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ABSTRACT. We classify, up to equivalence, the orientation-reversing
finite abelian actions on RP3 and their quotient types. There are six dif-
ferent quotient types, and for each quotient type there is only one equiva-
lence class. Descriptions of each action which represents an equivalence
class are explicitly given.
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1. Introduction

The symmetries of manifolds have been an increasingly ubiquitous topic of
study in low-dimensional topology (See for example [8, 9, 11, 14, 15, 23]). In [8],
a complete classification (up to conjugation) for symmetries of the orientable
and nonorientable 3-dimensional handlebodies of genus one is obtained. A
similar classification is obtained in [11] for I-bundles over the projective space.
In [9], the finite group actions on the lens space L(p, q) which preserve a Hee-
gaard decomposition were classified up to equivalence for p > 2, by restricting
these actions to an invariant Heegaard torus. However when p = 1 or 2, then
an action on L(p,q) may contain an element which when restricted to two
different invariant Heegaard tori are not equivalent (See the examples in [9,
p. 28]). To begin to address these questions for the case when p = 2, in [12]
we initiated the study of orientation preserving primary cyclic group actions
on L(2,1) = RP3, and classified them up to equivalence. In [14], it was shown
that the 3-sphere and RP? are the only 3-dimensional lens spaces L(p, ¢) which
admit orientation-reversing PL maps of period 4k where k& > 1, and in [15] no
lens space other than the 3-sphere S? and RP? admits an orientation-reversing
involution. In [10], a complete classification of orientation reversing geometric
finite group actions on lens spaces L(p,q) where p > 2 and ¢> = —1 (mod p)
is obtained if the action leaves a Heegaard torus invariant whose sides are
exchanged by an orientation-reversing element.

In this paper, continuing the study for p = 2, we consider the orientation-
reversing abelian actions on the three-dimensional projective space RP3? =
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L(2,1), which is double covered by 3-sphere S®. Note that the special or-
thogonal group SO(3) is isomorphic to RP? (See [7] for details). The finite
orientation reversing abelian actions on RP? leave a Heegaard torus invariant
while preserving its sides. Using this, we are able to classify, up to equiva-
lence, these actions and compute their quotient spaces. In addition, an explicit
construction is given of a standard action representing each equivalence class.
Note that RP? is an elliptic 3-manifold with a geometric structure, and we may
assume by [5, Theorem E], which follows from Perelman’s results in [16, 17, 18],
that a finite action on RP? acts as a group of isometries. We work in the PL
category.

A G-action on a manifold X is a homomorphism ¢: G — Homeopr(X)
where Homeop,(X) is the group of PL-homeomorphisms of X and ¢ is an
injection. Two G-actions ¢ and 1 are equivalent if their images are conjugate
in Homeopr,(X). When G is finite the quotient space is an orbifold which we
denote by X/p. We will assume G is always finite.

Let ¢: G — Homeop,(RP?) be an orientation-reversing abelian action. We
show (See Corollary 4.2) that there is a Heegaard torus (a separating torus
whose closure of the two complementary components are solid tori) which is
left invariant by the action whose sides are also preserved. The restriction to
each invariant solid torus determines an orbifold quotient whose Euler number
is zero. In [8] there is a complete list of all the handlebody orbifolds whose
Euler number is zero. For any positive integer n, the orientable orbifolds are
denoted by (A0,n) and (B0, n), while the non-orientable ones are denoted by
(Al,n),...,(A3,n),(B1,n),...,(B8,n). The orbifolds in the main theorem are
obtained by identifying the boundaries of the non-orientable orbifolds via ex-
plicitly defined homeomorphisms. If X and Y are orbifolds and £: 0X — 0Y is
a homeomorphism, denote by O¢(X,Y") the orbifold obtained by identifying 0.X
to JY via £. These orbifolds, together with the maps £ and their fundamental
groups are explicitly defined in the Appendix.

The main result in this paper, which appears as Theorem 6.1 in Section 6,
is as follows:

THEOREM 1.1. Let p: G — Homeopr,(RP?) be an orientation-reversing finite
abelian action. Then one of the following cases is true:

1) G = Zop,y, where b>1, m is odd and RP3/p is 0,1 ((B5, 20=1m), (A1,2));

2) G = Zom, m is odd and RP3 /¢ is t Oh;l((BALm)7 (A3,1));

3) G = Zy, X Lo, m even and RP3 /¢ is Op,((A2,2), (B3,,m));

4) G =174 x L, and RP3 /¢ is Oy, ((B2,2),(B2,2));

5) G = 7o x Lo x Ly and RP?/p is Op, ((B6,2), (B6,2));

6) G = Zy x Zy and RP?/¢ is O, ((B7,1),(B7,1)).
Furthermore, in each individual case i), where 1 < i < 6, ¢ is equivalent to the
Standard Quotient Type i Action.
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The paper is organized as follows. Section 2 is devoted to some preliminary
remarks and definitions concerning orbifolds, the Euler number, and Heegaard
decomposition. The orbifolds A(0,n) and B(0,n) which cover all the non-
orientable orbifolds of Euler number zero are defined, and the non-orientable
orbifolds which are the union of these orbifolds and have finite fundamental
group are listed. In Section 3, we define the standard abelian actions on RP3,
and identify their quotient types. We show in Section 4 that any orientation-
reversing abelian action on RP3 preserves a Heegaard torus. In Section 5,
we investigate which orbifolds defined in Section 2 and the Appendix have a
Zo-normal subgroup of their fundamental groups with abelian quotient, and
whether they are covered by RP3. Finally, we summarize the main results in
Section 6. The Appendix contains the definition of each of the non-orientable
orbifolds (A1, n), ..., (43,n), (B1,n), ..., (B8,n), the gluing maps identifying the
boundaries of these orbifolds and their fundamental groups.

2. Orbifolds preliminaries, Heegaard decompositions with
finite fundamental groups

Orbifolds were introduced and studied by Satake in [19, 20], and developed
more fully by Thurston in [21]. Other good references include M.Yokoyama
[22]; M. Boileau, S. Maillot and J. Porti [2]; S. Choi [3]; W. Dunbar [6]; D.
Cooper, C.Hodgson and S. Kerchoff [4]. In this section we give brief preliminary
notions about orbifolds, and refer the reader to the above references for more
detail. We define the orientable orbifolds (A0,n) and (B0,n) which cover the
non-orientable orbifolds of Euler number zero. In addition, we list which of
the orbifolds having Euler number zero Heegaard decomposition have finite
fundamental groups in Theorem 2.1.

An orbifold is a space which is the quotient space of R by a finite linear
group. Consider (U, G) where U is an open subset of R” and G is a finite e group
of diffeomorphisms of U. Let U = U/ G be the quotient space and v: U—U
the quotient map. The quotient space U is called a local model. If Gz is the
stabilizer for any & € U and Gz # 1, then v(Z) is called an exceptional point
in U; it may be labelled with the order of Gz. An orbifold map 1) between local
models U and U’ consists of a pair (w ~), where 1: U — U’ is a smooth map
and v: G — G’ is a group homomorphism such that V(g(%)) = v(g)(&) for
all # € U and g € G, and 1/’1/} Yr. An orbifold is a space which consists
of local models glued together by orbifold maps. The set of exceptional points
is referred to as the exceptional set or the singular locus. An orbifold O with
boundary 0O is define similarly by replacing R"™ with the closed half space R’
to obtain local models for z € 00. If M is an n-manifold and G is a group of
diffeomorphisms which acts properly discontinuously on M (for every compact
subset K C M, the set {g € G | g(K) N K # 0} is finite), then the quotient
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Figure 1: (A0, n)

space M/G is an orbifold. The orbifolds (A0,n) and (BO0,n), defined below,
are good examples of 3-dimensional orbifolds.

An orbifold handlebody O is formed by gluing together orbifold 0-handles
(3-orbifolds covered by the 3-ball B3) and orbifold 1-handles (products with 2-
orbifolds covered by the disk D?) so that the exceptional sets of the same type
are identified. See [8] for more details. If the handlebody orbifold is orientable,
then the underlying space is a handlebody. When there is a n-sheeted covering
space H — O where H is a handlebody, then the Euler number x(0) = %X(H).
See [4] for a more detailed description of the Euler number. An Fuler number
1 — g Heegaard decomposition of an orbifold O is an ordered triple (X, 01, O3)
where 3 C O is a closed 2-orbifold, O; is an orbifold handlebody having Euler
number l—g, 22801 :Ol 002 and 0201U02.

In this paper we will be concerned with Euler number zero Heegaard de-
compositions where the orbifolds O;, for i = 1,2, will come from the list of the
non-orientable orbifolds covered by (A0,n) and (B0,n). We now describe the
orbifolds (A0,n) and (B0, n).

2.1. Orbifold (A0, n)

We begin with the unit disk D? parameterized by {pe? =v |0 < p < 1}. Let V
be the solid torus S* x D? and define a Z,-action on V by h(u,v) = (u,ve™s" ).
The orbifold quotient space V/(h) is denoted by V' (n) or (A0, n). This quotient

space is a torus with a core of exceptional points of order n (See Figure 1).

The orbifold fundamental group of V(n) is

T (V(n)) = (li,m1 | [h,mi] =1,m} =1) ~Z X Zy, .
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7 N
Figure 2: (B0, n)

2.2. Orbifold (B0, n)

Let 7: V(n) — V(n) be the involution defined by 7(u,v) = (u,v). The orbifold
V(n)/{r) is denoted by (B0,n). Its underlying space is a 3-ball which has an
exceptional set consisting of an embedded tree with five edges, one edge labeled
with n and the other four edges each labeled with 2. The boundary is a Conway
sphere with four cone points of order 2 (See Figure 2).

We obtain a covering map v: V(n) — (B0,n) = V(n)/(r) giving an exact
sequence

1= m(V(n) = m((BO,n)) = Zy — 1

which splits. Let v, (I;) =1 and v.(m1) = m. Since 7 inverts both generators
of m(V(n)), we obtain the following fundamental groups:

m1((BO,n)) = (I,m,t | m" =t*=1,lm =mi, tit ' =17 tmt~' =m™)
— Dik(Z x Zy,)

and

11 (0(BO,n)) = (I,m,t | t* =1, Im=ml,tit ' =171, tmt~' =m™)
— Dih(Z x Z).

In the Appendix we show that (A0, n) will double cover the non-orientable
orbifolds (A1, n), (A2,n), (A3,n),(B3,n), (B4,n), and (B5, n); and the orbifold
(B0, n) will double cover the non-orientable orbifolds (B1,n), (B2,n), (B6,n),
(B7,n), (B8,n). Furthermore these orbifolds are described there along with
their fundamental groups. Recall that O¢(X,Y") is the orbifold obtained by
identifying 0X to Y via a homeomorphism £: X — 9Y. The orbifolds X
and Y will come from the list of non-orientable orbifolds whose boundaries
are homeomorphic, and the gluing map £ = h; for 1 < i < 7 is defined in
the Appendix. For groups A and B, we use the notation A o B to denote the
semidirect product A x B, and use A o_; B to represent the specific action
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Orbifolds Fundamental Group
On, ((A1,n), (B5,m)) (a,b | a®> =02, a® =" = (ba )" =1) ~ Zp, 0_1 Lom
Oy ((A3,n), (B4, m)) | {(a,b,cla™ = b2 = =1,bab ' =a Y,cac l =a T,
cbe™! = ba) ~ Dih(Z,) 0 Zam
Ohy((A2,n), (B3, m)) | (a,b,c|a,b] = [a,c] = 1,a™ =b" = 2 =1,cbc T =b"1)
~ Dih(Zy,) X Zp,
On,((B2,n),(B2,m))| (a,b| a® =b2=1,ba%b T =a" 2, (ab)>" =1)
>~ (Zn Oo_1 ZZm) o Za
Ong ((B6,n), (B6,m)) | {a,b,c,d [a® = b7 =% = (be)” =d” = (ad)™ = 1,a < {b, c},
d <+ {b,¢}) ~ Dih(Zy) X Dih(Zm)
Ong ((B7,n), (B7,m)) | {a,b,cla® =b"" = (ab” Tab)™ =c®> =1,a ¢ {b°,c},b°=b ')
~ Dih(Zym) o Dih(Za,,)
On,((B1,n), (B8, m)) |{a,b,c|a™ =b" = 2 =1,bab T =a" 1 [a,c] =1, (cb)>™ =1)
~ Zy, 0 Dih(Zay,)

1

Table 1: Notation: x¥ = yzy~ ', and if  and y commute we write x <> y.

bab= = a~! for every a € A and b € B. Thus the dihedral group Dih(Z,) =
Zn O_1 ZQ.
From [13], we have the following theorem:

THEOREM 2.1. Let X and Y be any of the orbifolds (Al,n),...,(A3,n),(B1,n),
..,(B8,n), and let £&: 0X — OY be a homeomorphism. If m(O¢(X,Y)) is
finite, then O¢(X,Y') is homeomorphic to one of the orbifolds listed in Table 1
with the corresponding fundamental group.

3. Standard orientation reversing abelian actions on RP?

In this section, we will define some standard orientation reversing abelian ac-
tions on RIP3. In addition, we calculate the quotient spaces of these actions,
and the quotient spaces for their orientation preserving subgroups. These ac-
tions will be sorted by their quotient types, Quotient Type i for 1 < i < 6.
A standard action with Quotient Type ¢ will be called the Standard Quotient
Type i Action. Since the later cases are similar to the previous cases, some of
the details will be omitted.

We view RP3 = V; U, Vo where the boundary 0V; is identified with 0V5
by a homeomorphism a: dV; — Vs defined by a(ui,v1) = (ugv3,ugvy) for
(ui, ’Ui) e V.

Consider two orbifold solid tori V(a) and V(b), let p and g be relatively
prime positive integers and choose r, s € Z such that rq¢ — ps = —1. Let
h: 9V (a) — OV (b) be the homeomorphism defined by h(u,v) = (u"vP, u’v?).
The orbifold W (p, ¢; a, b) is the orbifold obtained by identifying 0V (a) to 9V (b)
via the homeomorphism h. The underlying space of W (p, g, a,b), denoted by
|W(p, q,a,b)|, is the lens space L(p,q). As in the case of the lens space, the
integers p, ¢, a and b determine the orbifold up to homeomorphism.
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3.1. Quotient Type 1: O,-1((B5,2" 'm), (A1,2)) with b > 1
and m odd.

