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Geometry of dependency equilibria
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Abstract. An n-person game is specified by n tensors of the same
format. We view its equilibria as points in that tensor space. Depen-
dency equilibria are defined by linear constraints on conditional proba-
bilities, and thus by determinantal quadrics in the tensor entries. These
equations cut out the Spohn variety, named after the philosopher who
introduced dependency equilibria. The Nash equilibria among these are
the tensors of rank one. We study the real algebraic geometry of the
Spohn variety. This variety is rational, except for 2× 2 games, when it
is an elliptic curve. For 3× 2 games, it is a del Pezzo surface of degree
two. We characterize the payoff regions and their boundaries using ori-
ented matroids, and we develop the connection to Bayesian networks in
statistics.
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1. Introduction

The geometry of Nash equilibria has been a topic of considerable interest in
economics, mathematics and computer science. It is known, thanks to Datta’s
Universality Theorem [6], that the set of Nash equilibria can be an essentially
arbitrary semialgebraic set. Yet, a game with generic payoff tables has only
finitely many Nash equilibria, with tight bounds known for their number [11].
They can be found with the tools of computational algebraic geometry.

For many games one encounters Nash equilibria with undesirable or coun-
terintuitive properties. This issue has been a concern not just in the economics
literature, but also in philosophy. Several authors proposed more inclusive no-
tions of equilibria. One of these is the concept of correlated equilibria, due to
Aumann [1]. In this concept, one augments the original game with a coordina-
tion device which allows players to coordinate actions (i.e. a joint probability
distribution). These equilibria form a convex polytope in tensor space, studied
in [4, 14], with Nash equilibria being precisely the rank one tensors.

In this article, we examine another inclusive notion of equilibria, intro-
duced by a prominent philosopher, Wolfgang Spohn, in his articles [19, 20].
Spohn’s notion of dependency equilibria leads to interesting structures in non-



(2 of 26) I. PORTAKAL AND B. STURMFELS

linear algebra [12]. Unlike the polyhedral setting of correlated equilibria, the
characterization of dependency equilibria requires nonlinear polynomials, even
for two-player games. This is the reason why they are interesting for us.

Spohn offers the following warning about the nonlinear algebra that arises
in his approach: The computation of dependency equilibria seems to be a messy
business. Obviously it requires one to solve quadratic equations in two-person
games, and the more persons, the higher the order of the polynomials we become
entangled with. All linear ease is lost. Therefore, I cannot offer a well developed
theory of dependency equilibria [20, page 779, Section 3].

This paper lays the foundations for the desired theory, by introducing novel
algebraic varieties in tensor spaces. The bemoaned loss of linear ease is our
journey’s point of departure.

It is useful to think of this article as a case study in algebraic statistics [3, 22].
In that field one examines statistical models for n discrete random variables.
Such a model is a semialgebraic set whose points are positive tensors whose
entries sum to one. These represent joint probability distributions, and the
statistical task is to identify points that best explain some given data set. To
address such an optimization problem, it is advantageous to relax the constraint
that tensors are real and positive. Thus, one replaces the model by its Zariski
closure in a complex projective space, and one studies algebro-geometric fea-
tures – such as dimension, degree, equations, decomposition, and singularities
– of these varieties.

The statistical model in this article is the set of dependency equilibria of an
n-person game in normal form. These equilibria are real positive tensors whose
entries sum to one. Relaxing the reality constraints yields an algebraic variety
in complex projective space. This is called the Spohn variety of the game, in
recognition of the fundamental work in [19, 20].

Our presentation is organized as follows. In Section 2 we review the basics
on n-player games in normal form, and we present the equations that define
dependency equilibria. After clearing denominators, these are expressed as the
2 × 2 minors of n matrices whose entries are linear forms in the entries of P .
Small cases are worked out in Examples 2.1, 2.2, 2.3 and 2.4.

The Spohn variety VX of a normal form game X is formally introduced in
Section 3. We determine its dimension and degree in Theorem 3.2. The inter-
section of VX with the Segre variety recovers the Nash equilibria. Theorem 3.4
shows that VX is generally rational, with an explicit rational parametrization.
Example 3.6 covers Del Pezzo surfaces of degree two.

Section 4 offers a detailed study of the dependency equilibria for 2×2 matrix
games. This case is an exceptional case because the Spohn variety VX is not
rational. It is the intersection of two quadrics in P3, hence an elliptic curve,
when the payoff matrices are generic. A formula for the j-invariant is given in
Proposition 4.2. The real picture is determined in Theorem 4.4.
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Section 5 concerns the payoff region PX . This is a semialgebraic subset
of Rn, visualized in Figures 2 and 3. The points of PX are the expected
utilities of positive points on VX . Theorem 5.5 identifies that region in the
oriented matroid stratification given by the Konstanz matrix KX(x). Its al-
gebraic boundaries are determinantal hypersurfaces, such as the K3 surfaces
in Example 5.7. These offer an algebraic representation for Pareto optimal
equilibria.

Section 6 develops a perspective that offers dimensionality reduction and
a connection to data analysis. Namely, we consider conditional independence
models, in the sense of algebraic statistics [3, 22]. These models are represented
by projective varieties. We focus on the case of Bayesian networks [8]. Their
importance for dependency equilibria was already envisioned by Spohn in [19,
Section 3]. This offers many opportunities for future research.

2. Games, Tensors and Equilibria

We work in the setting of normal form games, using the notation fixed in [21,
Section 6.3]. Our game has n players, labeled as 1, 2, . . . , n. The ith player can
select from di pure strategies. This set of pure strategies is taken to be [di] =
{1, 2, . . . , di}. The game is specified by n payoff tables X(1), X(2), . . . , X(n).
Each payoff table is a tensor of format d1 × d2 × · · · × dn whose entries are

arbitrary real numbers. The entry X
(i)
j1j2···jn ∈ R represents the payoff for

player i if player 1 chooses pure strategy j1, player 2 chooses pure strategy j2,
etc. These choices are to be understood probabilistically. Think of the n
players as random variables. The ith random variable has the state space [di].
The players collectively choose a mixed strategy, which is a joint probability
distribution P . More precisely, P is a tensor of format d1×d2×· · ·×dn whose
entries are positive reals that sum to 1. The entry pj1j2···jn is the probability
that player 1 chooses pure strategy j1, player 2 chooses pure strategy j2, etc.

We write V = Rd1×d2×···×dn for the real vector space of all tensors. Let
P(V ) denote the corresponding projective space, and let ∆ be the open simplex
of positive real points in P(V ). The set of equilibria of our game is a subset
of ∆, and we are interested in its Zariski closure in P(V ). The classical theory
of Nash equilibria arises through the Segre variety Pd1−1×Pd2−1× · · · ×Pdn−1

whose points are the tensors of rank one in P(V ). Namely, the entries of a rank
one tensor P factor into the decision variables of [21, Section 6.3] as follows:

pj1j2···jn = π
(1)
j1
· π(2)

j2
· . . . · π(n)

jn
.

Here π
(i)
ji

represents the probability that player i unilaterally selects pure strat-
egy ji. In the study of totally mixed Nash equilibria, these quantities are
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positive reals, and they satisfy

π
(i)
1 + π

(i)
2 + · · ·+ π

(i)
di

= 1. (1)

However, in what follows the n players are not independent. We view them as
acting together. Their collective choice of a mixed strategy is thus a tensor P
which need not have rank 1.

