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1. Introduction

Alex Massarenti and Massimiliano Mella asked us the following question. Con-
sider 13 general points p0, . . . , p12 in the projective plane and consider the class
of a quartic curve with a singular point at p0 and passing through p1, . . . , p12.
Is it the case that no multiple of this class is effective?

In trying to answer this question we got aware of the fact that we are able
to prove the following more general result.

Theorem 1.1. Let d be any integer and p0, . . . , pm(2d−m) general points in the
plane with m ⩽ d. Consider the class (or system) ξd,m of plane curves of
degree d with a point of multiplicity at least d − m at p0 and passing through
p1, . . . , pm(2d−m). Fix k ⩾ 1.

(a) For any d ⩾ 4 and any m with 2 ⩽ m ⩽ d, the class kξd,m is not effective.

(b) For any d, the system ξd,1 is a pencil of rational curves and ξd,0 is com-
posed with the pencil of lines through the point p0 and has dimension d.
The multiple linear systems kξd,1 are composed with the corresponding
pencil and have dimension k. There is no member of these systems that
contains an irreducible curve which is not a component of a member of
this pencil. The same is true for the system ξ2,2.

(c) For d = 3, the systems ξ3,3 and ξ3,2 coincide with the system of cubics
through 9 general points, which consists of a unique cubic C. The systems
kξ3,3 and kξ3,2 consist of the unique curve kC.
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A few remarks are in order. First statements (b) and (c) in the theorem are
trivial (we stated them for completeness and we will inductively use them in the
proof of (a) which is the core of the theorem. Secondly, if m = d or m = d− 1
the statement is Nagata’s theorem for d2 general points in the plane (see [4]),
hence the theorem can be viewed as a generalization of Nagata’s theorem. So
for the proof of (a) we may and will assume 2 ⩽ m ⩽ d− 2.

Let Xn be the blow–up of the projective plane at n general points. Let
Ld(m1, . . . ,mn) be the linear system on Xn corresponding to plane curves of
degree d with general points of multiplicities at least m1, . . . ,mn.

If we blow–up p0, . . . , pm(2d−m) we get the surface Xm(2d−m)+1 and ξd,m
can be interpreted as an element in Pic(Xm(2d−m)+1); note that ξ2d,m = 0.
Moreover ξd,m is nef. Indeed we consider a general plane curve C of degree d
with a point p0 of multiplicity d−m and we can fix m(2d−m) general points
on C. If we blow up p0 and the m(2d−m) chosen points, the proper transform
of C is an irreducible curve with 0 self–intersection, and therefore it is nef on
the blow–up. Since nefness is an open condition, this is true for the general
class ξd,m.

Our result says that there is no positive number k such that Lkd(k(d −
m), km(2d−m)) is non–empty (the exponential notation for repeated multiplic-
ities is clear). If we set N1(Xm(2d−m)+1) = Pic(Xm(2d−m)+1) ⊗Z R, then ξd,m
generates a rational ray in N1(Xm(2d−m)+1) that is not effective (see [1, §3.1])
and therefore it sits in the boundary of the Mori cone of Xm(2d−m)+1. Such
a ray, if rational in N1(Xm(2d−m)+1), is called a good ray in [1, §3.2] whereas,
if irrational, it is called a wonderful ray. So far no wonderful ray has been
discovered1. However, proving that a given ray is good is in general not easy,
and in [1] the authors were able to exhibit some examples. Therefore it is in-
teresting to find good rays, and in this paper we make a new contribution in
this direction.

Our proof uses the degeneration technique we introduced for analyzing the
dimension of such linear system (see, e.g., [2]). We briefly recall this in Sec-
tion 2. The proof is by induction on m, the case m = 2 being the critical one.
We prove the m = 2 case in Section 5. This particular example relies on a
subtlety that requires us to analyze, more deeply than what we did in [3], the
case in which there are multiple (−1)–curves splitting off a linear system in the
limit. This we describe in Section 3. Finally in Section 5 we finish the proof of
Theorem 1.1.