Let V; = S' x D?, and define two homeomorphisms f and ¢ on V; as follows:
For m a positive odd integer

2mi  —2mi 3(2mi)
flug,v1) = (ul,vle m ) , and g(ui,vr) = (u162b—2 ,uivie 2° ) .

Note that

727r7 3(2mi)
g( ,ujvie 2° )
T —2mi . —2mi _ =2mi 6(27i)
U1€2b 2 ezb*Q , (u162b*2 )ulvle 2b
—27i  3(2wi)
(uh vie2—2 e 2b—1 )

27
= (Ulﬂ)le?b’l)

It follows that g is an orientation reversing homeomorphism with finite
order 2°. Furthermore f and g commute, hence the two maps generate a
Lo, X ZLigp = Zigv,-action on V3. We obtain an orbifold covering map n;: V3 —
Vi/{f) = Vi(m) defined by m(u1,v1) = (u1,v]"). The homeomorphism g
induces a homeomorphism g; on V(m), and we may calculate g; as follows:

g (uhvl)

1  =2mi 1 3(2mi)
gl(ulaul) =ng (ul,vl’"> =1 <U1€2b’2,U11}1m€ 2° )

_ =2mi 3m(27i)
= (ure2*-2,uy vie =2° .

We consider first the case where b > 1. Thus we have a Z,, X Zgv = Zop,-
2mmi

action where b > 1 and m is odd. It also follows that g% (uy,vy) = (uy,vie26-1)
and (g?) = Zy-1. We obtain an orbifold covering A\;: V(m) — V(2b71m) =
V(m)/{g?) defines by Ai(u1,v1) = (ul,vfbfl). Further, g; induces an orienta-
tion reversing involution g on V(2°~!m) which may be computed as follows:

=T =2mi ol sm(2mi)
g2(u1,v1) = g1 | ur, v = A1 | ure2=2 , uf'v{" e 2°

On the other hand g2 is an orlentatlon reversing involution with two isolated

fixed points, (ezb T ,0) and (— et ,0). Thus by [13, Proposition 13] we see
that V(2°=tm )/(gg) is the orbifold (B5,2°7'm), and we have the following
lemma.
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LEMMA 3.1. For any orbifold of the form (B5,2°~'m) where m is odd and b >

1, there exists a Ly, X Lo -action on the solid torus Vi generated by f(uy,v1) =
3(27i)

(uy,vie ) and g(uy,v1) = (me%,ulvle 22 ). The quotient type Vi [(Zm, X
Za) = (B5,2°"Im).

At this point, we will extend f and g to RP? and identify the quotient
space. Let Vo = S' x D2, and recall that RP? = V; U, Vo where a: OV — 0Vs
is a homeomorphism defined by a(ui,v1) = (ugv3, usv2). Now a~t(ug,vy) =
(uy 'v}, ugvy ). We have the following:

afail(u%’UQ) = af(ul Ulvulvl )

= a(ul_lvf,ulvl 12 )

27i 2mi

=(u2 )"V () e )

= (uz

Thus f(ug,vs) = (uzeﬁi , 112627?) is a fixed-point free map on V5. Similarly
extend g to RP? as follows:

m UQ@’").

aga™t(uz, v2) = ag(uy v}, wvr )
———  —2mi 3(27i)
= o (7o) e, (ur o) (o e ")
—2mi 3(2mi)
=a ((ul W) e 2 ve 2 )
327\ 2 S————— —2mi 3(2mi)
( uy 'w2)ez- 2) (vge 2 ) ,((u;lvg)eﬁ) (vle 2P ))

27i _ —27i
= (UQ62I”1,U2U26 2% ) .

27 —27i
In other words, g(uz,vs) = (uQe2b*1 , UgTge 2P ) where b > 1.
In the mean time, we extend 1 to V5 to obtain a covering map ny: Vo —

m—1
Va/(f) = Va(1) defined by n2(u2,v2) = (u5',uy® v2). In addition, g induces
g1 on V5(1) which may be computed as follows:

1 1—m
g1(uz,v2) = 7729( 5" ngm Uz)

1 _q =2mi
(u’”ezb E u2 " Uy e 20 )

=2
2mim 71 27i(m—1) m+1 _q =2mi
:( Uuge2t—1, e 2wy, e 2P )

2nim _q 2mi(m=—2)
uge2b=1 ugvy e 2P )
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Hence

( 2mim 1 2mi(m—2)

_ 2mwim 2mwim
g1(uz2,v2) = (uge2>=1 jugvy e 2t ) and g%(uz,vg) = (uge 2-2 gge 21’*1) .

Note that (g3) = Zgs-1 and g%Fl has as its fixed-point set the core S x {0}.
We obtain an orbifold covering map Ao: Va(1) — Vi(1)/(g?) = Va(2) defined by

b—2
Ao (ug,v2) = (U3 ,us tv3). Furthermore, g; induces an orientation reversing
involution go on V5(2) which we now compute below:

1 1
26—2 2b T 5
92(uz, v2) = A2g1 ( YUy U3 )
L 9rim . 1 1 _
b—2 = b—2 b—1 — —_——
=X <u22 e 1 w7 (ud Tud) e 2
im 1 =1 27i(m—2)
b 5 2mim Py 2rr(m—2)
=X ( 3T e2 T ud vt e 2P
_q 2w
= (_UQ,U2 ezb*Z) .

Since go is a fixed-point free orientation reversing involution on V3(2), it
follows by [13, Proposition 13] that V2(2)/(g2) is the orbifold (Al,2), and we
have the following lemma.

LEMMA 3.2. For any orbifold of the form (A1,2), there exists a Zp, X Zoo-
action on the solzd torus Vo where m is odd and b > 1 ~generated by f(U2,v2)

= (uge m ,vge e ) and g(uz,v2) = (U262b T , U2Vs ~le 50 ), such that Vo /(Z,
Zy) = (A1, 2).

The next step is to compute the quotient space for the covering n; U
no: (V1 Ug Vo) = (V1 Uy Vo) /{f) = Vi(m) Us, Va(1). The matrix represen-

. 1 .
tations for n; and 7y are 0 and mn,ll respectively. We compute

0

the gluing map aq: Vi (m) — 9Va(1) with matrix representation )z( 3;] , by

e R E i}

solving the equation

We see that x = m, y = 2, z = 2 and w = 1. Thus a(ui,v1) =
m1
(uZ'v3, uy > v2), the matrix representation for o is [m } and the quotient

space RP3/{f) = W(2,1;m,1).
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Finally, consider the orbifold covering AUz : Vi(m)Uq, V2(1) = (Vi(m)Uq,
Va(1))/{g?) = V1(2°"'m) U,, V2(2), and identify the quotient space by com-
puting the gluing map «s. The matrix representations for A; and Ay are

b—2
Ll) 2b0_1] and [2_1 g] respectively. Solving a matrix equation similar to
that above, we obtain asg(ui,v1) = (u
b—2

2 1 mn (1)] Thus W (2,1;m,1)/(g?) = W(1,0;2°"1m,2). The underly-
ing space of W (1,0;2°"1m,2) is the 3-sphere S® and the exceptional set is the
Hopf link, with one exceptional set labeled with 2°~!'m and the other excep-
tional set labeled with 2.

Consequently, we can summarize the results above. Recall RP? = V; U, Va
where a: OV; — 9Vs is a homeomorphism defined by a(u1,v1) = (ugv3, ugvs)
for (u;,v;) € V;. Define homeomorphisms f and g on RP? as follows:

b—2 . . .
2 Mg, ug) With its matrix representa-

tion [

27i

(uy,v1em ), ifi=1
flui, vi) = 4

(uge s vpe ), ifi=2

 —2mi 3(274) o
(urez=2,ugve 20 ), ifi=1

g(ui’vi) =

27 —2mi

(uge2=T ugige 20 ), ifi=2

THEOREM 3.3. Let ¢: Zgs — Homeopr (RP?) be an action such that s = 2'm
where b > 1 and m is odd. Then ¢ is equivalent to (f) X {g) = Zn, X
Zoy = Loy, and the quotient space RP3 /o is homeomorphic to the orbifold
Ohl—l((B5,2b_1m), (A1,2)). Let @o: Zgjy — Homeopr,(RP3) represent the re-
striction of ¢ to the the orientation preserving subgroup. Then RP3/@q is the
orbifold W (1,0;2"1m, 2) whose underlying space is the 3-sphere S3, and the
exceptional set is the Hopf link with one exceptional set labeled with 22~ 'm and
the other exceptional set labeled with 2.

Proof. Let ¢: Z, — Homeopr (RP?) be an action such that s = 2°m where
b > 1 and m is odd. By [14, Theorem A], there is only one such action up to
equivalence. By construction, RP?/(f, g) = Oa,((B5,2°~'m), (A1,2)) for some
gluing map as. Since O, ((B5,2°71m), (41,2)) = Oy ((A1,2),(B5,2"'m)),
which by [13, Lemma 21] is homeomorphic to Op, ((A1,2), (B5,2°"1m)), the
result follows. O

Next, we will treat the case where b = 1, and so we will consider orientation
reversing Z,, X Zs = Zsom,-actions on RP? where m is odd.
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3.2. Quotient Type 2: O,-1((B4,m),(A3,1)) and m odd

Substituting b = 1 into the definition of g defined in Quotient Type 1, we obtain
the involution h: V4 — Vi defined by h(uq,v1) = (a1, —uiv1). It follows that h
is an orientation reversing involution which commutes with f on Vi, and thus
(fy x (k) = Zp, X Zy. As above, if n: Vi — V1/(f) = V1(m) is the covering, the
induced map h on Vi(m) is defined by fl(ul, v1) = (a7, —ui*v1). The fixed-point
set is {(1,0)} U ({—1} x D?) C Vi(m). It follows by [13, Proposition 13] and
the fixed-point set of h, that Vi(m)/(h) = (B4,m).

The involution h on V; is defined by h(ug,ve) = (u2, —us¥3), and the invo-
lution h on Va(1) is h(ug, v2) = (ug, —uv3). The fixed-point set consists of the
set {(—e? pe??) | 0 <0 <21, 0 < p <1} C Vi(l), which is a Mobius band.
Hence by [13, Proposition 13], Va(1)/(h) = (A3,1). We obtain the two lemmas
below:

LEMMA 3.4. For any orbifold of the form (B4, m) where m is odd, there exists

a Loy X Zo-action on the solid torus Vi, generated by f(uy,v1) = (uy,vien )
and h(uy,v1) = (a1, —uivy), such that Vi /(Zy, X Za) = (B4, m).

LEMMA 3.5. For any orbifold of the form (A3, 1), there exists a Zm, X Za-action
on the solid torus Vo where m is odd, generated by f(ug,vs) = (uze%,vge%)
and h(ug,ve) = (ug, —usvz), such that Vo/(Zy x Zs) = (A3,1).

Let f,h: RP? — RP3 be homeomorphisms defined as follows:

271 . .
uy, v1€m ), ifi=1

uge m jvgem ), ifi=2

(
(
h(ui,v;) = {Elv —uyvy), ifi=1

us, —UQ’lTQ), if i =2.
As a result of the above discussions, we obtain the following theorem.

THEOREM 3.6. Let ¢: Zs — Homeopr,(RP3) be an action such that s = 2m
where m is odd. Then ¢ is equivalent to (f) x (h) = Ly X Lo = Zam, and the
quotient space RIP3 /i is homeomorphic to the orbifold Ohgl((BZI, m), (A3,1)).
Let @o: Zy, — Homeopr (RP3) represent the restriction of ¢ to the the orien-
tation preserving subgroup. Then RP3/pq is the orbifold W(2,1;m, 1), whose
underlying space is RP? with exceptional set o simple closed curve labeled with
m.

Proof. Let ¢: Zs; — Homeopr, (RP?’) be an action such that s = 2m where m
is odd. If m > 1, then applying the Smith conjecture in [1] and [14, Theo-
rem C], there is only one such action up to equivalence. If m = 1, and hence
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the action is an involution, applying [6] there is only one such action up to
equivalence. By the above construction RP?/(f,h) = O¢((B4,m),(A43,1)) =
O¢-1((A3,1), (B4, m)) for some gluing map ¢. Since O -1((A3,1),(B4,m))
is homeomorphic to Op,((A3,1),(B4,m)) by [13, Lemma 23], the result fol-
lows. 0

3.3. Quotient Type 3: O,,((A2,2),(B3,,m)) where m is
even

Define homeomorphisms f and g on RP? as follows:

_2mi o
ulem vie"m ), ifi=1

fug,v;) = {

Ug, Vo€ ), ifi=2

(
(
g(us,v;) = {E“ ), =1

UQ,’ZLQ’UQ) ifi=2

A computation shows fg = gf, and so (f, g) defines a Z,, X Zs-action on RP3.
Furthermore, it can be shown that RP3 /¢ is the orbifold Oy ((A2,2), (B3, ,m))
for some homeomorphism A’ between their boundaries.

THEOREM 3.7. For m even, the maps f and g define an action @: Ly, X Zo —
Homeopr,(RP3) such that the quotient space RP?/p is Op,((A2,2), (B3,,m)).
Let wo: Ly, — HomeoPL(]R}P’?’) represent the restriction of ¢ to the the orien-
tation preserving subgroup. Then RP3 /g is the orbifold W (1, F52,m) whose
underlying space is the 3-sphere S3, and the exceptional set is the Hopf link with
one exceptional set labeled with 2 and the other exceptional set labeled with m.