Consider two players with binary choices, so n = d1 = d2 = 2. Here
V = R2×2 is a four-dimensional vector space, and P (V ) = P3 is the projective
space whose points are 2 × 2 matrices up to scaling. A game is specified by
two matrices X(1) and X(2) in V . The two players collectively choose a joint
probability distribution P for two binary random variables. Thus, they choose

a positive matrix P =

[
p11 p12
p21 p22

]
whose entries sum to one, i.e. P ∈ ∆.

Example 2.1 (Bach or Stravinsky). A couple decides which of two concerts
to attend. The payoff matrices indicate their preferences among composers,
Bach = 1 or Stravinsky = 2:

X(1) =

[
3 0
0 2

]
and X(2) =

[
2 0
0 3

]
. (2)

In texts on game theory, this is called a bimatrix game. The two payoff
matrices are often written in a combined table. For the game (2), the combined
table looks as follows:

Player 2

Bach Stravinsky

Player 1
Bach (3, 2) (0, 0)

Stravinsky (0, 0) (2, 3)

Different entries are used in [20, Section 3]. We refer to that source for further
examples. The four pure choices BB, BS, SB and SS label the vertices of the
tetrahedron in Figure 1. In the game, the couple selects a mixed strategy P ,
which is a point in that tetrahedron.

Returning to our general set-up, we consider the expected payoff for the ith
player. By definition, this is the dot product of the tensors X(i) and P . In
symbols, the expected payoff is

PX(i) =

d1∑
j1=1

d2∑
j2=1

· · ·
dn∑

jn=1

pj1j2···jnX
(i)
j1j2···jn . (3)

Player i desires this quantity to be as large of possible. Aumann’s correlated
equilibria [1] are choices of P where no player can raise their expected payoff
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by changing their strategy or breaking their part of the agreed joint probability
distribution while assuming that the other players adhere to their own recom-
mendations. The set of correlated equilibria is a convex polytope inside the
simplex ∆. Its combinatorial structure is studied in [4, 14].

In Spohn’s theory [20], expected payoff is replaced by conditional expected
payoff. We focus on the payoff expected by player i conditioned on player
i having fixed pure strategy k ∈ [di]. In precise mathematical terms, the
conditional expected payoff is the ratio of two linear forms in the entries of
P , each of which has d1 · · · di−1di+1 · · · dn summands. The numerator is the
subsum of (3) given by all summands with ji = k. The denominator is the sum
of all probabilities pj1j2···jn where ji = k. In algebraic statistics texts, this is
denoted p+···+k+···+.

Here is now the key definition due to Spohn [19, 20]. Consider the game
given by the tuple X = (X(1), X(2), . . . , X(n)). A tensor P in ∆ is a dependency
equilibrium for X if the conditional expected payoff of each player i does not
depend on player i’s choice k. In symbols, this definition says that the following
equations hold, for all i ∈ [n] and all k, k′ ∈ [di]:

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn
p+···+k+···+

=

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k′···jn

pj1···k′···jn
p+···+k′+···+

. (4)

Thus, dependency equilibria are defined by certain equalities among ratios of
linear forms.

One issue with this definition is that p+···+k+···+ might be zero. Spohn
calls this a “technical flaw” [20, Section 2], and he suggests a fix by taking
limits to the boundary of ∆. From the algebraic statistics perspective, this is
not a flaw but a feature. Many models are defined by constraints on strictly
positive probabilities. Possible extensions to the boundary are studied using
the technique of primary decomposition [22, Section 4.3]. We here disregard
boundary phenomena since ∆ is the open simplex. This allows us to divide by
p+···+k+···+.

We have argued that clearing denominators in (4) does not change the
solution sets of interest. Thus we can write our equations as 2×2 determinants
of linear forms in the entries of P . We define a matrix Mi = Mi(P ) with di rows
and two columns as follows. The kth row of Mi consists of the denominator
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and the numerator of the ratio on the left of (4):

Mi = Mi(P ) :=



...
...

p+···+k+···+

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jnpj1···k···jn

...
...

. (5)

Dependency equilibria for X are the points P ∈ ∆ for which each Mi has rank
one. If n is small then we simplify our notation by using letters a, b, c for the
tensors X(1), X(2), X(3).

Example 2.2 (2 × 2 games). Let n = d1 = d2 = 2 and aij , bij ∈ R. The
matrices in (5) are

M1 =

[
p11 + p12 a11p11 + a12p12
p21 + p22 a21p21 + a22p22

]
,

M2 =

[
p11 + p21 b11p11 + b21p21
p12 + p22 b12p12 + b22p22

]
.

The dependency equilibria are solutions in ∆ to the equations det(M1) =
det(M2) = 0.

Example 2.3 (2×2×2 games). Consider a game with three players who have
binary choices, i.e. n = 3 and d1 = d2 = d3 = 2. In [21, Section 6.1] the players
are called Adam, Bob and Carl, and their payoff tables are X(1) = (aijk),
X(2) = (bijk) and X(3) = (cijk). Dependency equilibria are 2 × 2 × 2 tensors
P = (pijk) such that these three 2× 2 matrices have rank ≤ 1:

M1 =

[
p111 + p112 + p121 + p122 a111p111 + a112p112 + a121p121 + a122p122
p211 + p212 + p221 + p222 a211p211 + a212p212 + a221p221 + a222p222

]
,

M2 =

[
p111 + p112 + p211 + p212 b111p111 + b112p112 + b211p211 + b212p212
p121 + p122 + p221 + p222 b121p121 + b122p122 + b221p221 + b222p222

]
,

M3 =

[
p111 + p121 + p211 + p221 c111p111 + c121p121 + c211p211 + c221p221
p112 + p122 + p212 + p222 c112p112 + c122p122 + c212p212 + c222p222

]
.

If X = (A,B,C) is generic then their determinants are quadrics that intersect
transversally. This defines an irreducible variety VX of dimension 4 and degree
8 in the tensor space P7. We now intersect VX with the Segre variety P1×P1×P1

of rank one tensors in P7. Setting α = π
(1)
1 , β = π

(2)
1 , and γ = π

(3)
1 , we use the
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following parametrization for the Segre variety:

p111 = αβγ, p211 = (1− α)βγ,

p112 = αβ(1− γ), p212 = (1− α)β(1− γ),

p121 = α(1− β)γ, p221 = (1− α)(1− β)γ,

p122 = α(1− β)(1− γ), p222 = (1− α)(1− β)(1− γ).

After this substitution, and after removing extraneous factors, the three 2 × 2
determinants are precisely the three bilinear polynomials exhibited in [21,
Corollary 6.3]. These equations have two solutions in P(V ), so there can be
two distinct totally mixed Nash equilibria.

For any game X, the set of dependency equilibria contains the set of Nash
equilibria. The latter is usually finite. It is instructive to compare these objects
for some examples from game theory text books. Some of these games are not
presented in normal form, but in extensive form. It takes practise to derive the
payoff tensors X(i) from extensive forms.