We notice that the surprising phenomenon that allows us to make the final
analysis of the limit linear systems in the case m = 2 is that we eventually end
up with curves of a certain degree tn in the plane with n2 points of multiplicity t,

1After this paper was finished wonderful rays have been exhibited in the preprint “Ir-
rational nef rays at the boundary of the Mori cone for very general blowups of the plane”
(arXiv:2201.08634), by J. Roé and the two authors of the present paper.
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which is currently the only case in which Nagata’s conjecture is proven (see [4]).
Indeed we use here an argument inspired by the original one of Nagata (see l.c.)
to deal with these cases.

The ideas in this note can be generalized to prove more general similar
results about general linear systems with zero self–intersection and we will do
this in a forthcoming paper.

2. The degeneration method

In this section we briefly recall the degeneration technique that we use to
analyse planar linear systems (see [2]). We want to study a linear system
Ld(m1, . . . ,mn). To do this we consider a trivial family P2 × D → D over a
disc D. In the central fibre over 0 ∈ D we blow–up a line R producing a new
family X → D with an exceptional divisor F ∼= F1 and the proper transform
P ∼= P2 of the original central fibre. The new central fibre consists now of F∪P ,
with F, P transversely intersecting along the line R, which is the (−1)–curve
in F .

Next we fix a general points on P and b general points of F , so that a+b = n.
Consider sections of the family X → D extending these n points to general
points on the general fibre. Blowing up these sections, we have a degeneration
of Xn to the union of an Xa (the blow–up of P at the a general points) and of
an Xb+1 (the blow–up of F at the b general points).

Since there is an obvious map π : X → P2, we have the bundle OX (d) =
π∗(OP2(d)). This bundle restricts to the general fibre to OP2(d). On the central
fibre it restricts to the bundle OP2(d) on P and to OF (df), where f is the class
of a fibre of the ruling of F over P1. This is a limit of the line bundle on the
general fibre; there are other limits obtained by twisting by OX (−lP ), i.e., by
tensoring the above limit bundle by OX (−lP ), with l an integer. This restricts
to OP2(d+ l) on P and to OF (df− lR) on F . So we have a discrete set of limits
of Ld(m1, . . . ,mn), depending on all choices for a, b, l and distribution of the
multiplicities among the a+ b points on the central fibre.

A section of a limit line bundle is given by a pair of sections on P and F ,
that restrict equally to the double curve R. We will call this the naive matching
condition. Such a section could be identically zero on one of the components of
the central fibre, and in this case a matching section on the other component
corresponds to a section of the linear system (called a kernel linear system) of
curves on the other component containing the double curve R. One way to
prove emptiness of the system on the general fibre is to find a, b, a distribution
of the multiplicities and a twisting parameter l such that there is no section
of the limit line bundle on the central fibre that verifies the naive matching
condition and that is non–zero on at least one of the two components.
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An alternative approach to proving the emptiness of the linear system on
the general fibre is the following. Suppose that the system is non–empty on the
general fibre. Then for every choice of a, b and a distribution of the multiplici-
ties, there will be a limit curve which must be the zero of a section of a limit
line bundle given by some particular twist parameter l, this section being not
identically zero on both P and F . As we said, naively the matching condition
means that the two curves restrict equally to R. However we will see in the
next section that when the curves are non–reduced the matching conditions are
more subtle. We will call these conditions refined matching conditions. Hence,
to prove that the system on the general fibre is empty, it suffices to find a, b
and a distribution of the multiplicities so that for no l there is a limit curve as
above, i.e., a pair of curves on P and F satisfying the refined matching. This
will be the approach we will use in the proof of the case m = 2.

Clearly the former approach is easier than the latter, which however could
be necessary if the naive approach fails for every twist, which could be the case.

