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A note about the well-posedness of an
Initial Boundary Value Problem for the

heat equation in a layered domain
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Abstract. Heat conduction in a layered domain with imperfect ther-
mal contact interfaces is modeled by means of a system of elliptic or
parabolic PDEs with suitable boundary and transmission conditions.
Well-posedness of this problem is proved and a stability estimate of the
solution is given.
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1. Introduction

This note deals with heat conduction in a section of the layered body C. As-
sume that two or more layers are separated by low conductivity imperfect inter-
faces. According to the classification in [8], it means that a temperature jump
is present between two adjacent layers while the heat flux is continuous.

Suppose that C is made by two slabs C+ and C−, with different thermal
conductivities, separated by a very thin low conductivity imperfect interface
Dϵ (ϵ > 0 represents a characteristic thickness of the interface). The limit
process in which the thin “solid” interface Dϵ shrinks to a two-dimensional set
D0, is widely studied in mathematical physics (see for example [6, 11]). The
thermal properties of Dϵ for ϵ → 0, are summarized in a parameter function
h̃ : D0 → [0,∞) called thermal contact conductance. The thermal contact
conductance of the interfaceD0 is a non-negative quantity related to the average
of surface roughness effects in real objects. A detailed numerical modeling of
roughness can be found in [10].

Consider the ideal framework in which the slabs are parallelepipeds. In
particular, we focus on the intersection Ω between C and a plane π orthogonal
to the interface, so that S0 = D0 ∩ π, Ω+ = C+ ∩ π and Ω− = C− ∩ π.

In mathematical terms, the temperature of a two-dimensional layered ob-
ject like Ω is the solution of a system of two Initial Boundary Value Problems
(IBVPs) for the heat equation coupled by means of suitable transmission con-
ditions in which the function h (restriction of h̃ to S0) plays the role of heat
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transfer coefficient. This system of IBVPs is the direct model underlying the in-
verse problem of identifying h from some additional data taken on the external
boundary of the specimen (see for example [3, 7]). Existence and uniqueness of
its solutions are proved in Theorem 3.1 and it supplements mathematical back-
ground in [7]. Though many results in applied sciences and engineering rely on
this mathematical model (see for example [2, 3, 4, 7] to cite recent items), its
well-posedness is always taken for granted and, consequently, a rigorous proof
is bypassed. Here, a technique described in a recent paper about discontinuous
Galerkin methods [1] is extended (from elliptic to parabolic; from layers of the
same material to different materials) to prove existence and uniqueness of a
weak solution of our system of IBVPs (see Section 3.2). A stability estimate is
also derived in order to evaluate the sensitivity of the solution with respect to
variations in the parameter h (see Section 3.3).

2. Geometry of the specimen. Notation.

We deal with the composite environment

Ω = Ω+ ∪ Ω− ∪ S0

where
Ω+ = (−L,L)× (0, a+) , Ω− = (−L,L)× (−a−, 0) .

The interface
S0 = {(x, y) : y = 0 and x ∈ (−L,L)}

opposes to heat transfer between Ω+ and Ω−.
Let (0, T ) be a “time interval” so that

Q+ = Ω+ × (0, T ) , Q− = Ω− × (0, T ) .

The thermal behavior of layers Ω+ and Ω− is determined by their conduc-
tivity (κ+ and κ−), density (ρ+ and ρ−) and specific heat (c+ and c−). The
numbers α± = κ±

ρ±c±
are the corresponding diffusivities.

The top boundary of Ω+ is S+ = {(x, y) : y = a+ and x ∈ (−L,L)}.
The bottom boundary of Ω− is S− = {(x, y) : y = −a− and x ∈ (−L,L)}.
We assume that the thermal contact conductance of S0 takes the form

h(x) = h0+h1(x, t) where h0 is a positive real constant and h1 is a non-negative
function of class C0([−L,L] × [0, T ]). Two examples in which h1 describes,
respectively, the deterioration of an insulating interface and the worsening of
performances of an heat exchanger, are studied in [7].

In what follows, if u is a real function of two or more real variables, “uq”
means ∂u

∂q and “u(q±)” means limϵ→0+ u(q ± ϵ).
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3. Temperature of a two-layered domain with low
conductivity interface

Assume that Ω is heated through S+. The incoming heat flow is described by
a function Φ ∈ C0([−L,L] × [0, T ]). The temperature of Ω is determined by
solving a system of two IBVPs for the heat equation, respectively in Q+ and Q−

connected by means of a set of transmission conditions through the interface
(see Section 3.1). Exchange of heat between Ω and the external environment
occurs through S+ and S− and it is modeled by means of Robin conditions with
(positive) constant coefficients h+ and h− respectively. Vertical sides x = −L
and x = L are assumed, for simplicity, thermally insulated. A temperature
UM ≥ 0 is assumed for a fluid exchanging heat with S+. The temperature of a
fluid exchanging with S− can be taken equal to zero without loss of generality.
Initial temperature is given by the pair of functions U0

+ ∈ C0(Ω+) and U0
− ∈

C0(Ω−) (overbar means topological closure).