Example 2.4 (Centipede Game). This is a famous class of two-person games
due to Robert Rosenthal [17]. They are presented in extensive form, by graphs
that looks like a centipede. We discuss an instance with d1 = 3, d2 = 2. Our
game is presented by the following graph:

d d d

rrr1 12

(1, 0) (0, 2) (3, 1)

(2, 4)

The two players chose sequentially between going right r or down d. A down
choice ends the game. In our instance, the game also ends after three right
choices. The payoffs for the four outcomes d, rd, rrd or rrrd are the labels of
the leaves. This translates into a 3× 2-game:

Player 2

d r

d (1, 0) (1, 0)

Player 1 r + d (0, 2) (3, 1)

r + r (0, 2) (2, 4)

This table gives the 3 × 2 payoff matrices X(1) and X(2). Similarly to the
Prisoner’s Dilemma, the Nash equilibrium of the centipede game is not Pareto
efficient. To compute the dependency equilibria, we consider four quadrics in
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six unknowns, namely the 2× 2 minors of the matrices M1 and M2. The ideal
they generate is the intersection of two prime ideals:

⟨ p31 − p32 , p21 − 2p22 ,

p11p22 − 4p12p22 − 2p222 + 4p11p32 − 2p12p32 + 3p22p32 + 2p232 ⟩
∩ ⟨ p11 + p12 , 3p22p31 − 2p21p32 + p22p32 ,

6p12p21+3p12p22+3p21p22+6p12p31+12p12p32−4p21p32−p22p32−6p31p32 ⟩.

The second component, a singular quartic surface in a hyperplane in P5, is
disjoint from ∆. The first component is a hyperboloid in a 3-space P3 which
intersects the open simplex ∆. That intersection is the set of dependency
equilibria. There are no Nash equilbria in ∆.

3. The Spohn variety

In this section we work in the complex projective space P(V ) of d1 × · · · × dn
tensors. We write VX for the subvariety of P(V ) that is given by requiring
M1, . . . ,Mn to have rank one. We call VX the Spohn variety of the game X.
Thus VX is defined by

∑n
i=1

(
di

2

)
quadratic forms in

∏n
i=1 di unknowns pj1···jn ,

namely the 2× 2 minors of the n matrices Mi in (5).
We already saw several examples in the previous section. For three-person

games with binary choices (Example 2.3), the Spohn variety VX is a fourfold in
P7. For the centipede game (Example 2.4), the Spohn variety VX is a surface
in P8. We next consider a 2× 2 game.

Example 3.1 (Bach or Stravinsky). For the game in Example 2.1, we consider
the matrices

M1 =

[
p11 + p12 3p11
p21 + p22 2p22

]
and M2 =

[
p11 + p21 2p11
p12 + p22 3p22

]
.

The ideal generated by det(M1) and det(M2) is the intersection of three prime
ideals:

⟨p11, p22⟩ ∩ ⟨2p12+3p21, 3p11p21+p11p22+3p21p22⟩ ∩ ⟨2p12−3p21−p22, p11−p22⟩.

This shows that the Spohn variety VX is the reduced union of three curves, two
lines and one conic, shown in Figure 1. Only one component, namely a line,
intersects the open tetrahedron ∆. This game has two pure Nash equilibria
(1, 0, 0, 0), (0, 0, 0, 1) and one totally mixed Nash equilibrium ( 6

25 ,
9
25 ,

4
25 ,

6
25 ).

The latter is the positive point of rank one on the curve VX .

The curve in Figure 1 has multiple components because the payoff matrices
in (2) are very special. If we perturb the matrix entries, then the resulting
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SB

BB

BS
SS

Figure 1: The Spohn variety is a reducible curve of degree four in P3. It has
three components but only one passes through the tetrahedron. The figure also
shows the Segre surface in the tetrahedron. The curve and the surface meet in
one point, namely the totally mixed Nash equilibrium.

curve VX will be smooth and irreducible in P3. As we shall see, the analogous
result holds for games of arbitrary size.

We now present our first result in this section. It summarizes the essential
geometric features of Spohn varieties, and it shows how these varieties are
related to the Nash equilibria.

Theorem 3.2. If the payoff tables X are generic then the Spohn variety VX is
irreducible of codimension d1 + d2 + · · · + dn − n and degree d1d2 . . . dn. The
intersection of VX with the Segre variety in the open simplex ∆ is precisely the
set of totally mixed Nash equilibria for X.

Proof. Consider a generalized column of the di × 2 matrix Mi, i.e. a linear
combination of the columns of Mi with coefficients λ1, λ2 ∈ R that are not
both zero. Since the payoff table X(i) is generic, every generalized column of Mi

consists of linearly independent linear forms. We know from [7, Theorem 6.4]
that the ideal generated by the 2 × 2 minors of Mi is prime of codimension
di−1. Moreover, by [5, Proposition 2.15], the degree of this linear determinantal
variety is

(
2+di−1−1

di−1

)
= di. Since the tensor X(i) is generic and its entries
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occur only in Mi, the intersection of the n varieties is transversal. Now, [18,
Theorem 1.24] and Bézout’s Theorem for dimensionally transverse intersections
yield the first assertion.

The second assertion says that the totally mixed Nash equilibria are the

dependency equilibria of rank one. Set pj1...jn = π
(1)
j1
· · ·π(n)

jn
with π

(i)
k > 0 for

k ∈ [di] and i ∈ [n]. Suppose (1) holds. The dependency equilibria of rank one
are defined by the 2× 2 minors of the matrix

1
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···1···jnπ

(1)
j1
· · ·π(i−1)

ji−1
π
(i+1)
ji+1

· · ·π(n)
jn

...
...

1
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···di···jnπ

(1)
j1
· · ·π(i−1)

ji−1
π
(i+1)
ji+1

· · ·π(n)
jn

.
We subtract the first row from the kth row for all k ∈ {2, . . . , di}. The 2 × 2
minors of the resulting matrix are the pairwise differences of the entries in the
second column. These differences are precisely the di− 1 multilinear equations
exhibited in [21, Theorem 6.6].

The Spohn variety VX is a high-dimensional projective variety associated
with a game X. Each point P on VX is a tensor. We say that P is a Nash
point if that tensor has rank one. The positive Nash points in VX ∩∆ are the
totally mixed Nash equilibria. Their number is given by the formula in [21,
Section 6.4], namely it expressed as the mixed volume of certain products of
simplices. That mixed volume is zero when the tensor format is too unbalanced.

Remark 3.3. A generic game X has no Nash points unless

di ≤ d1 + · · ·+ di−1 + di+1 + · · ·+ dn − n + 2 for i = 1, 2, . . . , n. (6)

Experts on tensor geometry recognize these inequalities from a result by
Gel’fand, Kapranov and Zelevinsky on hyperdeterminants [9, Theorem 14.I.1.3].
Namely, the existence of Nash points for a given tensor format is equivalent to
the hyperdeterminant being a hypersurface. In particular, two-person games
have Nash points if and only if the matrix is square (d1 = d2).

We continue to assume that the payoff tables are generic. Then the following
result holds.

Theorem 3.4. If n = d1 = d2 = 2 then the Spohn variety VX is an elliptic
curve. In all other cases, the Spohn variety VX is rational, represented by a
map onto (P1)n with linear fibers.