Proof. The proof is similar to Theorem 3.6, and uses the fact that by [13,
Lemma 22], Op/((A2,2), (B3,,m)) is homeomorphic to Op,((A2,2), (B3, m)).
O

3.4. Quotient Type 4: O, ((B2,2),(B2,,2))

Define homeomorphisms # and 7 on RP? as follows:
ifi =1
0(us, v5) — { 1, U101), 1 Z
uz,

(—ur

(—ug, —ug®z), ifi=2
T(ug, v;) = (@
(i) {(u

A computation shows 6* = id = 72 and 07 = 76, and so (0, 7) defines a Zy x Zo-
action on RP3. We remark that letting b = 2 in the definition of ¢ in Quotient

v7), ifi=1

1, V1
T,m), ifi=2
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Type 1 of this section, also gives a Z4-action which is conjugate to 6 by the
homeomorphism:

. o1
k(ui,vi) = {(mel)’ Y

(iUQ,iUQ), ifi1=2

Observe that 6%(u;,v;) = (u;, —v;), and we have a covering map v: RP? —
RP3/(0%) = (A0,2) Uy, (A0,2) where v(u;,v;) = (us,v?); the matrix corre-
1} . The induced maps 6 and 7 on (A0, 2) U,, (A40,2) are

. .1
sponding to a; is 9 1

defined by

O(ui,v;) = (—w,ugvr), ifi=1 and
v (—ug,udT3), ifi=2

?(ui,vi) = (m,m) .

Moding out by the action of 7, we obtain a covering map v;: (A0,2) Uy,
(A0,2) — (B0,2) Ug (B0,2). Now @ induces an involution on (BO0,2) Usr
(B0,2), whose quotient is Oy ((B2,2),(B2,2)) for some homeomorphism
' 0(B2,2) — 0(B2,2). We obtain the result below.

THEOREM 3.8. Let p: Zy X Zo — Homeopr(RP3) be an action such that
0(Zy x Za) = (0,7). Then the quotient space RIP3 /¢ is homeomorphic to the
orbifold Oy, ((B2,2),(B2,2)). Let o: Z4 x Zs — Homeopr,(RP3) represent the
restriction of ¢ to the the orientation preserving subgroup. Then RP3 /i is the
orbifold Ozz((B0,2), (B0,2)), where aq is uniquely determined by the matriz

s 1)

Proof. The quotient space RP3/p has a finite fundamental group. The result
now follows by the above construction, Theorem 11 and Lemma 25 in [13]. O

3.5. Quotient Type 5: O, ((B6,2),(B6,2))

Define homeomorphisms f, ¢ and k on RP? as follows:
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It follows that (f, g, h) is a Za X Zg X Zy-action on RP3. We may choose a cover-
ing map v: RP3 — RP3/(h) defined by v(uy,v1) = (u1, —u1v?) and v(ug, v2) =
(u2,uy 'v3). Then RP3/(h) is the orbifold V(2) U,, V(2) = W(1,0;2,2) where
r1: V(2) = V(2) is defined by r1(uy,v1) = (—vg,us). The induced maps f;
and g1 on W(1,0;2,2) are defined by

fi(ug,v) = {(m,m), ifi=1

(@2, 73), ifi=2

and

g1(ui,v;) = {(uzmjl)7 le -!
(Ug,vz), if1=2
Now, W(1,0;2,2)/(f1) = O,,((B0,2),(B0,2)) for some gluing map
ro: 0(B0,2) — 0(B0,2). The map rq is an order 4 rotation which permutes
the cone points of order 2 on 9(B0,2). It follows that for the induced map
g2 on the orbifold O,,((B0,2),(B0,2)) we obtain O,,((B0,2),(B0,2))/{g3) =
0,,((B6,2),(B6,2)). Summarizing we have the following theorem:

THEOREM 3.9. The maps f, g and h define an action p: Zo X Zo X Zy —
Homeopr,(RP3) such that the quotient space RP3/¢ is O ((B6,2),(B6,2)).
Let pg: Zo X Zo — Homeopr, (RPB) represent the restriction of ¢ to the the ori-
entation preserving subgroup. Then RP?/q is the orbifold O,.,((BO0,2), (B0, 2))

where T3 is uniquely determined by the matrix 1 ol

Proof. The quotient space RP3/¢ is the orbifold O,., ((B6,2), (B6,2)) for some
map 7s3. By [13, Lemma 26], this orbifold is homeomorphic to
0,((B6,2), (B6,2)) which completes the proof. O

3.6. Quotient Type 6: O, ((B7,1),(B7,1))

Define homeomorphisms f and g on RP?3 as follows:

ur, —uivy), ifi=1

(
(UQ, _U2®), ifi=2
(
(

We see that (f,g) is a Zy x Zo-action on RP? and fg(u;,v;) = (u;, —;). Let
n: RP? — RP3/(fg) be an orbifold covering map and note that the quotient
space is Oz((B0, 1), (B0, 1)) for some homeomorphism a: 9(B0,1) — 9(B0O, 1).
Let g be the induced involution on Ogz((B0,1), (B0,1)).
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The ﬁxed-point set of fg‘avl is FlX(fg|3Vz) = {(]—7 2)7 (17_’6)7 (_]-7 7’)7 (_L_Z)}
It follows that glgy; fixes two elements of Fix(fg|sv,), and exchanges the other
two.

This implies that Oz((B0,1),(B0,1))/(g) is the orbifold O, ((B7,1),(B7,1))
for some homeomorphism r': 9(B7,1) — 9(B7,1). As a result, we obtain the
following theorem:

THEOREM 3.10. The maps f and g define an action p: Zax Zo — Homeopr, (RP3)
such that the quotient space RP%/p is the orbifold On,((B7,1),(B7,1)). Let
wo: Lo — HomeoPL(RIE”?’) represent the restriction of ¢ to the the orientation
preserving subgroup. Then RIP?/¢q is the orbifold Oz((B0,1), (B0,1)) where &
s uniquely determined by the matrix 1 1l

Proof. The quotient space RP3 /¢ is the orbifold O, ((B7,1),(B7,1)) for some
homeomorphism 7. Since the fundamental group of the quotient space is
finite, it follows by [13, Lemma 27] that this orbifold is homeomorphic to
O, ((B7,1),(B7,1)), completing the proof. O

4. Splitting orientation-reversing abelian actions on RP?

In this section, we will show that any abelian orientation reversing action
on RP? splits and preserves the sides of the splitting. An action p: G —
Homeo pr, (RP?) is said to split if there is a Heegaard torus T such that ¢(g)(T) =
T for all g € G. If in addition, each complementary component of the Heegaard
torus is invariant under the action, then we say ¢ preserves the sides of the
splitting.

THEOREM 4.1. Let p: G — Homeopr (RP?) be a finite action which contains
an orientation reversing element j € o(QG), such that (j) is a normal subgroup
of o(G). If j is an involution, assume @(G)/(j) is not the symmetric group Sy
or the alternating groups Ay and As. Then @ splits and preserves the sides of
the splitting.

Proof. The element j generates a cyclic group Zgs,, where m is odd. Since the
orientation preserving subgroup of Zs,,, has index two and generated by j2, it
follows that b > 1.

Suppose first that b > 1. By Theorem 3.3, (j) is conjugate to the group
(f) x {g) = Zp X Zop = Zob,,. Conjugating all of ¢(G) by this element, we
may assume (j) = (f) x (g). Furthermore, the quotient space RP3/(j) =
(B5,2b"1m) Uyt (A1,2). Let v: RP? — RP3/(j) be the covering map. The
core in Vo is ST x {0} , and v(S! x {0}) is the exceptional set v in (Al,2),
which is a simple closed curve labeled with the integer 2. The induced action
©(G)/{j) = H on RP3/{j) must leave v invariant. Let U be an H-invariant
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regular neighborhood of v. Now U is the orbifold (A0,2), which lifts to a
©(@)-invariant solid torus U, containing the core. Its boundary dU is a o(G)-
invariant Heegaard torus whose sides are preserved by ¢(G).

Assume b = 1. By Theorem 3.6, (j) is conjugate to (f) X (h) = Z, X
Zo = Zom, and we may assume as above that (j) = (f) x (h). If m # 1,
then RP3/(f) = (A0,m) Uy, (A0,1), where the matrix for a; is ,7,73_1 i :
(See computation following Lemma 3.2.) The orbifold (A0, m) contQains an
exceptional set consisting of a simple closed curve labeled with an m. Letting
H be the quotient group ¢(G)/(f), it follows that H must leave the exceptional
set invariant. The exceptional set lifts to the core in V;, and the proof follows
as above.

Now suppose m = 1. In this case RP3/(h) = (B4,1) Uy (43,1), and we
again let v: RP? — (B4,1) Up;t (A43,1) be the covering map. The exceptional
set consists of a point in (B4,1), a projective plane P with P N (B4,1) a
mirrored disk and PN (A3,1) a mirrored Mobius band. For the core in S x {0}
in Va, it follows that v(S! x {0}) is an orientation reversing element in the
mirrored Mobius band. Letting H be ¢(G)/(h), the projective plane must be
left invariant by H. Since ¢(G)/(h) is neither Sy, A4 nor As, it follows by [11,
Theorem 7.2] that H|p leaves an orientation reversing loop invariant. Since
the lift of this loop is isotopic to the core in V5, the proof follows as above. [

We obtain the following corollary:

COROLLARY 4.2. Let ¢: G—)HomeoPL(R]I”3) be an orientation reversing abelian
action. Then ¢ splits and preserves the sides of the splitting.

5. Orbifolds covered by RP?

In this section, we will identify which of the non-orientable orbifolds listed
in Theorem 2.1 as defined in the Appendix may be covered by RP? and iden-
tify the subgroup corresponding to the covering. The orbifolds in Section 2 are:
Ohl((A]-vn)’(BE)’m))v Oh2((A3’n)7(B4vm))a Oh3((A27n)a(B3am))a
Oh4((B2’n)v(BQ7m))a Oh5((367n)ﬂ(367m))7 Ohﬁ((B77n),(B7,m)),
O, ((B1,n),(B8,m)).

It will be convenient to apply the following proposition and corollary, which
essentially follow from orbifold covering space theory. The reader is referred to
the paper of M. Yokoyama [22] for a good elucidation of orbifold theory.

PROPOSITION 5.1. Let O be a 3-dimensional orbifold, W a 3-dimensional sub-
orbifold and i: W < O the inclusion map. Suppose G is a subgroup of w1 (O)
and H = i;Y(G) < my(W). Let n: O — O and \: W — W be the cover-
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ings corresponding to G and H respectively. IfW is an orbifold, then O is an
orbifold.

Proof. Let L be a component of n~*(W) and note that p = n|: L — W is a
covering map. From standard covering space theory p, (w1 (L)) =i (n.(m (6)))
Since i (1. (71(0))) = H, we have p,(m (L)) = H, and this equals )\*(m(WN/)).
Thus there is an orbifold homeomorphism f: W = LcC 5, implying L and
therefore O is an obifold. 0

COROLLARY 5.2. Let O be a 3-dimensional orbifold, W a 3-dimensional sub-
orbifold and i: W < O the inclusion map. Let G be a subgroup of 71 (O)
containing an element i, (c) where a € m (W), and let O be the covering of O
corresponding to G. Suppose the covering translation on the universal covering
space of W associated with o has a fized point. Then O is an orbifold.

Proof. Let H = i;1(G) < m (W) and note that a € H. Let U be the universal
covering space of W. Since the covering translation associated with a has a
fixed point, it follows that U/H = W is an orbifold, which is the covering of
W corresponding to H. The result now follows by Proposition 5.1. O

5.1. Quotient Type 1: Oy, ((Al,n), (B5,m))
From the Appendix the orbifold fundamental group of O, ((41,n), (B5,m)) is

71(On, ((Al,n), (B5,m))) = {a,b | a®* = b*, a*" =b*" = (ba™')" =1)
= (ba Y o_y(a) =Zp o 1 Loy, .

Furthermore, the elements a and b in 71 ((A1,n)) acting on the universal cov-
ering space R x D? of (Al,n) are defined by a(t,v) = (t — 3,7) and b(t,v) =
(t — L, 5e%).

Note that as elements in either 71 ((Al,n)) or m (On, ((Al,n), (B5,m)))
they are orientation reversing.

PROPOSITION 5.3. Let H be a normal subgroup of w1 (Op, ((Al,n), (B5,m))) =
Ly, 0_1 Lo, isomorphic to Zg, and let Q = m1(On, ((Al,n), (B5,m)))/H be the
quotient group. Suppose n # 1 and Q) is abelian. Then one of the following is
true:

1) n =2, either H = (ba™ 1) or (ba™1), and Q = Zop;

2n=2, H=(a") and Q = Zo X L,;

3) n=4 ’ H = <(ba‘1)2> and Q = ZQ X Z27,L.

Proof. Recall from Section 2 that a(ba=')a™t = (ba=')~!. Let w = ba~!, and
suppose H = (w*a') where 0 < s <n and 0 <t < 2m.
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Assume first that s and ¢ are both non-zero. Since H is normal, w*a’

= a(w®a’)a™! = w*a’, which implies w* = 1 or s = %. Note that 1 =
(w™?at)? = a*, for either t even or odd. This implies ¢ = m, and thus
H = (w"/?a™).

Suppose m is odd. Then

wn/2am :w(wn/2am)w—1 :w(n/2+1)amw—la—mam _ w(n/2+2)am )
This implies w? = 1, and thus n = 2. We now suppose m is even. Con-
sider the group @ = m1(Op, ((Al,n),(B5,m)))/H. Since Q is abelian, wH
= (aH)(wH)(aH)™' = w™'H, which implies w? € (w™/2a™). If w? # 1,
then w? = w™2a™, or w*~™/2 = ¢™. But this contradicts the semi-direct
product property that (w) N (a) = {1}, and so w? = 1 and n = 2. In ei-
ther case H = ((ba=")"2a™) = ((ba=)a™) = (ba™'). Furthermore, Q =
m1(On, (A1, n), (B5,m)))/H = (a,b | a*> = b*, a® = b = (ba™1)? =
1L,ba™ t=1) = (a | a®" = 1) ~ Zop,.