Analytical solutions (definitely not trivial) are known when the problem is
one-dimensional, i.e. when U0

+, U
0
−, h1 and Φ are non-negative constants, also

in presence of more than two layers [14]. If Ω+ and Ω− are made of the same
material and a+ = a−, the system can be easily reduced to a single problem
in Q+ (or alternatively in Q−) using the method of images [7].

3.1. A system of IBVPs for the heat equation

Since a single function from Ω to (0,∞) is not suitable for representing the
temperature of our specimen because it assumes two different values on S0, we
introduce the pair of functions

u+ : Q+ → (0,∞) , u− : Q− → (0,∞)

with their extension to respective boundaries. The pair (u+, u−) must fulfill
the following system of IBVPs

ρ+c+u
+
t = κ+∆u+, (x, y, t) ∈ Q+ ,

u+(x, y, 0) = U0
+(x, y), (x, y) ∈ Ω+ ,

κ+u
+
ν (x, a+, t)+h+(u

+(x, a+, t)−UM )=Φ(x, t), x∈(−L,L), t∈(0, T ),

κ+u
+
ν (−L, y, t) = κ+u

+
ν (L, y, t) = 0, y∈(0, a+), t∈(0, T ),

(1)

and

ρ−c−u
−
t = κ−∆u−, (x, y, t) ∈ Q− ,

u−(x, y, 0) = U0
−(x, y), (x, y) ∈ Ω− ,

κ−u
−
ν (x,−a−, t) + h−u

−(x,−a−, t) = 0, x ∈ (−L,L), t ∈ (0, T ) ,

κ−u
−
ν (−L, y, t) = κ−u

−
ν (L, y, t) = 0, y ∈ (−a−, 0), t ∈ (0, T ) ,

(2)
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coupled by means of the transmission conditions

κ+u
+
ν (x, 0+, t) + h(x, t)(u+(x, 0+, t)− u−(x, 0−, t)) = 0,

x ∈ (−L,L), t ∈ (0, T ) ,

κ+u
+
ν (x, 0+, t) = −κ−u

−
ν (x, 0−, t), x ∈ (−L,L), t ∈ (0, T ) .

(3)

3.2. Main result: Existence and uniqueness of (u+, u−),
weak solution of (1)-(3)

As for notation and basic theory of Sobolev spaces we refer to [13, Chapter 7].
In particular, we deal also with spaces involving time (see [13, Section 7.11.2]).
Let H be a Hilbert space equipped with the norm ∥.∥H and let H∗ denote its
dual space:

L2(0, T ;H) =

{
u : (0, T ) → H : u(t) measurable and

∫ T

0

∥u(t)∥2Hdt < ∞

}
,

C0([0, T ];H) =

{
u : [0, T ] → H : u(t) continuous and max

[0,T ]
∥u(t)∥H < ∞

}
.

Theorem 3.1. Suppose that:

(i) h takes the form h0 + h1 where h0 is a positive real constant and h1 is a
non-negative function of class C0([−L,L]× [0, T ]);

(ii) U0
+ ∈ C0(Ω+), U0

+ ∈ C0(Ω−) and Φ ∈ C0([−L,L]× [0, T ]).

Then:

(I) a weak solution (u+, u−) of problem (1)-(3) exists and it is unique, with
u+ ∈ L2(0, T,H1(Ω+))∩C0([0, T ];L2(Ω+)) and u− ∈ L2(0, T,H1(Ω−))∩
C0([0, T ];L2(Ω−));

(II) u+
t ∈ L2(0, T,H1(Ω+)∗) and u−

t ∈ L2(0, T,H1(Ω−)∗);

(III) the energy estimate

ρ+c+∥u+(t)∥20+ρ−c−∥u−(t)∥20+κ+

∫ t

0

∥u+(τ)∥21dτ+κ−

∫ t

0

∥u−(τ)∥21dτ

≤ e2
α+

L2 t(ρ+c+∥U0
+∥20 + ρ−c−∥U0

−∥20)

+ C(ρ+, c+, κ+,Ω
+, t) max

τ∈[0,t]
{
∫ L

−L

(UMh+ +Φ(x, τ))2dx} (4)

holds for almost all t ∈ [0, T ].
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Proof. Step 1. A variational problem in a product Hilbert space.