Proof. We shall provide a parametrization of VX . Along the way, we shall see
why the case n = d1 = d2 = 2 is special. The entries of these n matrices Mi

in (5) are linear forms in the entries pj1···jn of the tensor P . Their coefficients
depend linearly on the entries of X.
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Consider the affine line whose coordinate xi = PX(i) is the expected
payoff (3) for player i. We embed this into a projective line P1 by setting
zi = (xi : −1). We call (P1)n the algebraic payoff space. Its homogeneous
coordinates are z = (z1, z2, . . . , zn). The algebraic payoff map is the following
rational map from the Spohn variety to the algebraic payoff space:

πX : VX 99K (P1)n , P 7→
(

ker(M1(P )) , ker(M2(P )) , . . . , ker(Mn(P ))
)
. (7)

The name “payoff map” is justified as follows. Suppose that P is a depen-
dency equilibrium, so P is a point in the set VX ∩∆. The expected payoff xi

for the ith player satisfies

Mi(P ) ·
[

xi

−1

]
= 0 for i = 1, 2, . . . , n. (8)

To see this, augment the rank one matrix Mi(P ) by its row of column sums,
like in (18). Equation (8) implies πX(P ) =

(
(x1 :−1), . . . , (xn :−1)

)
. We now

write (8) on (P1)n as follows:

Mi(P ) · zTi = KX,i(zi) · P, (9)

where the tensor P is vectorized as column. The matrix KX,i(zi) has di rows
and d1d2 · · · dn columns. Its entries are binary forms in zi whose coefficients
depend on the entries of X(i).

Definition 3.5. The Konstanz matrix KX(z) of the game X is a matrix with∑n
i=1 di rows and d1d2 · · · dn columns. It is obtained by stacking the matrices

KX,1(z1), . . . ,KX,n(zn) on top of each other. When working on the affine chart
zi = (xi : −1), we write KX(x).

The Konstanz matrix KX(z) has linearly independent rows when z is generic.
Therefore, its kernel is a vector space of dimension D =

∏n
i=1 di−

∑n
i=1 di. We

regard ker(KX(z)) as a linear subspace of dimension D − 1 in the projective
space P(V ). Our construction implies that the Spohn variety is the union of
these linear spaces for z ∈ (P1)n:

VX =
{
P ∈ P(V ) : KX(z) · P = 0 for some z ∈ (P1)n

}
. (10)

At this point we must distinguish the cases D ≥ 1 and D = 0. First, let
D ≥ 1. Then the map πX is dominant, and its generic fiber is a linear space
PD−1. This map furnishes an explicit birational isomorphism between the
Spohn variety VX and PD−1×(P1)n. The representation (10) gives the inverse,
hence the desired rational parametrization of VX . This confirms the dimension
formula in Theorem 3.2, which is here rewritten as dim(VX) = D − 1 + n.

Finally, let D = 0. This implies n = d1 = d2 = 2, so the Konstanz matrix
has format 4× 4. It is shown in (19). The determinant of KX(z) is a curve of
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degree (2, 2) in P1×P1, so it is an elliptic curve. The map πX gives a birational
isomorphism from VX onto this curve. This elliptic curve is studied in detail
in Section 4, and we will revisit it in Example 5.2.

The case D = 1 is also of special interest, because here πX is a birational
isomorphism.

Example 3.6 (Del Pezzo surfaces of degree two). Let n = 2, d1 = 3, d2 = 2.
Up to relabelling, this is the only case satisfying D = 1. The Konstanz matrix
equals

KX(x) =


x1 − a11 x1 − a12 0 0 0 0

0 0 x1 − a21 x1 − a22 0 0
0 0 0 0 x1 − a31 x1 − a32

x2 − b11 0 x2 − b21 0 x2 − b31 0
0 x2 − b12 0 x2 − b22 0 x2 − b32

 . (11)

Here (x1, x2) are coordinates on an affine chart C2 of P1×P1. The rank of (11)
drops from 5 to 4 at precisely six points in P1×P1. Five of these lie in C2. We
obtain a rational map

P1 × P1 99K P5 , (x1, x2) 7→ ker(KX(x)).

This blows up six points, and its image is the Spohn surface VX . The inverse
map is πX . We conclude that VX is the blow-up of P1×P1 at six general points.
When seen through the lens of algebraic geometry [16, Example 1.9], this is a
del Pezzo surface of degree two.

Konstanz matrices for three other tensor formats are shown in Examples
5.2, 5.6 and 5.7.

4. Elliptic Curves

In this section we take a closer look at 2 × 2 games, with payoff matrices
X(1) = (aij) and X(2) = (bij). The Spohn variety VX is the elliptic curve in
P3 defined by the two quadrics

f1 = det(M1) = (a21 − a11)p11p21 + (a22 − a11)p11p22

+ (a21 − a12)p12p21 + (a22 − a12)p12p22,

f2 = det(M2) = (b12 − b11)p11p12 + (b22 − b11)p11p22

+ (b12 − b21)p12p21 + (b22 − b21)p21p22.

This curve passes through the coordinate points E11, E12, E21, E22 in P3. It
is smooth and irreducible when aij and bij are generic. A planar model of



GEOMETRY OF DEPENDENCY EQUILIBRIA (13 of 26)

this elliptic curve is obtained by eliminating p22 from f1 and f2. Setting
p11 = x, p12 = y, p21 = z, we find the ternary cubic

(a11 − a22)(b11 − b12)x2y + (a11 − a21)(b22 − b11)x2z

+ (a12 − a22)(b11 − b12)xy2 + (a11 − a21)(b22 − b21)xz2

+ (a12 − a22)(b21 − b12)y2z + (a12 − a21)(b22 − b21)yz2

+
(
(a12 − a21)(b22 − b11) + (a11 − a22)(b21 − b12)

)
xyz.

(12)

A ternary cubic of the form (12) is called a Spohn cubic. This passes through
the three coordinate points in P2. But there are other restrictions. To see this,
we consider all cubics

c1x
2y + c2x

2z + c3xy
2 + c4xz

2 + c5y
2z + c6yz

2 + c7xyz. (13)

The set of such cubics is a projective space P6 with homogeneous coordinates
c1, . . . , c7.

Proposition 4.1. The Spohn cubics (12) form the 4-dimensional variety in P6

given by c1+c2−c3−c4+c5+c6−c7 = c2c4c5−c3c4c5−c2c3c6+c4c5c6+c3c4c7−
c4c5c7 − c24c5 + c4c

2
5 = 0. This is a cubic hypersurface inside a hyperplane P5.

Its singular locus consists of nine points.

Proof. This is obtained by a direct computation using the software Macaulay2

[10].

While the general Spohn cubic is smooth, it can be singular for special
payoff matrices. To identify these, we compute the discriminant D of the
ternary cubic (13). This discriminant is an irreducible polynomial of degree 12
in seven unknowns. It is a sum of 127 terms:

D = 16c51c
2
4c

2
5c

3
6+16c41c

2
2c

2
5c

4
6−24c41c2c

2
4c

3
5c

2
6+· · ·+c22c

2
3c

2
4c

2
5c

4
7−c22c23c4c5c6c57.

We now plug in the Spohn cubic (12). The resulting discriminant is a polyno-
mial of degree 24 in the eight unknowns aij , bij . It factors into nine irreducible
factors, namely

D(a, b) = (a11 − a12)2(a11 − a21)2(a12 − a22)2(a21 − a22)2 ·
· (b11 − b12)2(b11 − b21)2(b12 − b22)2(b21 − b22)2E(a, b).

The last factor E(a, b) has 587 terms of degree 8. Nonvanishing of the discrim-
inant D(a, b) ensures that the Spohn cubic (12) is smooth in P2, and hence so
is the curve VX in P3.