Suppose s = 0. Then Zy ~ H = (a'), and t = m. A similar argument as
above shows that if m is either even or odd, then n = 2 and Q = Zy X Z,.
Now suppose t = 0 and Zy ~ H = (w®). It follows that s = n/2, and
Q = Zyj3 0-1 Zop. In order for Q to be abelian, either n = 2, H = (w)
and Q = Zoy, or n =4, H = (w?) and Q = Zg X Zop,. O

PROPOSITION 5.4. Let ¢: G — Homeopr,(RP3) be a finite action such that the
quotient space R/ is the orbifold Oy, ((Al,n),(B5,m)). Thenn # 1.

Proof. Let v: RP? — RP3/p = Op, ((Al,n), (B5,m)) be the covering map, and
note that v, (m1(RP?)) is a normal subgroup of 71(Op, ((A1,n), (B5,m))) iso-
morphic to Zs of finite index. Suppose n = 1, and therefore
71(Op, ((A1,n), (B5,m))) =~ Zapm. This implies that G ~ Z,,, and therefore
m # 1. Thus the maximum order of every exceptional point in RP3/¢ is
m. However, Oy, ((Al,n), (B5,m)) has two cone points of order 2m, giving a
contradiction. Thus n # 1. O

COROLLARY 5.5. Let ¢: G — Homeopr,(RP3) be a finite abelian action such
that the quotient space RP3 /¢ is the orbifold Oy, ((Al,n),(B5,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 1 Action;

2) n =2, and m = 2°"'mqy where mg is odd and b > 1;

3) G~ Ly X Loy = Liop,;

4) The covering corresponds to the subgroup (ba™~1).

Proof. By Proposition 5.4, n # 1.
Let v: RP? — RP3/p = Oy, ((A1,n),(B5,m)) be the covering map, and
note that v,(m (RP3?)) = H is a Zs normal subgroup. By assumption Q =
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m1(Op, ((Al,n), (B5,m)))/H = G is an abelian group. We now apply Propo-
sition 5.3 and consider each case separately.

Suppose n = 2, H = (ba™~ ') or (ba™'), and Q = Zy,,. Since both ba™!
and @™ are orientation reversing elements when m is odd, and RP? is ori-
entable, it follows that H = (ba™~!) or (ba=') and m is even. Viewing ba~*
as an element in 71((A1,n)), we note that ba~! has a fixed point as an ac-
tion on the universal covering space. Therefore by Corollary 5.2, the covering
of Op, ((Al,n), (B5,m)) corresponding to (ha=!) is not a manifold. The case
where n =2, H = (™) and Q = Zs X Z,, is eliminated in a similar way. This
is done by recalling that a in m1((Al,n)) is identified with z in 7 ((B5,m)),
where  acting on the universal covering space is defined by z(t,v) = (—t,vem ).
Since this map has a fixed point, this case is also eliminated using Corol-
lary 5.2. Now suppose n = 4, H = ((ba™%)?) and Q = Zy x Zs,,. Note that
(ba=1)%(t,v) = (t,—v), and therefore has a fixed point eliminating this case
also.

Thus, the only possible case is n = 2, H = (ba™~1) where m is even and
G = Zop,. Write m = 2"~ mg where b > 1 and myq is odd. By Theorem 3.3, ¢
is conjugate to the Standard Quotient Type 1 Action, which is a Z,, X Zg =
Zam-action on RP? with quotient space Oy, ((A1,n), (B5,m)), completing the
proof. O

5.2. Quotient Type 2 : O, ((A3,n), (B4, m))
The orbifold fundamental group of m1(On,((A3,n), (B4, m))) is

(a,bye|a” =b* = =1,bab ' =a ', cac™t =a" !, cbe™ = ba)

= ({a) o_1 (b)) o {c) =~ Dih(Zy,) o Zom

The maps a, b and c are defined on the universal covering space of (A3,n)
by a(t,v) = (t,ve™n), b(t,v) = (t,7) and c(t,v) = (t + 1, me™ ). Note
that b and ¢ are orientation reversing elements when viewed as elements of

71(Op, ((A3,n), (B4, m))).

PROPOSITION 5.6. Let H ~ Zy be a normal subgroup of
m1(Ony ((A3, 1), (B4,m))), and let Q@ = m1(Opn,((A3,n), (B4,m)))/H be the
quotient group. If Q is abelian, then one of the following is true:

Hn=1, H={(c") and Q = Zo X L,;

2)n=2, H=/{a), and Q = Za X Lom;

3 n=1, H=(b) or H=(bc™), and Q = Zam,.

Proof. Recall that cac™! = a™', cbc™ = ba and ¢? commutes with both a and
b. As the orbifold fundamental group is a semi-direct product, we may write
H = (a*b°c') where 0 < s <mn,e=0o0r1,and 0 <t < 2m.
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We first assume € = 0, and so H = (a®c'). Since H is normal, a’c! =

ca®ctc™! = a~°ct, which indicates a?* = 1. Observe that this implies 1 =
(a®c')? = c® whether t is either even or odd. There are three cases to consider
depending on the values of s and ¢.

Suppose s = 0, and therefore t # 0. Since c?* = 1, it follows that t = m
and H = (™). If n =1, then Q = Zy X Z,, proving 1) in the statement of the
proposition. We now assume n # 1. If m is odd, then be™b~! = b(ba)~1c™ =
ac™, showing H = (¢™) is not a normal subgroup. If m is even, then H = (¢™)
is a normal subgroup. However Q = (Z,, o_1 Z3) o Z,, is not abelian, removing
this case from consideration.

Assume t = 0, and so s # 0 and n # 1. Furthermore since a?* = 1, it
follows that s = n/2 and H = (a™/?). Obviously, Q = (Z, /5 0—1 Z3) 0 L, is
abelian, if n = 2. Thus H = (a) and Q = Zy X Zsg,, proving 2).

Next, we assume s # 0 and ¢ # 0, and therefore n # 1 and H = (a™/?c™).
We claim that the quotient @ is not abelian, and thus this case does not oc-
cur. If m is odd, then by normality of H, we have a™/2¢™ = b(a™/?c¢™)b~! =
a="?bc™bt = 0= 2b(ba) " ™ = a="/?ba~ b1 ¢™ = a~™/2ac™. This implies
a = 1 giving a contradiction. Thus m must be even which we now assume. Since
™ commutes with every element, it follows that the subgroup L = <a”/ Zem cm)
is also a normal subgroup of m1(Op,((A3,n), (B4,m))). We obtain an injec-
tion 71 (On,((A3,n), (B4,m)))/L — m1(On,((A3,n), (B4,m)))/H = Q. Now
71—1(th ((A37 n)a (B47 m)))/L is

{a,b,c | a"=b*=1,bab ' =a"! cac ' =a"t, cbc™! =ba, cmzl,a”/zzl)

= (Zpja 0-1Z2) 0 Ly

If @ is abelian, then so is m1(Op, ((43,n), (B4,m)))/L. This implies n = 2 and
H = (ac™). As a consequence, we must have

Q = m1(On,((A3,n), (B4,m)))/H = (b,c | b* = 1,¢* = 1,cbc™! = bc™),

which is not abelian.

On the other hand, if ¢ = 1, then our Zy normal subgroup is written as
H = (a®bc'). Assume first that s = 0, and thus H = (bc'). By the normality
condition, bc! = c(bc!)c™! = bact, which implies 1 = a and hence n = 1.
Furthermore, 1 = (bct)? = ¢?'. Hence H = (bc!) where t = 0 or m. As a result,
71 (Op, ((A3,n), (B4,m))) = Zo X Zaoy with H = (b) or H = (bc™). In both
cases, Q = Za,, proving 3).

We now suppose s # 0, and son # 1. Since H < 71 (Op, ((43,n), (B4, m))),
we have a®bc! = c(a*bct)c™! = a=*(ba)c' = a=*~'bc!, which implies a1 = 1.
Thus n is odd and s = (n — 1)/2. In addition, 1 = (a®bc')? = c?* whether t is
even or odd. Hence t = 0 or m and H = (a("~1/2bct). If t is even, then again
by normality a("=1/2bct = b(a(*~D/2bct)b~ = a1=)/2b¢t, showing o' = 1.
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However the order of a is n, giving a contradiction. Thus we may assume t
is odd, therefore t = m > 1, and H = (a("1/2pc™) with m odd. The group
Q = 1 (O, ((A3,n), (B4,m)))/H = Z, o_1 Zom, and since n > 1 and m > 1
are both odd, this group cannot be abelian. This completes the proof. O

COROLLARY 5.7. Let p: G — Homeopr,(RP?) be a finite abelian action such
that the quotient space RP3 /i is the orbifold O, ((A3,n), (B4,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 2 Action;

2) n=1 and m is odd;

3) G = ng;

4) The covering corresponds to the subgroup (bc™).

Proof. Let v:RP? —RP3/p = O, ((A3,n), (B4, m)) be the covering map. Note
that v, (w1 (RP3)) = H is a Zs normal subgroup of m1(Op, ((43,n), (B4, m))).
Furthermore, the quotient Q@ = m1(Op,((A3,n), (B4, m)))/H is isomorphic to
the group G. Furthermore, 2) may also be excluded by Corollary 5.2 since the
element a € 71 ((A3,n)) has a fixed point.

We now consider 1) of Proposition 5.6. Since ¢ is orientation reversing, it
follows that m must be even. Recall that c is identified with zz € w1 ((B4,m)),
and ¢? = (z2)? = y. Thus ¢™ = y%. The element y € m((B4,m)) acts on
the universal covering space as y(t,v) = (¢,ve n ). Since this map has a fixed
point, again by Corollary 5.2 we exclude this case. As for case 3), since b is an
orientation reversing element, this leaves us with only H = (bc™) and G = Zay,.
Here m must be odd to guarantee an orientation preserving element. Applying
Theorem 3.6, ¢ is conjugate to the Standard Quotient Type 2 Action, which
is Zom-action on RP? with quotient type Op,((A3,1), (B4, m)). O

5.3. Quotient Type 3: Op,((A2,n), (B3,m))
From Section 2, the orbifold fundamental group of Oy, ((A2,n), (B3, m)) is

ﬂl(ohs((Azn)? (Bgvm)))
= {(a,b,c|[a,b] = [a,c] = 1,a™ =b" =c* = 1,cbc™ ! =b71)
= ((b) o_1 {(¢)) x {a) = Dih(Z,,) X Zy, .

The elements a, b and ¢ in 7 ((A2,n)) acting on the universal covering space

are defined by a(t,v) = (t + 1,v), b(t,v) = (t,ve’s") and c(t,v) = (£, 7).
PROPOSITION 5.8. Let H ~ Zy be a normal subgroup of
m1(Ony ((A2, 1), (B3,m))), and let Q@ = m1(Op,((Al,n), (B5,m)))/H be the
quotient group. Then one of the following is true where e =0 or 1:

1) If m and n are both not equal to 1, then m, n are both even and
H = (b"/2cca™/?). If either Q is abelian ore = 1, thenn = 2 and Q = Zo X L,;
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2) Ifn=1 and m # 1 is odd, then H = (c¢) and Q = Zy,;

8) If n =1 and m # 1 is even, then H is either (c), (a™/?) or (ca™/?),
with quotient group Q isomorphic 10 Ly, Lo X Ly sz 0T L ;

4) If n =2 and m =1, then H is either (b), {c) or (bc) and Q = Zs;

5) Ifn>2 and m =1, then n is even, H = (b"/?), and Q = Dih(Z, ).

Proof. The subgroup H = (b*c‘a’) where 0 < s <mn,e=0or 1 and 0 <t < m.
We will assume first that m and n are both not equal to 1. Since H is normal, it
follows that b*ccal = c(b*c‘al)c™t = b=%cfa’. This implies b** = 1 or s = n/2.
Observe that 1 = (b°c¢a’)? is equal to a?® if either € = 0 or 1. Hence t = m/2,
and in either case H = (b"/2c¢a™/?). Suppose first that ¢ = 0, and thus
H = (b"/2a™/?). 1If follows that H is normal, and so no new information is
obtained. If @ is abelian, then bH = (cH)(bH)(cH)™! = cbc™'H = b~ 'H.
Hence b € (b™/2cca™/?). If b2 # 1, then b = b™/2a™/2 or pA—")/2 = gm/2,
giving a contradiction. Thus b = 1, n = 2 and Q = Zgy X Z,,. Suppose
e = 1. Again by normality of H, it follows that b™/2ca™/? = b(b™/?ca™/?)b~?
= b"/2b%¢ca™/?, implying again that b*> = 1 and proving 1).

Since 71 (Opy((A2,n), (B3,m))) is isomorphic to Zg X Z,, in 2) and 3) and
isomorphic to Zs X Zo in 4), the results follow easily. For 5),
m1(Ons ((A2,n), (B3,m))) = Dih(Z,), n > 2 and H = (b°c?). If e = 0, it
follows that H = (b"/?). However if ¢ = 1, it follows by normality that
b%c = b(b°c)b~! = bbc, which implies b> = 1 and n = 2. This contradicts
n> 2. O

COROLLARY 5.9. Let ¢: G — Homeopr,(RP3) be a finite abelian action such
that the quotient space RIP? /¢ is homeomorphic to Op,((A2,n), (B3, m)). Then
the following is true:

1) The action is conjugate to the Standard Quotient Type 8 Action;

2) n=2 and m is even;

3) G = ZQ X Zm;

4) The covering corresponds to the subgroup (ba™/?).

Proof. Suppose ¢: G — Homeopy (RP?) is a finite abelian action such the quo-
tient space RP3/¢p = O, ((A2,n),(B3,m)), and let v: RP? —
On;((A2,n),(B3,m)) be the covering map with v,(m (RP3?)) = H. If n =
m = 1, then m1(0p,((A2,1),(B3,1))) ~ Zs, giving a contradiction. Now
H is a normal subgroup of 71 (Op,((A2,n), (B3, m))) which is isomorphic to
Zo and corresponds to an orientation preserving element of order 2. The
quotient group Q = m1(Op,((A2,n),(B3,m)))/H is abelian. The element
¢ € m(0n,((A2,n),(B3,m))) is represented by an orientation reversing ele-
ment, and therefore 2) in Proposition 5.8 is eliminated. Furthermore, since
a and b are orientation preserving, H cannot be generated by (b”/ 2ca™/?),

(ca™/?) or (b™/2c).
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Suppose m and n are both not equal to 1. Then by 1) in Proposition 5.8,
n =2 H = (bha™?) and Q = Zy x Z,,. We will show that the 3)-5) in
Proposition 5.8 may also be eliminated.