3. Refined matching conditions

In this section we will perform an analysis, needed later, which is a generaliza-
tion of the concepts of 1–throws and 2–throws considered in [3].

Suppose that a (−1)-curve C lives on a component P in a degeneration with
two components P and F in the central fibre of a family X → D, intersecting
transversely along a curve R, and suppose we are given a line bundle L on X .
Suppose that the intersection number of C with the restriction of L to P is −s.
Suppose in addition that C meets transversely at m points the double curve R.

For m = 1 we have the 1–throw considered in [3], which reveals that the
appropriate matching conditions for a curve on F to be a limit is that it must
have a point of multiplicity s at the intersection point of C with R, not simply
an intersection multiplicity s.

Now suppose that m > 1. We blow up C in the threefold X m times, thus
obtaining a new threefold X ′ and a new family X ′ → D. This blows up F
m times at each of the m intersection points of C with R, for a total of m2

blow–ups. We denote by F̄ the resulting surface.

These blow–ups create m ruled surfaces Qm−1, Qm−2, . . . , Q1, Q0 which are
stacked one on the other. In the central fiber of X ′, Qi appears with multiplicity
m− i, for i = 0, . . . ,m−1. One checks that Qi

∼= Fi, with non–positive section
Bi and disjoint non–negative section Si; on Qi we have B2

i = −i, S2
i = i, and

Si ∼ Bi + if , where f denotes as usual the fibre class and ∼ is the linear
equivalence. Q0 meets the surface P in a section B0 (equal to C on P ), with
B2

0 = 0. Each Qi meets Qi+1 so that Si (on Qi) is identified with Bi+1 (on
Qi+1). Each Qi also meets the other component F̄ in m fibers of the ruling,
corresponding to the m points where C meets R.
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The normal bundle of Q0 in X ′ is (−1/m)(B0+(m−1)S0+mf) = −B0−f .
For 1 < i < m − 1, the normal bundle of Qi in X ′ is (−1/(m − i))((m − i +
1)Bi + (m − i − 1)Si + mf) = −2Bi − (i + 1)f . For i = m − 1, the normal
bundle of Qm−1 in X ′ is (−1)(2Bm−1 +mf) = −2Bm−1 −mf .

When we pull back the bundle L to X ′, this pull back L′ restricts to −sf
on each Qi. At this point we make the additional assumption that s is divisible
by m: write s = hm. Twist L′ by OX ′(−h(

∑m−1
i=0 (m− i)Qi)). Let us analyze

the restriction of this new bundle on each component of the central fibre.
First we consider the surface P , on which the original curve C sits. Since

the only exceptional surface that meets P is Q0, we are twisting the restriction
of the bundle on P by −hmQ0 = −sQ0, and since Q0 restricts to C on P this
removes sC from the restriction of the bundle on P , and then this restriction
is trivial on C.

The restriction to Q0 is

−sf − hmQ0|Q0 − h(m− 1)Q1|Q0 = −sf − s(−B0 − f)− h(m− 1)S0 = hB0.

For 1 < i < m− 1, the restriction to Qi is

−sf − h(m− i+ 1)Qi−1|Qi
− h(m− i)Qi|Qi

− h(m− i− 1)Qi+1|Qi
=

−sf − h(m− i+ 1)Bi − h(m− i)(−2Bi − (i+ 1)f)− h(m− i− 1)Si = 0.

Finally for i = m− 1 the restriction to Qm−1 is

−sf − 2hQm−2|Qm−1
− hQm−1|Qm−1

= 0.