We have argued that the general Spohn curve VX is an elliptic curve. It is
thus natural to express its j-invariant, which identifies the isomorphism type,
in terms of the payoff matrices.
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Proposition 4.2. The j-invariant of the Spohn cubic equals I(a, b)3/D(a, b),
where I(a, b) is an irreducible polynomial of degree 8 with 633 terms in the
entries of the two payoff tables.

Proof. For any ternary cubic, the j-invariant is the cube of the Aronhold in-
variant divided by the discriminant; see [12, Example 11.12]. Here, I(a, b) is
the Aronhold invariant of (12).

The dependency equilibria of our game are the points in VX ∩∆. To better
understand this semialgebraic set, we identify some landmarks on the curve
VX . The first such landmark is the Nash point, which is the unique rank one
matrix in P3 lying on VX :

N =

[
b22 − b21
b11 − b12

] [
a22 − a12 a11 − a21

]
. (14)

Suppose that the following holds and the two signs are non-zero:

sign(a11−a21) = sign(a22−a12) and sign(b11− b12) = sign(b22− b21). (15)

Then we can scale the matrix N in (14) by
(
(a11− a21 + a22− a12)(b11− b12 +

b22 − b21)
)−1

to land in ∆, and the result is the unique totally mixed Nash
equilibrium of the game.

Next recall that the four coordinate points Eij lie on the curve VX . Their
tangent lines span(Dij , Eij) are specified by their intersection points with the
opposite coordinate planes:

D11 =

[
0 (a11−a21)(b22−b11)

(a22−a11)(b11−b12) (a11−a21)(b11−b12)

]
,

D12 =

[
(a22−a12)(b12−b21) 0
(a22−a12)(b11−b12) (a12−a21)(b11−b12)

]
,

D21 =

[
(a21−a12)(b21−b22) (a11−a21)(b21−b22)

0 (a11−a21)(b12−b21)

]
,

D22 =

[
(a22−a12)(b21−b22) (a11−a22)(b21−b22)
(a12−a22)(b11−b22) 0

]
.

And, finally, our curve intersects each coordinate plane in a unique non-coor-
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dinate point:

F11 =

[
0 (a12−a21)(b21−b22)

(a12−a22)(b21−b12) (a12−a21)(b12−b21)

]
,

F12 =

[
(a11−a22)(b21−b22) 0
(a11−a22)(b22−b11) (a11−a21)(b11−b22)

]
,

F21 =

[
(a12−a22)(b11−b22) (a11−a22)(b22−b11)

0 (a11−a22)(b11−b12)

]
,

F22 =

[
(a12−a21)(b12−b21) (a11−a21)(b21−b12)
(a12−a21)(b11−b12) 0

]
.

We now show that dependency equilibria may exist even if there are no Nash
equilibria in ∆:

Example 4.3 (Disconnected equilibria). Consider the game X given by the
payoff matrices[

a11 a12
a21 a22

]
=

[
2 0
4 1

]
and

[
b11 b12
b21 b22

]
=

[
2 1
4 3

]
,

with Nash point N =

[
−1 2

1 −2

]
.

Here, VX is smooth and irreducible.
This elliptic curve has j-invariant −(731033)/(283247). The real curve

VX ∩ ∆ has two connected components, both disjoint from the Segre surface
⟨p11p22 − p12p21⟩. One arc connects E11 and F21, and the other arc connects
E22 and F12.

The combinatorics of the curve VX ∩∆ is given by the signs of the entries
in the nine matrices N , Dij and Fij . These signs are determined by the respec-
tive orderings of a11, a12, a21, a22 and b11, b12, b21, b22, assuming that these are
quadruples of distinct numbers. We derive the following theorem by analyzing
all (4!)2 = 576 possibilities for these pairs of orderings.

Theorem 4.4. For a generic 2× 2 game X, the curve of dependency equilibria
VX ∩ ∆ has either 0, 1 or 2 connected components, each of which is an arc
between two boundary points. If (15) holds then there is exactly one EE, EF
or FF arc. If (15) does not hold then all components are EF arcs, and their
number can be 0, 1 or 2.

5. The Payoff Region

The n payoff tensors X(i) define a canonical linear map from tensor space to
payoff space:

πX : V → Rn , P 7→
(
PX(1), PX(2), . . . , PX(n)

)
. (16)
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The ith coordinate PX(i) is the expected payoff for player i, given by the
formula in (3). We call πX the payoff map. By (8), this is the lifting to V of
the algebraic payoff map in (7).

The image of the probability simplex ∆ is a convex polytope πX(∆) that
is usually full-dimensional in Rn. This polytope is known as the cooperative
payoff region of the game X. Its points are all possible expected payoff vectors
for the game in question. Tu and Jiang [23] investigate the semialgebraic subset
that is obtained by projecting all rank one tensors in ∆. This is a nonconvex
subset of πX(∆), known as the noncooperative payoff region.

For 2× 2 games, this region is the image of the Segre surface under a linear
projection into the plane. Our readers might like to compare [23, Figure 1]
with the surface shown in Figure 1.

We are interested in the subset of payoff vectors that arise from dependency
equilibria:

PX := πX(VX ∩∆) ⊂ πX(∆) ⊂ Rn.

The set PX is semialgebraic, by Tarski’s Theorem on Quantifier Elimination.
The authors of [23] would probably call PX the dependency payoff region of
the game X. In the present paper, we just use the term payoff region for PX ,
since our focus is on dependency equilibria.

We begin by noting that, at every dependency equilibrium of X, the ex-
pected payoffs agree with the various conditional expected payoffs. We can
thus use conditional expectations in (16) to define the payoff region PX . This
is the content of the following lemma.

Lemma 5.1. Let P be a tensor in V with p++···+ = 1 that represents a point in
VX . Then

PX(i) =

d1∑
j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn
p+···+k+···+

,

for all i ∈ [n] and k ∈ [di]. (17)

Proof. The di × 2 matrix Mi in (5) has rank one, by definition of VX . We
replace the first row by the sum of all rows. This transforms Mi into the
following matrix whose rank is one:

1 PX(i)

p+···+2+···+
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···2···jnpj1···2···jn

...
...

p+···+di+···+
∑d1

j1=1 · · ·
∑̂di

ji=1 · · ·
∑dn

jn=1 X
(i)
j1···di···jnpj1···di···jn

. (18)

The 2 × 2 minor given by the first row and the kth row is zero; see also (8).
This implies the desired identity (17) for k ≥ 2. The case k = 1 is obtained by
swapping rows in Mi.
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(a) (b)

Figure 2: The payoff region for each of these 2× 2 games is the blue arc in the
yellow triangle.

Example 5.2 (2×2 games). The polygon πX(∆) is the convex hull in R2 of the
points (a11, b11), (a12, b12), (a21, b21) and (a22, b22), so it is typically a triangle
or a quadrilateral. This polygon contains the payoff curve PX , which is the
image of the curve VX ∩ ∆ under the payoff map πX . This is a plane cubic,
defined by the determinant of the Konstanz matrix

KX(x) =


x1 − a11 x1 − a12 0 0

0 0 x1 − a21 x1 − a22
x2 − b11 0 x2 − b21 0

0 x2 − b12 0 x2 − b22

 . (19)

For each point x on this curve, the kernel of (19) gives the unique matrix P
satisfying πX(P ) = x. The payoff region PX is the subset of points x on the
curve for which P > 0.