Suppose n = 1, m # 1 is even, and since H must be an orientation preserv-
ing subgroup, H = (a™/?) by 3) in Proposition 5.8. Recall that the element
a is identified with the element y in m ((B3,m)), and y(t,v) = (t,e* ) has a
fixed point. This eliminates 3) by Corollary 5.2.

Suppose n # 1 is even, and m = 1. Thus by 4) and 5) in Proposition 5.8,
H = (b) or H = (b"/?), and Q = Zs or Q = Dih(Z,,5) respectively. In the
latter case, in order for @) to be abelian, n must be 2 or 4. Since b has a fixed
point, 4) and 5) are also eliminated by Corollary 5.2.

Since any regular covering of Oy, ((A2,n), (B3, m)) by RP? corresponds to
the subgroup (ba™/?), any such action is conjugate to the Standard Quotient
Type 3 Action on RP?, which is Zo X Zy,. O

5.4. Quotient Type 4: The orbifold O,,((B2,n), (B2,m))
The orbifold fundamental group of Oy, ((B2,n), (B2,m)) is

71(On, ((B2,n), (B2,m))) = (a,b | a®" = b* = 1,ba’b™ " = a2, (ab)*™ = 1)
= ((a®) o_y (ab)) o (b) = (Zp 0_1 Lopy) 0 Zs .

The maps a and b are defined on the universal covering space of (B2,n) by
at,v) = (—t+ &,ve™), b(t,v) = (-, 7).

PROPOSITION 5.10. Let H ~ Zsy be a normal subgroup of
m1(On, ((B2,n), (B2,m))) generated by orientation preserving elements such
that the quotient group Q = m1(Op, ((B2,n),(B2,m)))/H is an abelian group.
Then one of the following is true:

NH)n=m=2, H=/(a?(ab)?) and Q = Zy x Zs;

n=1m=2, H={(ab)?) and Q = Zy X Zs;

Nn=2,m=1, H={(a?) and Q = 7o x Zo;

4)n=m=1, H=(b) and Q = Zs.

1

Proof. 1t is convenient to let x = a2, y = ab and z = b. Note that yxy~' =z,
zez~t = 71 and 2yz7! = 27yl Let H = (2°y'2¢) where 0 < s < n,
0 <t<2mand e =0 or 1l Since y is orientation reversing, x and z are
orientation preserving and H is generated by orientation preserving elements,

it follows that ¢ must be even. This implies zy*z~! = y* and 2zytz~! = y .

Case I: H = (z5y").

Assume first that s # 0 and t # 0. Since 1 = (2°y")? = 22°y?!, we ob-
tain s = 2, ¢t = m, and thus H = (z2y™). It follows that (z2y™) is
a normal subgroup, and thus no new information is obtained. Being that

1
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71(On, ((B2,n),(B2,m)))/H is abelian, we have that xtH = yHrHy 'H =
x~1H. This implies 22 € (z2y™). The equation 22 = zy™ is impossible,
and so 22 = 1 showing n = 2. This shows thatm; (Oy, ((B2,n), (B2,m))) =
(ZQ X ng) o] ZQ, and so Q = 7T1(O}L4((BQ,7’Z), (BQ,m)))/H = ng o] ZQ. The
action given in the quotient group @ is zyz~! = y™ !. In order for @ to be
abelian, m = 2, showing 1) in the statement of the proposition.

Suppose s = 0, t # 0, and so H = (y*). We will show that this gives 2) in
the proposition. It follows that ¢ = m which is even, and so H is always normal
giving no new information. Now Q = (Z,, 0_1 Zy,) 0 Zy where zyz~1 = o7 1y~ L.
In order for @) to be abelian, z =1 and son =1, and m = 2.

Next assume that s # 0, ¢ = 0 and so H = (z°). We obtain s = § and
H = (x7). Furthermore, Q = (Zz o_y Zyp,) 0 Zy. In order for @ to be abelian,
n =2 and m = 1, showing 3) in the statement of the proposition.

Case II: H = (z%y'z).

Suppose t # 0. It follows that 1 = (z°y’z)?, giving no new information.
A computation shows y(z°y'z)y~! = x=*T1y!*2z which must equal z%y'z.
Therefore y2 = 1 and m = 1, contradicting ¢ even.

Assume ¢t = 0, s # 0 and n # 1, and thus H = (z°z). A computation
shows y(z°z)y~! = 27*t1y22, which must equal 2°z implying 2%*~! = 1. In
addition, we must also have z°2 = z(2°2)2~! = 27 %2, giving #?° = 1. This
implies = 1, contradicting n # 1.

We now assume t = 0, s = 0, and thus H = (z). By normality, z = yzy~
= y?xz, which implies x = 1 and y? = 1. Thus n = 1 and m = 1, giving us 4)
of the proposition and completing the proof. O

1

COROLLARY 5.11. Let p: G — Homeopr,(RP?) be a finite abelian action such
that the quotient space RP3 /¢ is the orbifold Oy, ((B2,n),(B2,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 4 Action;

2n=m=2;

3) G = Z4 X Zg,’

4) The covering corresponds to the subgroup (a?(ab)?).

Proof. Let v: RP? — RIP3?/p be an orbifold covering map and v, (m; (RP?)) =
H, a Zs-normal subgroup of m1(Op,((B2,n),(B2,m))) with quotient
71 (Op, ((B2,n),(B2,m)))/H an abelian group. Applying Proposition 5.10,
suppose 2) or 3) holds. Then RP3/¢p is either Oy, ((B2,1),(B2,2)) or
O1,((B2,2),(B2,1)) and G = Z3 X Zs. In either case, there is a cone point of
order 4 in the quotient space RP? /. This would imply that there is an element
in G of order 4, giving a contradiction. Since b defined on the universal cov-
ering space of (B2,n) has a fixed point, 4) is also eliminated by Corollary 5.2.
This leaves 1). Now any regular covering of Oy, ((B2,n), (B2, m)) by RP? cor-
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responds to the subgroup (a?(ab)?). Therefore, any such action is conjugate to
the Standard Quotient Type 4 Action on RP3, which is Z, x Zs. O

5.5. Quotient Type 5: The orbifold O, ((B6,n), (B6,m))
Recall the orbifold fundamental group of 71 (O, ((B6,n), (B6,m))) is

(a,b,c;d | a®> =b* = c* = (be)" = d? =1,
[a,0] = [a,c] = [b,d] = [¢,d] = 1, (ad)™ = 1)
= ((be) o_1 () x ({ad) o_1 (a)) = (Zy, 0—1 L) X (L, 01 Z2) .

We note that the generators a, b, ¢ and d are all orientation reversing elements.
The maps on the universal covering space of (B6,n) are defined as follows:
a(t,v) = (—t,v), b(t,v) = (t,), and c(t,v) = (t,ve ") and d(t,v) = (—t —
1,v).

PROPOSITION 5.12. Let H ~ Zs be a normal subgroup of
71 (O ((B6,n), (B6,m))) generated by orientation preserving elements such
that the quotient group Q = m1(Op, ((B6,n),(B6,m)))/H is an abelian group.
Then the following is true:

HNn=1o0r2andm=2or4, H=((ad)?) and Q is either
ZQ XZQ, ZQ XZQ XZQ OTZQ XZQ XZQ XZQ,’

2Yn=2ordandm=1o0r2, H={(bc)%) and Q is either
ZQXZQ, ZQXZQXZQ OT‘ZQXZQXZQXZQ;

3 n=m=2, H={(bc)(ad)) and Q = Za X Lz X Ls;

4)n=m=2, H=/{cd) and Q = Za X Lo X Ls;
SSn=2andm=1o0r2, H= (ba) and Q is either Zo X Lo or Lo X Lo X Lsa;
6)n=1o0r2, m=1or2, H=/ ca) and Q is either Za, Zs X Za, or
ZQ X ZQ X ZQ,‘

7) ’I’L:m:2, H:<bd> anszszZQXZQ.

Proof. The group H = {(bc)*c* (ad)'a®?) where 0 < s < n, 0 < ¢t < m and
¢, = 0 or 1. Since both (bc) and (ad) are orientation preserving, a and ¢
are both orientation reversing, the two cases that need to be considered are
61262:00f61:€2:1.

Case I: H = ((bc)*(ad)?).

Suppose s = 0 and ¢ # 0. This implies that H = ((ad)? ) and the quotient
group Q =~ (Zn 01 Zg) X (Zm o_y Zy). If Q is abelian, we must have n = 1 or
2 and m =2 or 4.

If s # 0 and t = 0, then H = ((bc)?). The quotient group Q =~ (Zn o4
Z2) X (Zy 01 Zs), and thus if Q is abelian n =2 or 4 and m =1 or 2.

We now assume s # 0 and ¢ # 0. Since H = {(bc)*(ad)!) >~ Zs, and bc and

ad commute, we have 1 = ((bc)*(ad)’)® = (bc)**(ad)®*. This implies s = %,
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t="2and H = ((bc)2 (ad)? ). Clearly H is normal. In the abelian quotient @,
we have bH = bcHcH = cHbcH = cbcH, which implies (bc)? € H. This could
only happen if (bc)? = 1; hence n = 2. Similarly dH = aHadH = adHaH
= adaH, which implies (ad)? € H and m = 2. Thus H = {((bc)(ad)) and
n=m=2.

Case II: H = ((bc)*c(ad)ta).

Suppose s = 0 and ¢ # 0. In this case H = (c(ad)ta). By normality, c¢(ad)ta
= (ad)[c(ad)ta](ad)™ = c(ad)*(ad)?a, which implies (ad)? = 1, m = 2 and
t = 1. Likewise, c(ad)ta = (bc)[c(ad)ta)(bc)™t = (be)%c(ad)ta shows (be)? =1
and n = 2. Therefore in this case, m1 (O, ((B6,2),(B6,2))) is abelian and
H = (cd).

If s # 0 and ¢ = 0, then H = ((bc)®ca). Conjugating the generator by
be and using the argument from the previous case, shows that (bc)? = 1, and
therefore n =2, s =1 and H = (ba). In order for @ to be abelian m =1 or 2.

We consider the case where s =t = 0 and H = (ca). Suppose n # 1. By
computing, we obtain (bc)(ca)(bc)™! = beba, and by normality this must equal
ca. Hence we obtain (bc)? = 1 which implies n = 2. Similarly, if m # 1, then
(ad)(ca)(ad)~t = ca(ad)~'(da) = ca(ad)~2. By normality, this must equal ca,
and thus (ad)~2 = 1 implying m = 2. We conclude that n = 1 or 2, and m = 1
or 2.

Finally consider the case s # 0 and t # 0 and H = {((bc)*c(ad)'a). By
conjugating the generator by bc and ad, we conclude as above that n = m = 2.
Thus the group is abelian and H = (bd). O

COROLLARY 5.13. Let ¢: G — Homeopr,(RP3) be a finite abelian action such
that the quotient space RP3 /¢ is the orbifold Oy, ((B6,n),(B6,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 5 Action;

2n=m=2;

3) G:ZQXZQXZQ;

4) The covering corresponds to the subgroup {(bc)(ad)).

2

Proof. We obtain the following maps: (be)(t,v) = (t,ve™n ), (ed)(t,v) = (—t —
1,oe %), (ba)(t,v) = (—t,7), (ca)(t,v) = (—t,ve~ ") and (bd)(t,v) = (—t —
1,7). Note that all these maps have fixed points, and therefore 2) and 4) - 7)
in Proposition 5.12 may be excluded by Corollary 5.2.

The element ad in m ((B6,n)) is identified (See Appendix) with the ele-
ment yz in 71 ((B6,m)), and (yz)(t,v) = (t,ven" ) which has a fixed point.
Thus 1) in Proposition 5.12 is excluded like the others above. Hence, the
only remaining case in Proposition 5.12 is 3). Since any regular covering of
On.((B6,n),(B6,m)) by RP? corresponds to the subgroup((bc)(ad)), any such
action is conjugate to the Standard Quotient Type 5 Action on RP? which is
ZQ X ZQ X ZQ. ]
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5.6. Quotient Type 6: The orbifold O, ((B7,n), (B7,m))
The fundamental group of O, ((B7,n), (B7,m)) is

{a,b,c | a® =" = (abtab)™ = ¢* = 1,[a,b*] = [a,c] = 1,cbc™ " = b~ 1)
= ({ab™"ab) o_y {a)) o ((b) 0—1 (€)) = (Zyn 01 L) © (Zan -1 L3).

The maps a, b and ¢ act on the universal covering space of (B7,n) as follows:
a(t,v) = (—t—1,v), b(t,v) = (=t,ver ), c(t,v) = (t,v). Note also that bab~! =
b~lab. For convenience if we let d = ab~'ab, then bdb~! = d~ ', bab™' = ad
and cde™! = d.

PROPOSITION 5.14. Let H ~ Zs be a normal subgroup of
71 (O ((B7,m), (B7,m))) generated by orientation preserving elements such
that the quotient group Q = m1(Ons((B7,n),(B7,m)))/H is an abelian group.
Then the following is true:
HNn=2m=1, H=(b?) and Q = Zo X Zy X Ls;
2)n:1,m:2,H:<d> andQ:ZQXZQXZQ;
3)n=m=1, H is one of the groups {(ac), {ab), (bc) and Q = Za X Zs.

Proof. The group H = (d®a®1b'c®?) ~ Zo where 0 < s < m, 0 < t < 2n and
€; = 0 or 1. Since a, b and c¢ are orientation reversing elements, it follows that
d is orientation preserving. Since H is an orientation preserving subgroup, we
have the following cases to consider: I) t is even, and either ¢; = e3 = 0 or
€1 =6 = 1, IT) ¢ is odd, and either ¢ =1 and e =0 or ¢ = 0 and e = 1.

Case I: t is even.