It is convenient to write problem (1)-(3) in weak form. More precisely, for
almost all t ∈ [0, T ], we must find u+(t) in H1(Ω+) and u−(t) in H1(Ω−) such
that

ρ+c+

∫
Ω+

u+
t (t)v

+dxdy + κ+

∫
Ω+

∇u+(t)∇v+dxdy + h+

∫ L

−L

u+(t)v+dx

+

∫ L

−L

h(x, t)(u+(t)− u−(t))v+dx =

∫ L

−L

(h+U
M +Φ(x, t))v+dx , (5)

ρ−c−

∫
Ω−

u−
t (t)v

−dxdy + κ−

∫
Ω−

∇u−(t)∇v−dxdy + h−

∫ L

−L

u−(t)v−dx

+

∫ L

−L

h(x, t)(u−(t)− u+(t))v−dx = 0 , (6)

for all v+ in H1(Ω+) and v− in H1(Ω−).

Following [1], we define the (cartesian product) Hilbert space V = H1(Ω+)×
H1(Ω−) equipped with the scalar product

(u, v)V :=

∫
Ω+

u+v+dxdy +

∫
Ω−

u−v−dxdy + L2

∫
Ω+

∇u+∇v+dxdy

+ L2

∫
Ω−

∇u−∇v−dxdy .

The scale factor L2 is required for dimensional reasons. Clearly u = (u+, u−)
and v = (v+, v−) are in V while for all w ∈ V the norm ∥w∥V :=

√
(w,w)V is

defined.

We sum (5) and (6) and obtain the variational problem:

for almost all t ∈ [0, T ], find u(t) ∈ V such that

⟨ut(t), v⟩+ a(u(t), v) =

∫ L

−L

(h+U
m +Φ(x, t))v+(x, a)dx

for all v ∈ V with u±(0) = U0
±.

Here,

⟨ut(t), v⟩ = ρ+c+

∫
Ω+

u+
t (t)v

+dxdy + ρ−c−

∫
Ω−

u−
t (t)v

−dxdy
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denotes a suitably weighted duality pairing between V ∗ and V while

a(u(t), v) = κ+

∫
Ω+

∇u+(t)∇v+dxdy + κ−

∫
Ω−

∇u−(t)∇v−dxdy

+ h+

∫ L

−L

u+(t)v+dx+ h−

∫ L

−L

u−(t)v−dx

+

∫ L

−L

h(x, t)(u+(t)− u−(t))(v+ − v−)dx

is a bilinear form on V × V .

Step 2. Existence and uniqueness of the solution.

We recall that, if w = (w+, w−) ∈ V , the trace inequality (see [5, Theo-
rem 1.5.1.10]) ∫

S±∪S0

|w±|2 ≤ c(Ω±)∥w∥2V (7)

holds. It follows from the constructive proof in [5] that c(Ω±) < 2(1+ 3
a±

) (not

optimal). Continuity of the bilinear form a follows from Schwarz inequality
and (7). Indeed, we have

|a(u(t), v)| ≤ K∥u(t)∥V ∥v∥V , (8)

where K = max{κ±}+max{h+, h−,max[−L,L]×[0,T ] h}max{c(Ω±)}.
Since h+, h− and min[−L,L]×[0,T ] h are positive, there are two positive con-

stants λ = max{κ+, κ−} and γ = min{κ+, κ−} such that

a(u(t), u(t)) + λ∥u(t)∥20 ≥ γ∥u(t)∥2V ,

i.e. the bilinear form a is weakly coercive (see [12, Section 11.1.1]). Hence,
existence of a solution u ∈ L2(0, T, V )∩C0([0, T ];V ) of (1)-(3) and its unique-
ness follow from [12, Theorem 11.1.1] (see also [9, Theorem 5.3]). Energy
estimate (4) is derived straightforwardly following [12] .

Remark 3.2. The energy estimate does not account for heat exchange through
the boundaries. In the special case in which h+ = h− = 0, it is likely to be
optimal when the interface is insulating (h = 0) or highly conductive (u+ −
u−)2 ≈ 0.

Remark 3.3. Well posedness can be proved also in the stationary case in
which the temperature u solves a system of BVPs for the Laplace equation.
If we assume Dirichlet conditions on S+ and S− instead of Robin ones, we
can use the same procedure of this section. Observe that, in the stationary
case, the required coercivity of the bilinear form a follows from the Poincaré
inequality (see [12, Section 1.3]).
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3.3. Stability of the solution with respect to the
parameters

The same technique used in deriving the energy estimate leads to the evaluation
of the sensitivity of the solution with respect to the interface conductance h.

Theorem 3.4. Let ũ denote the unique solution of (1)-(3) when the conduc-
tance in S0 is h + δh (with h + δh ≥ h0) and set δu := ũ − u. Assume that
all other parameters (α±, κ±, h±, Φ) remain unchanged. We have the local
stability estimate:

∥δu∥L2([0,T ],V )

∥u∥L2([0,T ],V )
≤ K max

[−L,L]×[0,T ]
|δh|.