Figure 2a shows the payoff region for the Bach or Stravinsky game in Exam-
ple 2.1. It is the blue arc inside the yellow triangle πX(∆) = conv{(0, 0), (2, 3),
(3, 2)}. This picture is the image of Figure 1 under the payoff map πX . Fig-
ure 2b shows a perturbed version, with a11 = 3.3 and b22 = 3.2, where the
Spohn curve is irreducible.

We now consider cases other than 2× 2 games, so that dim(VX) ≥ n holds.
We further assume that X is generic and that VX ∩ ∆ is non-empty. Since
the algebraic payoff map πX in (7) is dominant, the payoff region PX is a
full-dimensional semialgebraic subset of Rn.

Example 5.3 (3 × 2 games). The following two payoff matrices exhibit the
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(a11, b11)

(a12, b12)

(a22, b22)

(a21, b21)

(a31, b31)

(a32, b32)

Figure 3: The payoff region PX for the 3× 2 game in Example 5.3 consists of
two curvy triangles, inside the pentagon πX(∆). Its boundary is given by two
lines and two cubics.

generic behavior:

X(1) =

[
a11 a12

a21 a22

a31 a32

]
=

[
0 30
5 25
13 24

]
and X(2) =

[
b11 b12
b21 b22
b31 b32

]
=

[
6 42
21 12
36 0

]
. (20)

The polygon πX(∆) is the pentagon whose vertices are (aij , bij) with {i, j} ̸=
{2, 2}. The payoff region PX = πX(VX ∩∆) is shaded in blue in Figure 3. The
algebraic boundary of PX is given by the two cubics 9x2

1x2 − 2x1x
2
2 − 162x2

1 −
189x1x2 + 30x2

2 + 3906x1 − 540x2 + 2160 and 72x2
1x2 − 19x1x

2
2 − 1512x2

1 −
1614x1x2 + 390x2

2 + 36288x1 − 2340x2, plus the two vertical lines x1 − 13 and
x1 − 24. The two curvy triangles that form PX meet at the special point(

22.9902299164, 16.2987107576
)
. (21)

Figure 3 illustrates the general behavior for 3×2 games. We can understand
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this via the del Pezzo geometry in Example 3.6. The Spohn surface VX is the
blow-up of P1 × P1 at six points. One of these six is the special point (21).
The Konstanz matrix KX(x) in (11) has rank four at this point, so there is
a line segment in VX ∩ ∆ that maps to (21) under πX . At all nearby points
x ∈ R2, the rank of KX(x) is five. Here, πX gives a bijection between VX ∩∆
and the payoff region PX . The boundary curves of PX are defined by maximal
minors of KX(x). Each minor is a 5× 5-determinant, but it has degree four as
a polynomial in x = (x1, x2). That quartic factors into a linear factor x1 − aij
times a cubic in (x1, x2).

We now work towards the main result of this section, generalizing Exam-
ple 5.3 to arbitrary tensor formats. The key players are the maximal minors of
the Konstanz matrix KX(x).

Lemma 5.4. Given any game X, each of the
(

d1d2···dn

d1+d2+···+dn

)
maximal minors of

the Konstanz matrix KX(x) is a polynomial of degree at most
∑n

i=1 di − n + 1
in the unknowns x1, . . . , xn.

Proof. The highest degree seen in the maximal minors is the rank of KX(x)
after setting all entries in the payoff tables X(i) to zero. After rescaling the
rows, the columns of this matrix are homogeneous coordinates for the vertices
of the product of standard simplices ∆d1−1 × · · · ×∆dn−1. The dimension of
this polytope is one less than the matrix rank.

Suppose now that X is fixed and generic. We consider the stratification of
the payoff space Rn defined by the signs taken on by the maximal minors of
KX(x). We call this the oriented matroid stratification of the game X. Indeed,
it is the restriction to Rn of the usual oriented matroid stratification (cf. [13])
of the space of matrices with

∑n
i=1 di rows and

∏n
i=1 di columns. The maximal

minors of KX(x) that are nonzero polynomials give the bases of a matroid.
The full-dimensional strata correspond to orientations of that matroid. The
open stratum containing a given point x ∈ Rn consists of all points x′ ∈ Rn

such that corresponding nonzero maximal minors of KX(x) and KX(x′) have
the same sign +1 or −1.

The oriented matroid strata in Rn are semialgebraic. Their boundaries are
delineated by the maximal minors of KX(x). These minors are the polynomials
in Lemma 5.4. The oriented matroid strata can be disconnected (cf. [13]). This
happens in Examples 4.3 and 5.3. Note that the union of the two open curvy
triangles in Figure 3 is a single chamber (open stratum) for the game X given
in (20). It is given by prescribing a fixed sign +1 or −1 for each of the six
maximal minors of (11). Interestingly, PX itself is connected in this case. The
point (21) lies in PX because its fiber under πX is a line that meets the interior
of ∆.
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We now present our characterization of the payoff region PX of a generic
game X. By the algebraic boundary of PX we mean the Zariski closure of its
topological boundary.

Theorem 5.5. The payoff region PX for a generic game X is a union of ori-
ented matroid strata in Rn that are given by the signs of the maximal minors
of the Konstanz matrix KX(x). Its algebraic boundary is a union of irreducible
hypersurfaces of degree at most

∑n
i=1 di − n + 1.

Proof. For fixed x ∈ Rn, the set of probability tensors P with expected payoffs
x is equal to

kernel
(
KX(x)

)
∩ ∆. (22)

This is a convex polytope which is either empty or has the full dimension∏n
i=1 di −

∑n
i=1 di − 1. The payoff region PX is the set of all x ∈ Rn such

that this polytope is nonempty. We know from oriented matroid theory [2,
Chapter 9] that the combinatorial type of the polytope (22) is determined by
the oriented matroid of the matrix KX(x). Therefore, the combinatorial type is
constant as x ranges over a fixed oriented matroid stratum in Rn. In particular,
whether or not (22) is empty depends only on the oriented matroid of KX(x).
Namely, it is non-empty if and only if every column index lies in a positive
covector of that oriented matroid. This proves the first sentence. The second
sentence follows from Lemma 5.4.

One of the reasons for our interest in the algebraic boundary is that it helps
in characterizing dependency equilibria P that are Pareto optimal. We thus
address a question raised in [20, Section 4]. Recall that P is Pareto optimal if
its image x = πX(P ) in PX satisfies (x + Rn

≥0) ∩ PX = {x}. This condition
implies that x lies in the boundary of PX , hence one of the maximal minors of
KX(x) must vanish. For instance, for the 3×2 game in Example 5.3, the Pareto
optimal equilibria correspond to the points on the upper-right boundaries of
the two curvy triangles in Figure 3. At such points x, the product of our two
cubics vanishes.

We close this section by discussing Theorem 5.5 for two cases larger than
Example 5.3.

Example 5.6 (3×3 games). Let n = 2 and d1 = d2 = 3. The Konstanz matrix
KX(x) equals
x1−a11 x1−a12 x1−a13 0 0 0 0 0 0

0 0 0 x1−a21 x1−a22 x1−a23 0 0 0
0 0 0 0 0 0 x1−a31 x1−a32 x1−a33

x2−b11 0 0 x2−b21 0 0 x2−b31 0 0
0 x2−b12 0 0 x2−b22 0 0 x2−b32 0
0 0 x2−b13 0 0 x2−b23 0 0 x2−b33

.
Among the

(
9
6

)
= 84 maximal minors of this 6×9 matrix, six are identically zero.