The above analysis shows that the bundle is now trivial on Qm−1,Qm−2, . . . ,Q1,
and non–trivial only on Q0, where it consists of hB0, i.e., h horizontal sections.
Therefore the matching divisor on F̄ does not meet any of the exceptional
divisors of the first m − 1 blow–ups, and meets only the last ones h times at
each of them points. Moreover, there is a correspondence on the divisors on the
final exceptional curves, namely they must all agree with h horizontal sections.
In other words, any one of these intersections determines all the other m − 1
ones. This behaviour of the curves on F̄ means that the curve on F must have
at each of the m points of the intersection of C and R, m infinitely near points
of multiplicity h along R. We denote this phenomenon by [hm]R. Hence the
matching conditions for the curves on F can be written as ([hm]R)

m, plus the
correspondence.

We can summarize what we proved in this section in the following statement:

Proposition 3.1. Suppose we have a semistable degeneration of surfaces π :
X → D over a disc D (i.e., X is smooth, all fibres of π are smooth except perhaps
for the one over 0, that has normal crossings) and a line bundle L on X which
restricts to line bundles on every component of the central fibre. Let P be a
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component of the central fibre containing a (−1)–curve C which is not a double
curve and intersects the double curve R transversely at m points p1, . . . , pm that
are not triple points of the central fibre. Suppose that C ·L = −hm, with h > 0.
Then any curve on the central fibre that is a limit of a curve in the general
fibre in the linear system determined by the restriction of L, must satisfy the
following conditions: for every point pi the curve on the component different
from P has the singularity of type [hm]R at pi and the final h infinitely near
points to the pi’s of order m correspond in the sense described above.

4. The proof of the case m = 2

We focus in this section on the case m = 2. We will consider the degeneration
described in Section 2 and first we want to describe the distribution of the
multiplicities and the limit linear systems on P and F . For convenience we set
n = d − 1 and note that there are 4n simple points in the case m = 2, which
we will distribute evenly among P and F . So the limit linear systems will be

LP := Lkn+t(k(n− 1), k2n), LF := Lk(n+1)(kn+ t, k2n)

with t the twisting parameter.
In order to prove Theorem 1.1(a), for m = 2, we will use the refined match-

ing approach. This requires that we prove that for any twisting parameter t
there is no limit curve satisfying the refined matching conditions stated in
Proposition 3.1.

Consider the curve class (useful on both P and F ) equal to Ln(n− 1, 12n).
We note that this linear system is of dimension 0 and consists of a unique
(−1)–curve C.

The linear system Lkn(k(n− 1), k2n) is equal to |kC|, and has dimension 0.
Therefore if t < 0, then LP is empty. Hence we may assume t ⩾ 0.

Let us analyze LF . The lines through the first point and through any one
of the other 2n points split off with multiplicity t. The residual system has
the form Lk(n+1)−2nt(kn + t − 2tn, (k − t)2n). Now we intersect this system
with C and get −t(n − 1). So C splits t(n − 1) times. The further residual
system is L′

F = L(n+1)(k−tn)(n(k− tn), (k− tn)2n). For L′
F to be effective, one

needs t ⩽ k/n, which we will assume from now on. A sequence of n quadratic
transformations (each based at the first point and at two of the 2n points)
brings L′

F to the complete linear system Lk−tn.
As for LP , one sees that C splits off with multiplicity k−tn and the residual

system is L′
P = Lt(n2+1)(tn(n − 1), (tn)2n). A sequence of n quadratic trans-

formations (each based at the first point and at two of the 2n points) brings
this system to Lt(n+1)(t

2n).
Let us see what the refined matching implies on L′

P or rather on its Cremona
transform Lt(n+1)(t

2n).
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Each of the 2n lines splitting t times from LF are (−1)–curves meeting the
double curve R once. Hence in the notation of the previous section m = 1 and
s = h = t and therefore we are imposing 2n points of multiplicity t to the linear
system Lt(n+1)(t

2n). These points are located along the curve T , the Cremona
image of R on P , which is easy to see to be equal to a curve of degree n + 1,
with a point of multiplicity n.