Proof. Subtract

⟨ut(t), δu⟩+ ah(u(t), δu) =

∫ L

−L

(h+U
m +Φ(x, t))δu+(x, a)dx , u±(0) = U0

±

from

⟨ũt(t), δu⟩+ah+δh(ũ(t), δu) =

∫ L

−L

(h+U
m+Φ(x, t))δu+(x, a)dx , ũ±(0) = U0

±

where we have stressed the dependence of the bilinear form on conductance h
at the interface. We have

⟨δut(t), δu⟩+ ah+δh(u(t) + δu, δu)− ah(u(t), δu) = 0 , δu±(0) = 0.

Using the change of variable δw+ = e−β+tδu+ and δw− = e−β−tδu− with
β± = α±

L2 , we have

⟨ũt(t), δu⟩ = e2β+t ρ+c+
2

d

dt
∥δw+∥20 + e2β−t ρ−c−

2

d

dt
∥δw−∥20

+ e2β+tκ+∥δw+∥20 + e2β−tκ−∥δw−∥20.

Since

ah+δh(u(t) + δu, δu)− ah(u(t), δu) = κ+e
2β+t

∫
Ω+

|∇δw+(t)|2dxdy

+ e2β−tκ−

∫
Ω−

|∇δw−(t)|2dxdy + e2β+th+

∫ L

−L

δw+(t)2dx

+ e2β−th−

∫ L

−L

δw−(t)2dx+

∫ L

−L

(h+ δh)(eβ+tδw+ − eβ−tδw−)2dx

+

∫ L

−L

δh(eβ+tw+(t)− eβ−tw−(t))(eβ+tδw+ − eβ−tδw−)dx
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we have

e2β+t ρ+c+
2

d

dt
∥δw+∥20 + e2β−t ρ−c−

2

d

dt
∥δw−∥20

+ e2β+tκ+∥δw+∥20 + e2β−tκ−∥δw−∥20 + κ+e
2β+t∥∇δw+(t)∥20

+ e2β−tκ−∥∇δw−(t)∥20 + e2β+th+

∫ L

−L

δw+(t)2dx

+ e2β−th−

∫ L

−L

δw−(t)2dx+

∫ L

−L

(h+ δh)(eβ+tδw+ − eβ−tδw−)2dx

+

∫ L

−L

δh(eβ+tw+(t)− eβ−tw−(t))(eβ+tδw+ − eβ−tδw−)dx = 0.

(9)

Set βm := min{β−, β+}, βM := max{β−, β+} and κm = min{κ−, κ+} and
evaluate∫ L

−L

|δh||(u+(t)− u−(t))(δu+ − δu−)|dx

≤
∫ L

−L

|δh|(|u+(t)||δu+|+ |u+(t)||δu−|+ |u−(t)||δu+|+ |u−(t)||δu−|dx

≤ max
[−L,L]×[0,T ]

|δh|(c(Ω+)∥u+(t)∥1∥δu+∥1 +
√
c(Ω+)c(Ω−)∥u+(t)∥1∥δu−∥1

+
√
c(Ω+)c(Ω−)|u−(t)∥1∥δu+∥1 + c(Ω−)∥u−(t)∥1∥δu−∥1)

≤ max
[−L,L]×[0,T ]

|δh|eβM t max{c(Ω+), c(Ω−)}∥δw∥1∥w∥1 .

By disregarding the third line in (9), which is made of positive terms, we obtain

1

2

d

dt
⟨δw(t), δw(t)⟩+ κm∥w∥21

≤ max
[−L,L]×[0,T ]

|δh|e(βM−βm)T max{c(Ω+), c(Ω−)}∥δw∥1∥w∥1.

Integrating on t both sides of the inequality, we get

1

2
∥δu∥20 + κm

∫ T

0

∥δu∥21dt

≤ max
[−L,L]×[0,T ]

|δh|e2βMT max{c(Ω+), c(Ω−)}
∫ T

0

∥δu∥1∥u∥1dt.
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Applying the Schwarz inequality to the integral on the right hand side we have√√√√∫ T

0
∥δu∥21dt∫ T

0
∥u∥21dt

≤ K max
[−L,L]×[0,T ]

|δh| ,

where K = e2βMT

κm
max{c(Ω+), c(Ω−)}.

Conclusions

We have proved that a system of parabolic equations that model heat conduc-
tion in a layered domain is a well-posed problem under very natural hypotheses.
The proof comes from the weak formulation of the problem in a suitable product
Hilbert space. This result helps with the construction of rigorous foundations
of the inverse problem studied in [3, 7].
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