Six others are irreducible polynomials of degree five in x = (x1, x2). Each of the



GEOMETRY OF DEPENDENCY EQUILIBRIA (21 of 26)

remaining 72 minors is an irreducible cubic times a product (x1−aij)(x2−bkl).
The resulting arrangement of lines, cubics and quintics divides the plane R2

into open chambers. We examine the chambers that lie inside the polygon
πX(∆). The rank 6 oriented matroid of KX(x), given by 78 signed bases, is
constant on each chamber. The payoff region is a union of some of them.

Example 5.7 (2× 2× 2 games). The game played by Adam, Bob and Carl in
Example 2.3 has the Konstanz matrix KX(x) as:
x1−a111 x1−a112 x1−a121 x1−a122 0 0 0 0

0 0 0 0 x1−a211 x1−a212 x1−a221 x1−a222
x2−b111 x2−b112 0 0 x2−b211 x2−b212 0 0

0 0 x2−b121 x2−b122 0 0 x2−b221 x2−b222
x3−c111 0 x3−c121 0 x3−c211 0 x3−c221 0

0 x3−c112 0 x3−c122 0 x3−c212 0 x3−c222

.
All

(
8
6

)
= 28 maximal minors are irreducible polynomials of degree four in

x = (x1, x2, x3). Each of them defines a smooth quartic surface in C3 that has
three isolated singularities at infinity in P3. This data specifies an arrangement
of 28 K3 surfaces in P3. We examine its chambers inside the polytope πX(∆),
which has ≤ 8 vertices. The payoff region PX is the union of a subset of these
chambers, so its algebraic boundary consists of quartic surfaces.

6. Conditional Independence and Bayesian Networks

One drawback of dependency equilibria is that they are abundant. Indeed, if
the Spohn variety VX intersects the open simplex ∆, then the semialgebraic set
VX ∩∆ of all dependency equilibria has dimension

∏n
i=1 di −

∑n
j=1 dj + n− 1.

This follows from Theorem 3.2. To mitigate this drawback, we restrict to
intersections of VX with statistical models in ∆. Natural candidates are the
conditional independence models in [21, Section 8.1] and [22, Section 4.1].

We view the n players as random variables with state spaces [d1], . . . , [dn].
A point P in ∆ is a joint probability distribution. Let C be any collection of
conditional independence (CI) statements on [n]. These statements have the
form A ⊥⊥ B |C, where A,B,C are pairwise disjoint subsets of [n]. Each CI
statement translates into a system of homogeneous quadratic constraints in the
tensor entries pj1j2···jn . This translation is explained in [21, Proposition 8.1]
and [22, Proposition 4.1.6]. We write MC for the projective variety in P(V )
that is defined by these quadrics, arising from all statements A⊥⊥B |C in C.
Here we assume that components lying in the hyperplanes {pj1j2···jn = 0} and
{p++···+ = 0} have been removed.

Suppose X is any game in normal form, and C is any collection of CI
statements. We define the Spohn CI variety to be the intersection of the Spohn
variety with the CI model:

VX,C = VX ∩ MC . (23)
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We again assume that components lying in the special hyperplanes above have
been removed. The intersection VX,C ∩ ∆ with the simplex ∆ is the set of
all CI equilibria of the game X. This is a semialgebraic set which is a natural
extension of the set of Nash equilibria of X. In what follows we assume that
all random variables are binary, i.e. d1 = d2 = · · · = dn = 2.

Example 6.1 (Nash points). Let C be the set of all CI statements on [n].
The model MC is the Segre variety of rank one tensors, and the Spohn CI
variety (23) is the set of all Nash points in the Spohn variety VX . By [21,
Corollary 6.9], this variety is finite, and its cardinality is the number of de-
rangements of [n], which is 1, 2, 9, 44, 265, . . . for n = 1, 2, 3, 4, 5, . . .

For n ≥ 3, the Nash points span a linear subspace of codimension 2n in
P(V ) ≃ P2n−1. To see this, we note that the ith multilinear equation in [21,
Theorem 6.6] has degree n−1 and it misses the ith unknown π(i). Multiplying
that equation by π(i) and by 1 − π(i) gives two linear constraints on P(V ) for
each i. These 2n linear forms are linearly independent.

Example 6.2 (n = 3, d1 = d2 = d3 = 2). Consider games X for three players
with binary choices. The Spohn variety VX is a complete intersection of dimen-
sion 4 and degree 8 in P7. It is defined by imposing rank one constraints on the
three matrices Mi in Example 2.3. It is parametrized by the lines ker(KX(x))
where x ∈ C3 and KX(x) is the matrix in Example 5.7.

We examine the Spohn CI varieties given by three models MC in [21, Sec-
tion 8.1]. In each case, the intersection (23) is transversal in ∆, and we find
that VX,C is irreducible in P7.

(a) Let C = { 1⊥⊥2 | 3} as in [21, eqn (8.3)]. The CI modelMC has codimen-
sion 2 and degree 4, and the Spohn CI variety VX,C is a surface of degree
28 in P7. We find that the prime ideal of VX,C is minimally generated by
five quadrics and three quartics.

(b) Let C = { 2⊥⊥3 } as in [21, eqn (8.4)], so here C = ∅. The CI model MC
is the hypersurface, defined by the quadric p+11p+22 − p+12p+21. The
Spohn CI variety VX,C is a threefold of degree 10 in P7. Its prime ideal
is minimally generated by six quadrics.

(c) Let C = { 1⊥⊥23 } as in [21, eqn (8.5)]. HereMC ≃ P1×P3 is defined by
the 2 × 2 minors of a 2 × 4 matrix obtained by flattening the tensor P .
The Spohn CI variety VX,C is a curve of degree 8 and genus 3. It lies in a
P5 inside P7. Its prime ideal is generated by two linear forms and seven
quadrics. These will be explained after Example 6.5.

The computation of the prime ideals is non-trivial. One starts with the ideal
generated by the natural quadrics defining (23), and one then saturates that

ideal by p+++ ·
∏2

i,j,k=1 pijk. We performed these computations with the com-
puter algebra system Macaulay2 [10].
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Of special interest are graphical models, such as Markov random fields and
Bayesian networks. These allow us to describe the nature of the desired equi-
libria by means of a graph whose nodes are the n players. This is different from
the setting of graphical games in [21, Section 6.5], where the graph structure
imposes zero patterns in the payoff tables X(i).

Inspired by [19, Section 3], we now focus on Bayesian networks, where the
CI statements C describe the global Markov property of an acyclic directed
graph with vertex set [n]. These CI statements and their ideals are explained
in [8, Section 3]. In Macaulay2, they can be computed using the commands
globalMarkov and conditionalIndependenceIdeal in the GraphicalModels

package. Sometimes, it is preferable to work with the prime ideal ker(Φ) in [8,
Theorem 8]. From this we obtain the ideal of the Spohn CI variety VX,C by
saturation, as described at the end of Example 6.2. For all the models we were
able to compute, this ideal turned out to be of the expected codimension. In
each case, except for the network with no edges, the variety VX,C is irreducible.
We conjecture that these facts hold in general.

Conjecture 6.3. For every Bayesian network C on n binary random variables,
the Spohn CI variety VX,C has the expected codimension n inside the modelMC
in P2n−1. The variety VX,C is positive-dimensional and irreducible whenever
the network has at least one edge.