Also the curve C splits t(n−1) times from LF and meets the double curve R
transversely at n− 1 points. In the notation of the previous section m = n− 1,
s = t(n− 1) = tm hence h = t. Therefore we are imposing to Lt(n+1)(t

2n) also
the multiple points ([tn−1]T )

n−1, plus the correspondence.

Eventually the resulting system on P is Cremona equivalent to the system
L of plane curves of degree t(n+1), with (n+1)2 points of multiplicity t, plus
the correspondence. These (n+1)2 points are distributed in 2n general points,
2n general points on T , and n− 1 general points of type [tn−1]T .

Assume now t > 0. We want to prove that L is empty and therefore LP is
empty. To prove this, we need the following:

Lemma 4.1. For any t > 0 the linear system of plane curves of degree t(n+ 1)
with n− 1 general points of type [tn−1]T , with 2n general points of multiplicity
t on T and 2n additional general points of multiplicity t consists of at most one
element.

Proof. We specialize the configuration of the imposed multiple points to n− 1
general points of type [tn−1]T , and with 4n more general points of multiplicity
t on T . This is a total (n+1)2 points (some of them are infinitely near) forming
a divisor D on T supported on the smooth locus of T . By generality, for no
positive integer t, tD belongs to |OT (t(n+1))|. So any curve of degree t(n+1)
with the above multiple points on T must contain T . To the residual curve
we may apply the same argument, so T recursively splits; by induction we
conclude that the only possible member of the system is tT . This implies the
assertion.

To prove that L is empty, we notice that the possible unique curve satisfying
the multiplicity conditions imposed on L (see Lemma 4.1) will not satisfy the
required correspondence as soon as m = n − 1 ⩾ 2, i.e., n ⩾ 3, hence LP is
empty.

Finally we have to deal with the case t = 0. In this case we take k =
hn and LP consists of the unique curve hnC. Now C is a (−1)–curve that
intersects R transversely at n points. Therefore, in the notation of Section 3, we
have m = n, s = k. So the refined matching implies that we eventually have to
impose to LF , or rather to its Cremona transform Lhn, n points of type [hn]T ′ ,
where T ′ is the Cremona image of the double curve R, plus the correspondence.
Note that T ′ is a curve of degree n with a point of multiplicity n− 1.
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By the same argument as in Lemma 4.1, we see that the only curve verifying
all the above conditions is hT ′, so in the original analysis it is hR plus some
exceptional curves which appear in the Cremona transformation. However, as
we saw in the refined matching analysis, on P the bundle is now trivial, so the
corresponding section on P has to vanish identically on P . This shows that
there is no limit curve in the case t = 0 either.

Eventually we have seen that for any twisting parameter t there is no lim-
iting curve verifying the refined matching conditions, finishing the proof of
Theorem 1.1(a) for m = 2 and d ⩾ 4.

5. The proof for m > 2

In this section we will complete the proof of Theorem 1.1(a) in the case m ⩾ 3,
arguing by induction on m (the case m = 2 for all d ⩾ 4 is the starting case of
the induction). For this we will again use the degeneration as in Section 2 and
the naive matching approach will be sufficient.

Let us describe the limit linear systems we will use, i.e.,

LP = Lk(d−2)(k(d−m), k(m−2)(2d−m−2)) = kξd−2,m−2,

LF = Lkd(k(d− 2), k4d−4) = kξd,2.

By the m = 2 case, LF is empty, and therefore also the kernel system is
empty. Hence it suffices to show that the kernel system on P is also empty.

First consider the case m = 3. Then, by Theorem 1.1(b), LP is composed
with a pencil of rational curves, and the kernel system is empty because it
consists of the members of LP that vanish along the double curve R, which is
a general line on P . This proves the m = 3 case for all d ⩾ 5 (remember that
m ⩽ d− 2).

Next assume m ⩾ 4, and therefore, since m ⩽ d− 2, we have d ⩾ 6. Then,
by induction, LP is empty and hence also the kernel system is empty, finishing
the proof of Theorem 1.1.
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