We consider first the situation when €; = e = 0, and thus H = (d®b").
Assume s # 0 and t # 0. Since t is even, it follows that b* commutes with d,
and thus 1 = (d*b")? = d?*b*. This impliess = 2, t = nand H = (d2b"). One
can verify that H is indeed a normal subgroup. Since the quotient @) is abelian,
we have dH = (bH)(dH)(bH)™' = d='H, or d*> € (d%b"). This is impossible
unless d*> = 1. Thus m = 2, the fundamental group 71 (O, ((B7,2), (B7,m)))
= (ZQ X ZQ) o (Zgn o_1 ZQ) and H = <dbn> Now Q = ZQ X (Zgn o_1 ZQ),
which is not abelian unless n = 1. However in this case t = n is even giving a
contradiction, and so this subcase cannot happen. Therefore, in this case either
s=0ort=0. Suppose s = 0, and thus H = (b*). It follows that ¢ = n and
H is always a normal subgroup. Furthermore, Q = (Z,, o—1 Z3) o (Z,, o—1 Z5)
being abelian implies m =1 and n = 2, and thus m (On, ((B7,2), (B7,1))) =
Zo X (Zgo_1 Zs). A similar argument shows that if t = 0, then n =1, m = 2,
H = <d> and 7T1(Oh6((3772), (B?, 1))) = (ZQ X Zg) o (ZQ X Zg)

Assume €; = ¢ = 1 and hence H = (d®ablc). If s = 0 and H = (ab’c),
then we always have 1 = (ab’c)? giving no new information. By normality,
abc = b(ablc)b~! = adb'*2c, which implies m = 1, b> = 1 and n = 1. Since
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t is even, we must have ¢ = 0. Thus n = m = 1, m(On,((B7,1),(B7,1))) =
Zo X Lo x Ly and H = {ac). We now suppose ¢t = 0 and H = (d°ac). It always
follows that 1 = (d*ac)®. By normality, d®ac = b(d*ac)b=! = d=*"tab’c =
d=*"'b%ac. This implies b*> = 1, n = 1 and s = 1. Conjugating by a yields
A" ac = a(mef1 ac)a~! = dlmeac7 which implies d =1 and m = 1. The two
outcomes give us 3) in the statement of the theorem. We now suppose s # 0
and t # 0. In this case it always follows that 1 = (d®ab’c)?, so we do not obtain
any new information. By normality, we must have d*ab'c = b(d*ab'c)b™! =
d—%"tab?*2c, which implies s = mT_l, b> =1 and n = 1. Since t is even, t = 0
giving a contradiction.

Case II: ¢t is odd.

We suppose €1 = 1 and e = 0, and thus H = (d®ab’). If s = 0 and thus
H = (ab'), then 1 = (ab’)? = db*. This implies d = 1, m = 1 and t = n.
Thus the orbifold fundamental group is Zg X (Zay, 0—1 Zs) and Q = Zgy, 0_1 Zo.
Now @ is abelian only if n = 1. Thus n = m = 1, m(Op,((B7,1),(B7,1))) =
Zo % (Zg x Zs) and H = (ab). Suppose s # 0 and H = (d*ab’). Since H ~ Z,
1 = (d*ab")? = d*>*T1b*, so s = 21 implying m is odd, and ¢ = n which is
also odd. Thus H = (d™= : ab™), and one can check that this is always a normal
subgroup. Suppose m # 1. Since @Q is abelian, we have dH = (bH)(dH)(bH) ™!
= d~'H, implying d> € H. It follows that d> = 1 and m = 2. However
m is odd giving a contradiction. Thus m = 1, 71 (O, ((B7,n),(B7,1))) =
Zo X (Zap 0—1 Zs) and H = (ab™). Now @ = Za,, 0_1 Z, which is abelian only
if n = 1. Thus in this case n = m = 1 to obtain m (O, ((B7,1),(B7,1))) =
ZQ X (ZQ X Zg) and H = <(lb>

Assume now that € = 0 and e = 1, and thus H = (d*b’c). If s = 0
and H = (bc), then it always follows that 1 = (b'c)2. By normality, b'c =
a(btc)a= = db'c. Thus d = 1, m = 1 and the orbifold fundamental group is
Za X (Zan 01 Z3). Again by normality, btc = c(b'c)c™! = b~ ¢, implying t = n.
Furthermore, b"c = b(b"c)b~! = b"*2¢. This implies b = 1 and n = 1. Thus
n =m =1 so that m (On,((B7,1),(B7,1))) = Z3 x (Za X Z3) and H = (bc).
We now suppose s # 0. A computation shows that (d*bfc)? = 1 is always
true. Suppose m # 1. By normality, d*b'c = a(d*bic)a™t = d=*tblc, and
thus s = 2L £ 0 and H = (d™2"b'c). Again by normality, we have d™2" bic

m+1 —m—1

= b(d"2 blc)b™t = d— = b'*2c, which implies d™! = 1. Hence d = 1 and
m = 1, contradicting the fact that m # 1. Hence m = 1 and H = (b'c).
Using normality, we have btc = b(btc)b=! = b'T2¢c, or b2 = 1. Thus n = 1,
7T1(Oh6((37, 1), (B7, 1))) = ZQ X ZQ X ZQ and H = <bC> O

COROLLARY 5.15. Let ¢: G — Homeopr,(RP3) be a finite abelian action such
that the quotient space RP3 /¢ is the orbifold O, ((B7,n),(B7,m)). Then the
following is true:

1) The action is conjugate to the Standard Quotient Type 6 Action;
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2) n
) G ZQ X Zg,
4) The covering corresponds to the subgroup (ab).

Proof. Note that in 1) of Proposition 5.14, b*(¢,v) = (t, —v), and in 3) ac(t,v) =
(=t —1,7) and be(t,v) = (—t, —0). Since they have fixed points, these cases are
excluded by Corollary 5.2. In 2) of Proposition 5.14, d = ab~ab € 71 ((B7,1))
is identified with y? € 7 ((B7,2)) (See Appendix). Since y(t,v) = (—t,vem ),
we see that y™ has a fixed point, and we may exclude this case. This leaves only
the 3) where n = m = 1 and the subgroup (ab). Since any regular covering
of O, ((B7,n),(B7,m)) by RP? corresponds to the subgroup(ab), any such
action is conjugate to the Standard Quotient Type 6 Action on RP? which is
ZQ X ZQ. O

5.7. Quotient Type 7: The orbifold O,,((B1,n), (B8, m))
Recall that the orbifold fundamental group is

™1 (On, ((B1,n), (B8, m)))
={a,byc|a" = =c*=1,bab"' =a7' [a,c] =1, (ch)*™ =1)
= (a) o ({cb) 01 (c)) = Zn o Dih(Zypm) -

It follows that (cb)a(cb) ™! = a~!. From the Appendix, that maps a, b, ¢ on the
universal covering space of (B1,n) are defined as follows: a(t,v) = (t,ve?™/™),
b(t,v) = (—t,v), and c(t,v) = (3 — t,v).

PROPOSITION 5.16. Let H ~ Zs be a normal subgroup of
71 (O, ((B1,n), (B8, m))) generated by orientation preserving elements such
that the quotient group Q = m1(Op,((Bl,n),(B8,m)))/H is an abelian group.
Then the following is true:

(b) or (ab)y and Q is Lo X Zo;
and Q 18 Zo X Lo X Lo;

Hn=2,m=1, H is {(a),
2n=4,m=1, H=(a?
n=1o0r2, m=2 H=/{(cb)? and Q is either Zo x Ly or Lo X Ly x Zs.

Proof. The subgroup H = (a®(cb)!cc) where 0 < s < n, 0 < t < 2m and
€ = 0 or 1. Since only c is orientation reversing, the elements cb and ¢ are
orientation reversing. Thus there are two cases to consider, ¢ even and € = 0,
or t odd and € = 1.

Case I: t is even, € = 0, and thus H = (a®(cb)").

Since t is even, we have 1 = (a®(ch)!)? = a®*(cb)?!. Suppose first that
t =0and s # 0, and thus H = (a®). It follows that s = %, H is normal and
Q=2Zzo (Ziym 01 Zy). In order for @ to be abelian, we must have § = 1 or 2
and m = 1. This gives us 1) and 2) in the statement of the proposition.
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Suppose t # 0 and s = 0, and so H = ((cb)!). We see that ¢t = m which is
even, and thus a and (¢b)™ commute. This implies H is always normal. Now
Q = Zy, 0 (Zy, 0o—1 Zs), which is only abelian if both n and m equal 1 or 2.
Since m is even, m = 2. and this gives 3). Assume next that ¢ # 0 and
s # 0. It follows that s = 5§ and ¢t = m where m is even. A check shows that
H = (a%(cb)™) is always normal. Since @ is abelian, we must have a ' H =
(ecbH)(aH)(cbH)™! = aH, which implies a®> € {a? (cb)™). This is impossible
unless a? = 1, and thus n = 2. This shows H = {a(cb)™), and Q = Zgy, 0_1 Zs.
This can only be abelian if m = 1, which contradicts m being even. So this

sub-case cannot happen.

Case II: ¢ is odd, e = 1, and thus H = (a®(cb)*c).

It is always the case that (a®(cb)’c)? = 1, since t is odd. Suppose s = 0,
and so H = ((cb)'c). Now a(cb)ica! = a?(cb)tc, which must equal (cb)tc by
normality. This implies n = 2. Furthermore, (cb)((cb)tc)(cb)™ = (cb)i*2c,
which by normality must equal (cb)’c. This implies (¢b)? = 1 and m = 1.
Thus 71 (Oy,, ((B1,2),(B8,1))) = Zs x (Zz X Z3) and H = ((cb)c) = (b), giving
1). We now assume s # 0, and thus H = (a®(cb)'c). A computation shows
a(a®(cb)tc)at = a*+2(cb)tc and (cb)((a®(cb)te)(ch) ™t = a=%(cb)!*2c. By nor-
mality, it must be the case that a®> = 1 and (¢b)? = 1. Thus n =2 and m = 1,
which implies H = (a(cb)c) = (ab), giving us 1). O

COROLLARY 5.17. There is no abelian action on RP3, whose quotient space is
the orbifold Oy, ((B1l,n), (B8,m)).

Proof. By Proposition 5.16, we need only consider the subgroups listed there.
Observe that the maps a, a?, b and ab have fixed points in the universal cover
of (B1,n). So these cases may be excluded by Corollary 5.2. The remaining
case to consider is the subgroup generated by (cb)?> where n = 1 or 2 and
m = 2. From the Appendix, we see that the elements ¢ and b in 71 ((B1,n))
are identified with the elements y and yz in w1 ((B8,2)) respectively. Thus
(cb)? is identified with (y%2)2. The maps y and z acting on the universal cover
R x D? of (B8, 2) are defined by y(t,v) = (t,7) and 2(t,v) = (1—t,ve? ). Since
y? = 1, we have (cb)? identified with z2. Note that 22 has a fixed point. Again
applying Corollary 5.2 proves the result. O

6. Main results

In the last section of this paper, we summarize the main results.

THEOREM 6.1. Let ¢: G — Homeopr,(RP3) be an orientation reversing finite
abelian action. Then one of the following cases is true:
1) G = Zaos,, whereb>1, m is odd and RP3 /¢ is Oh;1((B5, 26=1m), (A1,2));
2) G = Zam, m is odd and RP3 /¢ is t th—l((B47m)7 (A3,1));
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3) G = Zy, X Lo, m even and RP3/p is Op, ((A2,2),(B3,,m));
)i

G
4) G =74 x Ly, and RP3/p is Oy, ((B2,2), (B2,2)
5) G

=7y X Ly x Ly and RP3 /¢y is t Oy, ((B6, ), (B6,2));
6) G =Za x Zy and RP?/¢ is t Oy, ((B7,1), (BT 1))
Furthermore, in each individual case i), where 1 < i < 6, ¢ is equivalent to the

Standard Quotient Type i Action.

Proof. Let ¢: G — Homeopr,(RP?) be an orientation reversing finite abelian
action. By Corollary 4.2, ¢ splits and preserves the sides of the splitting.
Write RP? = V; U Vs, where each V; for i = 1,2 is a ¢(G)-invariant solid torus.
The non-orientable 3-orbifold V; /¢ (G) is one of the orbifolds (A1, n),...,(A43,n),
(B1,n),...,(B8,n). This implies that if v: RP? — RP3/p(G) is the orbifold
covering, then RP3/o(G) is O¢(X,Y) where X and Y are any of the orb-
ifolds (Al,n),...,(A3,n),(B1,n),...,(B8,n) and £&: 0X — 9Y is some home-
omorphism. Since v, (71 (RP?)) has finite index in 71(O¢(X,Y)), it follows
that m1(O¢(X,Y)) is finite. By Theorem 2.1, O¢(X,Y) is one of the seven
orbifolds listed in the chart. Corollary 5.17 states there is no orientation
reversing finite abelian action on RP? whose quotient space is the orbifold
Oy, ((B1,n), (B8, m)), thus excluding the seventh orbifold in the chart. Apply-
ing Corollaries 5.5, 5.7, 5.9, 5.11, 5.13 and 5.15 to the first six orbifolds proves
the result. O

Appendix

In this Appendix, we will define the orbifolds (Al,n),...,(43,n),(B1,n),...,
(B8, n) along with their fundamental groups. Since the fundamental groups of
each boundary surjects onto the fundamental group of their orbifolds, we use
the same letters for both presentations of the fundamental groups. In addition,
if X and Y are orbifolds from this list having homeomorphic boundaries, we
will identify the orbifolds O¢(X,Y) obtained by identifying 0X to 9Y via §
which have finite fundamental groups.

In describing the orbifolds O¢ (X, Y), we will give the details for X = (A1, n)
and Y = (B5,m) by providing the definition of the lift of the gluing map
£: 0X — 0Y to the universal cover of each boundary component. In addition,
we obtain a description of the lift of the gluing map on the orientable cov-
ers OV (n) and 9V (m) of 9(Al,n) and 9(B5, m) respectively. For subsequent
orbifolds, we just describe the lift of the gluing map to the covers OV (n) and
OV (m) and refer the reader to [13] for the details.