Proposition 6.4. Conjecture 6.3 holds for n ≤ 3.

Proof. For the network with no edges, MC is the Segre variety (P1)n. The
dimension statement holds, but the Spohn CI variety is reducible, as seen in
Example 6.1. We thus examine all Bayesian networks with at least one edge.
These satisfy dim(MC) ≥ n + 1. The case n ≤ 2 being trivial, we assume that
n = 3. If the network is a complete directed acyclic graph, then the ideal ofMC
is the zero ideal and VX,C = VX . There are four networks left to be considered.
By [8, Proposition 5], they are precisely the three models in Example 6.2:

(a) 1← 3→ 2 or 2→ 3→ 1 (b) 3→ 1← 2 (c) 3→ 2 1.

This means that the proof was already given by our analysis in Example 6.2.

Consider the next case n = 4. Up to relabeling, there are 29 Bayesian
networks C with at least one edge. They are listed in [8, Theorem 11], along
with a detailed analysis of the varietyMC in each case. We embarked towards
a proof of Conjecture 6.3, by examining all 29 models. But the computations
are quite challenging, and we leave them for the future.

Example 6.5. Consider the network #15 in [8, Table 1]. The variety MC
has dimension 9 and degree 48. An explicit parametrization ϕ is shown in [21,
page 109]. We can represent VX,C by substituting this parametrization into the
equations det(Mi) = 0 for i = 1, 2, 3, 4.
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The smallest irreducible variety in Conjecture 6.3 arises from the Bayesian
network C with only one edge, here taken to be n → n − 1. The Spohn CI
variety VX,C contains all the Nash points in Example 6.1. The rest of this paper
is dedicated to this scenario. It is important for applications of dependency
equilibria because of its proximity to Nash equilibria.

For our one-edge network,MC is the Segre variety (P1)n−2×P3 embedded
into P2n−1. Hence MC has dimension n + 1. The Spohn CI variety VX,C is a
curve. This curve lies in a linear subspace of codimension 2n− 4 in P2n−1. In
addition to the quadrics that define the Segre variety MC , the ideal of VX,C
contains 2n − 4 linear forms and 2n−1 quadrics that depend on the game X.
The determinants of the matrices M1,M2, . . . ,Mn−2 give rise to two linear
forms each. The determinants of the matrices Mn−1 or Mn give rise to 2n−2

quadrics.
For example, if n = 3 then the variety MC ≃ P1 × P3 has the parametric

representation
pijk = σiτjk for 1 ≤ i, j, k ≤ 2.

The prime ideal of MC is generated by the six 2× 2 minors of the matrix[
p111 p112 p121 p122
p211 p212 p221 p222

]
. (24)

After removing common factors from rows and columns, the three matrices in
Example 2.3 are

M1 =

[
1 a111τ11 + a112τ12 + a121τ21 + a122τ22
1 a211τ11 + a212τ12 + a221τ21 + a222τ22

]
,

M2 =

[
τ11 + τ12 b111σ1τ11 + b112σ1τ12 + b211σ2τ11 + b212σ2τ12
τ21 + τ22 b121σ1τ21 + b122σ1τ22 + b221σ2τ21 + b222σ2τ22

]
,

M3 =

[
τ11 + τ21 c111σ1τ11 + c121σ1τ21 + c211σ2τ11 + c221σ2τ21
τ12 + τ22 c112σ1τ12 + c122σ1τ22 + c212σ2τ12 + c222σ2τ22

]
.

By multiplying det(M1) with σ1 and with σ2, we obtain two linear forms in
p111, p112, . . . , p222 that vanish on VX . Likewise, by multiplying det(M2) and
det(M3) with σ1 and with σ2, we obtain four quadratic forms in p111, p112, . . . ,
p222 that vanish on VX . Three of the six minors of (24) are linearly independent
modulo the linear forms. This explains the 2 + 7 generators of the prime ideal
of the curve VX,C , which has genus 3 and degree 8 in P5 ⊂ P7.

Let now n = 4. The one-edge model MC is the Segre variety P1 × P1 × P3

in P15. Its prime ideal is generated by 46 binomial quadrics. Of these, 32 are
linearly independent modulo the four linear forms that arise from the matrices
M1 and M2 as above. Similarly, M3 and M4 contribute eight quadrics. We
conclude that VX,C is an curve of genus 23 and degree 30 in P11 ⊂ P15, and its
prime ideal is minimally generated by 4 linear forms and 40 quadrics.
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In the recent work [15] it is proven, for generic games, that the Spohn CI
curve for the one-edge model is an irreducible complete intersection curve in
the Segre variety (P1)n−2 × P3. Moreover the authors give an explicit formula
for its degree and genus. In the spirit of Datta’s universality theorem for Nash
equilibria, they show that any affine real algebraic variety S ⊆ Rm defined by
k polynomials with k < m can be represented as the Spohn CI variety of an
n-person game for one-edge Bayesian networks on n binary random variables.
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[13] N. E. Mnëv, The universality theorem on the oriented matroid stratification
of the space of real matrices, Discrete and Computational Geometry: Papers
from the DIMACS Special Year (J. E. Goodman et al., ed.), DIMACS Series in
Discrete Math. Theoret. Comput. Sci., vol. 6, DIMACS/AMS, 1990, pp. 237–
244.

[14] R. Nau, S.G. Canovas, and P. Hansen, On the geometry of nash equilibria
and correlated equilibria, Internat. J. Games Theory 32 (2004), 443—453.

[15] I. Portakal and J. Sendra–Arranz, Nash conditional independence curve,
accepted in MEGA Effective Methods in Algebraic Geometry, Kraków, 2022.

[16] S. Rocco and K. Ranestad, On surfaces in P6 with no trisecant lines, Ark.
Mat. 38 (2000), no. 2, 231 – 261.

[17] R. W. Rosenthal, Games of perfect information, predatory pricing and the
chain-store paradox, J. Econom. Theory 25 (1981), no. 1, 92–100.

[18] I. R. Shafarevich and M. Reid, Basic algebraic geometry 1: Varieties in
projective space, Springer Berlin, Heidelberg, 2013.

[19] W. Spohn, Dependency equilibria and the causal structure of decision and game
stituations, Homo Oeconomicus 20 (2003), 195–255.

[20] W. Spohn, Dependency equilibria, Philos. Sci. 74 (2007), 775–789.
[21] B. Sturmfels, Solving systems of polynomial equations, CBMS Reg. Conf. Ser.

Math., Amer. Math. Soc., 2002.
[22] S. Sullivant, Algebraic statistics, Grad. Stud. Math., Amer. Math. Soc., 2018.
[23] Y.-S. Tu and W.-T. Juang, The payoff region of a strategic game and its

extreme points, preprint arXiv:1705.0145, 2017.

Authors’ addresses:

Irem Portakal,
Technical University of Munich
Department of Mathematics
Boltzmannstr. 3
85748 Garching, Germany
E-mail: mail@irem-portakal.de

Bernd Sturmfels,
Max Planck Institute for Mathematics in the Sciences Leipzig
Inselstr. 22
04103 Leipzig, Germany
&
University of California at Berkeley
Department of Mathematics
925 Evans Hall
Berkeley, CA 94720-3840 USA
E-mail: bernd@mis.mpg.de

Received January 21, 2022
Revised April 23, 2022
Accepted May 2, 2022


