ANf # N*Af for any f # 0, we infer that TM* ¢ M*T and

M*T ¢ TM*.
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