We start by considering the orbifolds which are double covered by (A0, n).
It will be convenient to define the 2-dimensional orbifolds D?(n) and A(n). Let
7, be a rotation and r. be a reflection on D?, defined by 7,(pe’?) = pet0+2m/n)
and r.(pe??) = pe=®. Now D?/(r,) is the orbifold D?(n) whose underlying
space is a disk, and has a cone point of order n in its center. The map 7,
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induces a reflection 7, on D?(n), and D?(n)/(r.) is the orbifold denoted by
A(n). We may be parameterize it as {pe? | 0 < p <1, 0 < 8 < 7} where the
point (0,0) is a coner-reflector point of order n, and {pe? | # = 0 or 7} is the
set of mirror points.

In addition, we need to define the 3-dimensional orbifolds B3(n), C'(P?,2n)
and Z". Let B® = {(x,y, 2) | 22 +y? + 2% < 1} and for any point (z,y,2) € B3
using spherical coordinates, we have x = p sing - costl, y = p sin¢ - sinf and
z = p cos¢ where 0 < p < 1. We begin by defining a rotation of order n on B>
as follows:

r(z,y,2) = (p sing - cos(§ + 2Z), p sing - sin(6 + 2X), p cosg).

Note that r fixes the line segment {(z,y,2) € B | 2 =0,y =0, -1 < z < 1}.

We define the antipodal map i on B? by i(x,y,2) = (—x, —y, —2). In terms
of the spherical coordinate system, i(x,y,z) = (p sin(¢ + 7) - cosf, p sin(¢p +
7) -sinf, p cos(¢ + 7)). Observe that ioroi=t =r.

Let B3(n) be the orbifold B?/(r), which is a 3-ball with an arc of excep-
tional points of order n. The induced involution on B3(n) is designated by i,
and denote C(P?,2n) to be the 3-orbifold B3(n)/(i). The underlying space of
C(P2,2n) is the cone over the projective plane P2, which is P? x [0, 1]/(w, 0) =~ *,
where * indicates a point. The exceptional set consists of an arc where all points
except one endpoint have order n, and the other endpoint has order 2n. The
boundary of this orbifold, 9(C(P?,2n)), consists of a projective plane with one
cone point of order n.

Let Z" be the orbifold B3(n)/(r.) where the reflection r.: B3(n) — B?(n) is
defined by 7.(z,y, z) = (2,9, —2). The underlying space of Z” is a 3-ball, with
a half of its boundary is a mirrored disk, together with an arc of exceptional
points each of order n except for one endpoint meeting this mirrored disk at a
point of order 2n. Let s: B> — B3 be the spin involution about the y-axis which
we defined by s(z,y, 2) = (p sin(¢+7)-cos(—0), p sin(p+m)-sin(—0), p cos(dp+
7)). Notice that srs™! = r=1, and thus s induces an involution 3 on B3(n).
Let B3(n,2,2) = B3(n)/(3). The underlying space of B3(n,2,2) is a ball with
a properly embedded tree having three edges meeting at one point of order 2n,
with two of the edges labeled with a 2 and the remaining edge labeled with
an n.

Orbifold (A1, n): It will be convenient to view the elements of the fundamental
groups as acting on the universal covering spaces of d(A1,n) and (A1, n). Let
R? be the plane and define a,b: R* — R? by a(t,s) = (t — 3, —s) and b(t, s) =
(t—1,—s+1). Note that a* = b2, and (ab=')"(t,s) = (t,s — 1). If n: R? —
R2/{(ab=1)") = Rx S, then 7(t, s) = (t,e>™*) and the induced maps a, b: R x
St — R x St are defined by a(t,v) = (t — 3,7) and b(t,v) = (t — %7562§i).
These maps extend to R x D2, which is the universal covering of (A1,n),
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and we will use the same labels for the extensions. We obtain a covering
p1: Rx D% — R x D?/(a? ab™') = V(n) defined by p; (¢, pe’®) = (e*"%, pe'™?).
The induced map a; on V(n) is defined by a; (u,v) = (—u,v) and V(n)/{a1) =
(A1,n). The orbifold (Al,n) is a solid Klein bottle with a simple closed curve
core of exceptional points of type n. The boundary 9(Al,n) is a Klein bottle
with fundamental group m1(9(A1,n)) = (a,b | a®> = b?). Since a(ab=)a"! =
a’b~ta™t = b*ta7! = ba! = (ab~1)71, it follows that ab~! is a meridian
curve. Thus the orbifold fundamental group of (A1, n) is

11((A1,n)) = (a,b | a®> = b%,(ab™")" =1) and
71 (0(A1,n)) = {a,b | a* = b*).

Orbifold (B5,m): Let D; and Dy be two disjoint disks in dB3(m) contain-
ing the exceptional points. We consider the orbifold C(P?,2m) U B3(m) U
C(P%,2m) = (B5,m) where we glue D; to the boundary of one copy of
C(P%,2m) and D; to the boundary of the other copy of C(P?,2m) so that
the exceptional sets match up. Furthermore, 9(B5,m) is a Klein bottle whose
fundamental group surjects to the orbifold fundamental group of (B5,m). It
can be seen that if f: V(m) — V(m) is the map defined by f(u,v) = (@, —v),
then V(m)/(f) = (B5,m).

We view the generators of the fundamental groups acting on the universal
covering space. Let &,7: R? — R? be defined by Z(t,s) = (—t,s — ﬁ) and
G(t,s) = (—t+1,s— 5). Observe that #* = §* and 272" (t,s) = (t,s+1). We
obtain a covering n: R? — R?/(772™m) = R x S! defined by n(t, s) = (t, ™).
The induced maps = and y on R x S* are defined by 2(t,v) = (—t,ve 7 ) and
y(t,v) = (—=t+1,ve = ). These maps extend to R x D?, which is the universal
covering of (B5,m). Let p1: R x D?> — R x D?/(yx~!,272) = V(m) be the
covering map defined by p; (t,v) = (€27 v™). The induced map x1: V(m) —
V(m) is defined by x4 (u,v) = (@, —v), and V(m)/{x1) = (B5,m). The orbifold
fundamental group of (B5,m) is

71 ((B5,m)) = (x,y | 2% =92, 2°™ =¢y*™ =1) and
m1(9(B5,m)) = (z,y | 2* = y?).
Orbifold Oy, ((A1,n), (B5,m)): Recall that the maps defining the fundamen-

tal groups a@,b, %, j: R? — R? are defined as follows: a(t,s) = (t — %, —s),

b(t,s) = (t— 3, —s+ 1), @(t,s) = (—t,s — 5) and §i(t,s) = (—t+ 1,5 — 5).
We obtain covering maps Ay: R2 — R2/(a%,ab™') = Ty = 9(A0,n) and
Ao R? — R?/(772, 577 1) = Ty = O(B5, m) defined by A (t,s) = (e2m, ?mins)
and \o(t,s) = (€27, e2™ims) respectively. The induced maps a; on T} and x;
on Ty are defined by a;(u,v) = (—u,7) and x;(u,v) = (u, —v) respectively. We
obtain covering maps p1: 71 — T1/{a1) = 0(Al,n) and po: T — To/{x1) =
d(B5,m).
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Define a map h: R? — R? by h(t,s) = (ns, L), and note that hl(t,s) =
(ms, ). We compute hah~(t,s) = ha(ms, 1) = h(ms — 1,-L)y = (~t,s—
7) = &(t,s). A similar computation shows that hbh~' = §j. Thus h projects
to maps hq and h making the following diagram commute:

R2 M, R

[

Tl L) TQ

lm lm
9(Al,n) —— 9(B5,m)

A computation shows that hy(u,v) = (v, u) for any (u,v) € T}.

When we identify 0(Al,n) to d(B5,m) via hy, the generators are identi-
fied by @ = z and b = y. It follows that the orbifold fundamental group of
Oh1 ((Ala 7’7/), (B5? m)) is

71(On, ((A1,n), (B5,m))) = {(a,b | a* = b*, a®™ = b*™ = (ba™')" = 1)
= <ba_1> o_1{a) =2y o1 Lom .

We note that both a and b are orientation reversing elements.

Orbifold (A3,n): The orbifold (A3,n) is

(A(n) x [0,1])/(pe”,0) = (pe' ="~ 1).

and the underlying space of (A3,n) is a solid Klein bottle. The boundary of
the underlying space consists of two Mobius strips, one of which is mirrored
containing an orientation reversing circle of cone points of orders n.

The universal covering space of (A3,n) is R x D?, and the covering transfor-
mation maps a, b, c on R x D? are defined as follows: a(t, pe’?) = (t, pei(e"‘%’r)),
b(t, pe’) = (t, pe=") and c(t, pe'®) = (t+ 3, pe'(=9=%)). A computation shows
the following: cac™ = a™', cbc™! = ba, bab~! = a~!, a” = b = 1. Hence the
group generated by these elements is Dih(Z,) 0c Z = ({a) o_1 (b)) o (c).

Define an orbifold covering map p;: R x D? — R x D?/(a,c?) = ‘7(71) by
p1(t, pe'?) = (€27, pe?). The maps b and c induce maps b; and ¢; respectively
on V(n), and it can be shown using the covering map p; that by (u,v) = (u, )
and ¢1(u,v) = (—u, —v). Observe that bycy(u,v) = (—u, —v). Let py: V(n) —
V(n)/{bic;) = V(n) be the orbifold covering map, and note that ps(u,v) =
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(u?,uv). We see that b; induces a map by on V(n) defined by ba(u,v) =
pobi(u'/?, u=?v) = (u,uw). Tt follows that V(n)/(bs) = (A3,n) and the
fundamental group m1((A43,n)) = ((a) o_1 (b)) o {¢) = Dih(Z,,) o Z.

The boundary of (A3, n) is a mirrored Mobius band mAM, and its fundamen-
tal group 7y (mM) = ((a) o_1 (b)) o (c) = (Zo_y Zy) o Z. It may be convenient
to write 7y (mM) = ((b) * (ba)) o (¢) = (Zg * Zs3) o Z where c¢bc™' = ba and
c(ba)c™ = b. Thus, the orbifold fundamental group of (A3, n) is

71((A3,n)) = (a,b,c | a™ =b* = 1,bab™' = a*, cac™ = a*, cbe™! = ba)
= (Zn o_1 Zg) oZ and
71(0(A3,n)) = (b,ba,c | chc™! = ba,c(ba)c™! =b) = (Zy * Zy) o Z.

Orbifold (B4,m): The orbifold (B4,m) is C(P?,2m) U B3(m) U Z" where
the exceptional sets of order m match up. The boundary 9(B4,m) is a mir-
rored Mobius band. The covering translations on the universal covering space
R x D2 of (B4, m) are defined as follows: z(t,v) = (t+1,v), y(t,v) = (t,ve ),
2(t,v) = (—t,ve’m"). The element z is an orientation reversing element.
Define an orbifold covering map p;: R x D? — R x D?/(z,y) = V(m) by
p1(t, pe’®) = (e¥™, pe?™). Then z induces a map z;: V(m) — V(m) defined
by z1(u,v) = (@,uv). The quotient space V(m)/(z1) is the orbifold (B4, m)

and its fundamental group is

z,y,z | [z,y]=1y" = =22 =lzzz ' =a Yy, 2yz = y)

(
=(Z X Zy)oZy and

71 (0(B4,m)) = (™ %yz, 2, zz| (22)(x2yz)(22) "' = 2, (22)2(22) 7! = 27%y2)
= (27 2y2) % (2)) o (22) = (Zy % Zy) o Z.

Orbifold Op,((A43,n),(B4,m)): Recall that oV (n)/(b2) = 0(A3,n) and
V(m)/(z1) = 9(B4, m) Define ha: OV (n) — 9V (m) by By ( v) = (?, uv)
and observe that hy '(u,v) = (uv?,uv). Since hobshy ' = 21, we obtain the
following commutative diagram:

m1((B4,m)) =

V) —T2s av(m)
9(A3,n) —2— 9(B4,m)

where p; are the quotient maps.

We use the map ha: 0(A3,n) — I(B4,m) to define Op,((A43,n), (B4, m)).
It follows by [13], that the generators are identified by b = 2, ba = x~%yz, ¢ = 2z
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and ¢? = y, and so the orbifold fundamental group m1(Op,((A3,n), (B4,m)))
is

{a,bycla™ =b* = =1,bab™ ' =a" ', cac™* =a~ ', cbe™ = ba)

= ({@) o—1 (0) © (¢) = Dih(Zy) © Zom -

The elements b and ¢ are orientation reversing elements in the fundamental
group.

Orbifold (A2,n): Define the maps a, b, c: Rx D? — Rx D? as follows: a(t,v) =
(t +1,0), b(t,v) = (t,ve™s"), e(t,v) = (t,7). We obtain an orbifold covering
map p;: R x D? — R x D?/(a,b) = V(n) defined by p; (¢, pe??) = (€2 pein?).
Then ¢ induces an involution ¢;: V(n) — V(n) defined by ¢ (u,v) = (u,7).
There is an orbifold covering map uq: V(n) — V(n)/(c1) = (A2,n). The
orbifold (42,n) = S* x A(n), has underlying space a solid torus with boundary
0(A2,n) a mirrored annulus. The orbifold fundamental group of (A2,n) is

((A2,n)) = {(a,b,c | [a,b] = [a,c] = 1,b" = 1,cbc * =b 1, =1)
= ({b) o_1 {¢)) x {(a) = Dih(Z,) x Z and
m1(8(A2,n)) = (a,b,c | [a,b] = [a,c] = 1,cbc™ =b1,¢* = 1)
— Dih(Z) x Z

Orbifold (B3,m): On R x D? define maps z, y and z by x(t,v) = (t + 1,v),
y(t,v) = (t,ve’) and z(t,v) = (—t,v). As above, we obtain an orbifold
covering map po: R x D? — R x D?/{x,y) = V(m) defined by p;(t, pe?¥) =
( 27mt,pezm9).

The induced involution z;: V(m) — V(m) is defined by z1(u,v) = (4,v).
There is an orbifold covering map pz: V(m) — V(m)/(z1) = (B3,m). The
orbifold quotient (B3,m), has underlying space D? x I with both D? x {0}
and D? x {1} being mirrored, and an exceptional set {0} x I of order m. The

boundary 9(B3,m) is a mirrored annulus. The orbifold fundamental group of
(B3,m) is

m((B3,m)) = (z,y,z | [z,y] = 1,y" =1,[y, ]—1 zez =27t 2% =1)
= ((z) o—1 (2)) x (y) = Dih(Z) x and
71 (0(B3,m)) = (z,y,2 | [r,y] = [y,2] = 1, 2027 = x71722 =1)

= Dih(Z) x Z.

Orbifold Oy, ((A2,n),(B3,m)): Recall that 0V (n)/{(c1) = 0(A2,n) and

oV (m)/(z1) = 9(B3, m) Define h: IV (n ) — dV(m) by hs(u,v) = (v,u)
and observe that h = hs. Since hgclh = 21, we obtain the following
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commutative diagram:

V() —ls av(m)

lm luz
O(A2,n) — (B3, m)

where p; are the quotient maps. Identify 9(A2,n) to (B3, m) via hj to obtain
the orbifold Op,((A2,n), (B3,m)). It follows by [13] that that the generators
are identified by a = y, b = x and ¢ = z. Hence the orbifold fundamental group
is

m1(Ons ((A2,n), (B3, m)))
= (a,b,c|[a,b] = [a,c] = 1,a™ = b" =c=1,cbet =b" 1)
= ((b) o1 () x {(a) = Dih(Zyp) X Zy, .

The element c is an orientation reversing element.

Orbifold (B2,n): The orbifold (B2,n) = B3(n,2,2) U C(P?,2n) where a disk
in 9(B3(n,2,2)) containing the exceptional point of order n is identified to a
disk in 9(C(P?,2n)) containing the exceptional point of order n.

Define maps a and b on R x D? by a(t,pe’?) = (—t + 1, pe’®* %)) and
b(t, pe'®) = (—t, pe~). The map a is orientation reversing. It is easy to check
that a2(t, pei®) = (t, pe'®+350)) and (ab)2(t, pei®) = (t+ 1, pei?), hence we have
relations a®” = b? = 1 and ba?b~! = a2, The manifold R x D? is the universal
covering of (B2,n), which can be seen by means of the following sequence of
coverings. First, let p: R x D? — R x D?/(a?, (ab)?) = V(n) be defined by
p(t, pe?) = (e2™ pein?). The induced maps a; and b; on V(n) are defined
by ai(u,v) = (—u,—v) and by (u,v) = (u,v). Secondly, we have a covering
map p1: V(n) — V(n)/{(b1) = (BO,n), and a; induces the anti-podal map as

n (BO,n). Finally we obtain a covering map u: (B0,n) — (B0,n)/{(az) =
(B2,n). The orbifold fundamental group of (B2,n) is

m((B2,n))

a,b|a®™ =b* =1,ba*b" ' =a7?)
(a®) o (ab)) o (b) = (Z, 0Z) 0 Zy and
a,b | b* =1,ba’b' =a?)

(a®) o (ab)) o (b) = (ZoZ) o Zs>.

m1(0(B2,n))

(
(
(
(

The boundary of (B2,n) is a projective plane with two cone points each of
order 2 (See Figure 3).
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Figure 3: 9(B2,n)

Orbifold Oy, ((B2,n), (B2,m)): We use the letters z and y to denote the gen-
erators of m1((B2,m)), and note that the definitions are identical with n re-
placed by m. Thus R x D?/{a?, (ab)?) = V(n) and R x D?/(z? (xy)?) =
V(m); and V(n)/(b1) = (BO,n), and V(m)/{y1) = (B0, m). Define a map
hy: OV (n) — AV (m) by ha(u,v) = (—v,u) and observe that hy'(u,v) =
(v,—u). A computation shows ﬁ4a1ﬁ;1 = ylel and iL4b1iLZ1 = y1. Thus

hy induces maps ?L4 and h4 making the following diagram commute:

Vin) —My avV(m)

|7 |7

8(B0,n) —“— 9(BO,m)

lm lﬂg
a(B2,n) — 9(B2,m)

By identifying 9(B2,n) to (B2, m) via hy, it follows by [13] that the generators
are related by a = yz~! and b = xyz. It follows that ab = = and a?b = y.
Thus the orbifold fundamental group is

7T1(Oh4((B27TL), (B27m))) = <a7b I a® =b" = 17ba2b_1 = a_27 (ab)2m = 1>
= ({(a®) o_1 (ab)) o (b) = (Zp, 0_1 Zizpn) 0 Zs .

The element a is an orientation reversing element.

Orbifold (B6,n): Define maps on R x D? by a(t, pe’®) = (—t, pe'?), b(t, pe’?)
= (t,pe %), c(t, pe®) = (t,pei(_e_zf)) and d(t, pe’®) = (=t — 1,pe’?). Let
p: R x D2 — R x D?/{ad,bc) = V(n) be defined by p(t, pe’?) = (2™, pein?).
Then @ and b induce maps a; and b; on V(n) defined by a1 (u,v) = (4,v)
and by(u,v) = (u,7). Furthermore, there is a covering map p;: V(n) —
V(n)/{a1b1) = (B0,n) and by induces a reflection by on (B0,n) through a
disk containing the exceptional set. Modding out by b, we obtain the final
covering map p: (B0,n) — (B0,n)/(b2) = (B6,n). The orbifold fundamental
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Figure 4: 9(B6,n)

group of (B6,n) is

71 ((B6,n)) = (a,b,c,d | a®> =b* = c? = (be)" = d* = 1,
[a,b] = [a,c] = [b,d] = [c,d] = 1)
= ((bey o1 (c)) x ({a) x{d)) = (Zy, 0o_1 Z3) X (Za * Z3) and
71(8(B6,n)) = (a,b,c,d | a®* =b* = * = d* = 1,
[a,b] = [a,c] = [b,d] = [c,d] = 1)
= ((be) o—1 () X ((a) * (d)) = (Z o1 Z3) X (L3 * Z3).

The boundary of (B6,n) is a mirrored disk with four cone points of order two
on the mirror (See Figure 4).

Orbifold Oy, ((B6,n), (B6,m)): As above, we use the letters z, y, z and w to
denote the generators of m ((B6,m)) where the definitions are identical with m
replacing n. Thus Rx D?/(ad,bc) = V(n) and Rx D?/(zw,yz) = V(m). Define
a homeomorphism hs: OV (n) — 0V (m) by hs(u,v) = (—v,u). A computation

shows ﬁsalhgl =y and h,5blilg1 = x1. The map hs induces maps hs and hs
making the following diagram commute:

V(n) — . av(m)

| |7

8(B0,n) —— 9(B0O,m)

[ [

9(B6,n) —2— 9(B6,m)

Thus when identifying 9(B6,n) to 9(B6,m) via hs, it follows by [13] that the
generators are identified by a = y, b = zwx, ¢ = x and d = z, and the orbifold
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Figure 5: 9(B7,n)

fundamental of group is

71(Ons ((B6, n), (B6,m)))
={(a,b,c,d | a®* =b*=c* = (be)" =d* =1,
[a,b] = [a,c] = [b,d] = [c,d] =1, (ad)™ = 1)
= ((bc) o—1 (c)) x ((ad) 01 (@) = (Zn 01 Z3) X (Zm 01 Zs).

Note that the elements a, b, ¢ and d are orientation reversing.

Orbifold (B7,n): Define maps a,b,c on R x D? as follows: a(t, pe’®) = (—t —
1,pe), b(t,pe??) = (—t, pe’®t7)) and c(t, pe’?) = (t,pe="). Let p: R x
D? — R x D2?/(b?,(ba)) = V(n) be the covering map defined by p(t, pe??) =
(€27 pet(®0+7))  The induced maps a; and ¢; on V(n) are a1 (u, v) = (7, —aw)
and ¢1(u,v) = (u,uv). Observe that ajcy(u,v) = (4, —v), and thus there is a
covering map py: V(n) — V(n)/(a1c1) = (BO,n). If az be the induced map on
(B0,n), then we have another covering p: (B0,n) — (B0,n)/{az) = (B7,n).
Since a and b? commute, we have b~ 1ab = bab~!, hence the orbifold fundamen-
tal group of (BT7,n) is

1 ((B7,n)) = (a,b,c | a®> =b*" = c® = 1,[a,b?] = [a,c] = 1,cbe™! =b7 1)
= (a,bab™") o ((b) o_1 (¢)) = (Zg % Z3) 0 (Zap 01 Zy) and
71 (0(B7,n)) = (a,b,c | a®> = * = 1,[a,b*] = [a,c] = 1,cbc™ =b71)

=

a,bab™ ) o (b)Y o1 (¢)) = (Zy % Zs) o (Zo_1 Zs) .

The boundary of (B7,n) is a mirrored disk with two cone points on the mirror
and one cone point in the interior (See Figure 5).

Orbifold Oy, ((B7,n),(B7,m)): We use the letters z, y and z to denote the
generators of 71 ((B7,m)) where the definitions are identical with n replaced
with m. As above we obtain covering maps R x D? — Rx D?/(b?, (ba)) = V(n)
and R x D? — R x D?/(y?, (yx)) = V(m). The induced maps on V(n) and
V(m) are denoted by a1, ¢; and x1, 2 respectively.

Define a homeomorphism hg: OV (n) — dV (m) by hg(u,v) = (—uw?,uw).
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The map he induces maps EG and hg making the following diagram commutes.

oVn) —y aV(m)

| |7

8(BO,n) — 8(BO,m)

lm luz
d(B7,n) —— 8(B7,m)

Identifying 9(B7,n) to O(B7,m) via hg to obtain the orbifold
One((B7,n), (B7,m)), it follows by [13] that the generators are identified by
a = 2z b = zyz, and ¢ = yzxy~'. Furthermore, the fundamental group
71 (Op, ((B7,n), (B7,m))) is

(a,b,c | a® =b"" = (ab'ab)™ = ® = 1,[a,b?] = [a,c] = 1,cbc™t = b7 1)
= ({ab~"ab) o1 (a)) o ((b) 01 (¢)) = (Zm 01 Zn) © (Lo 01 L2).

Note that the elements a, b and ¢ are orientation reversing.

Orbifold (B1,n): The orbifold B3(n,2,2) U Z" where a disk in 9(B3(n,2,2))
containing the exceptional point of order n is identified with a disk in 9(Z")
containing the exceptional point of order n.

Define maps a, b, ¢ on R x D? as follows: a(t,v) = (t,ve?™/™), b(t,v) =
(=t,7), and ¢(t,v) = (3 —t,v). The manifold R x D? is the universal cover of
(B1,n). Let p;: Rx D? — RxD?/{(ch)?,a) = V(n) be defined by p; (t, pe'?) =
(€2 pe™™?). Then b and c induce involutions b; and ¢; respectively on V' (n),
where by (u,v) = (%,v) and ¢1(u,v) = (—u,v). Now V(n)/(b1) = (B0,n); and
¢1 induces an orientation reversing involution cp on (B0, n). The quotient space
(B0, n)/{cz) is the orbifold (B1,n). The orbifold fundamental group of (B1,n)
is

71 ((B1,n)) = (a,b,c | a" =b* =c* =1,bab™* =a~ ', cac™ = a)
= {a)o ({b) * (c)) = Zpn o (Za*Z3) and

m(0(B1,n)) = (

=

a,bye| B =c2=1,bab ' =a" ! cact = a)

a) o ((b) x () = Zio (Zy x Ls).

Orbifold (B8, m): Define orientation reversing maps x, y and z on R x D?
by z(t,v) = (=t,,vem ), y(t,v) = (t,7) and z(t,v) = (1 — t,ve™ ). Now R x
D? is the universal covering of (B8,m). Note that zz=1(¢t,v) = (t — 1,v).
Let p1: R x D? — R x D?/(zz71,22) = V(m) be defined by p;(t, pe'?) =
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(€2 pe™?). We obtain induced maps x1 and y; on V(m) defined as follows:
x1(u,v) = (T, —v) and y1 (u, v) = (u, D). Since 21y1(u,v) = (G, —0), this implies
V(m)/{x1y1) = (BO,m). Furthermore, if y, is the induced map on (B0, m),
then ys is a reflection through a disk that does not contain the cone points of
order 2 in the boundary. The orbifold (B8,m) = (B0,m)/(y2). The orbifold

fundamental group of (B8, m) is
m((B8,m)) = (z,y,2 | e*™ = y? = 2*" = Lyay~' =27,

yay =27 =27

rz o (<>o 1{y)) =Z o (Zam o—1Zs) and

=
m(O(B8,m)) = (x,y,2 | y* = Lyay ' =2 yzy™ ! = 2710 = 27

= (z27") o ({x) o1 () =Zo (Zo_1 Zy)
= (@27 o ((ay) * () = Zo (Za * Lo).

Orbifold Oy, ((B1,n), (B8, m)): As above we obtain coverlng maps R x D? —
R x D2?/{(cb)?,a) = V(n) and R x D? — R x D?/(xz71,2%) = V(m). The
induced maps on V(n) are a1, by and ¢;, and the 1nduced maps on V(m) are
z1 and y;. ~

Define a homeomorphism h7: V(n) — V(m) by hr(u,v) = (v, —iu). The
map h7 induced maps h7 and h7 making the following diagram commute:

V(n) —M . av(m)

j/pl lpz
8(B0,n) —— 8(BO,m)

llh l/tz
d(Bl,n) —— 9(BS,m)

When we identify 9(B1,n) to 0(B8,m) via h7, we obtain the orbifold
On,((B1,n),(B8,m)). By [13] the generators are identified by a = (zz~1)~! =
zz~', b=yz and ¢ = y and the fundamental group is

71 (On((B1,n), (B8, m))) = {(a,b,c | a" =b*> = c® = 1,bab™' =a™",
[a,c] =1, (cb)*™ = 1)
= {a) o ((b) * () /{(cb)*™))
= {a) o ({cb) o1 (¢} /{(ch)*™))
= Z, o Dih(Zay,).

The elements c is orientation reversing.
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