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1. Introduction

In this paper, we introduce a mathematical structure called Euclidean Universe.
This structure provides a basic framework for Non-Archimedean Mathematics,
namely the Mathematics based on infinite and infinitesimal numbers.

The Euclidean Universe is defined by three axioms which have been chosen
in such a way to appear absolutely natural. The first axiom introduce the
infinite numbers as the numerosities of infinite sets in such a way that the V
Euclidean common notion

the whole is larger than the part

be preserved. In the second axiom we introduce the Euclidean line with the
following peculiarity: if any magnitude can be ”represented” by a point on
the Euclidean line, then also the infinite (and consequently the infinitesimal)
magnitudes have this right. Then the Euclidean line must be larger than the
real line. The last axiom is more technical and it is necessary to make the
Euclidean line to include (a copy of) the real numbers.

Actually, this paper can be considered a new introduction to the Non-
Archimedean Mathematics in the spirit of Veronese [20, 21] and Levi-Civita
[18]. Moreover, these axioms are sufficiently strong to include the basic princi-
ples of Nonstandard Analysis such as the Leibniz Principle and the Saturation
Principle. In particular the Euclidean line incudes, as subfields, infinitely many
copies of the hyperreal numbers of any saturation less or equal to the first in-
accessible number (see Definition 2.1).
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Then, the Euclidean Universe includes many results of Non-Archimedean
Mathematics obtained in the last 30 years.

For a recent historical and foundational analysis of the underlying ideas, we
refer to [11] and the references therein.

2. The three Axioms

2.1. The Numerosity axiom

The first axiom defines the notion of numerosity. The notion of numerosity
was introduced in [2, 6, 9] as a generalization of finite cardinality that also
applies to infinite sets. The main feature of numerosities is that they preserve
the spirit of the ancient Euclidean principle that the whole is larger than the
part ; indeed, the numerosity of a proper subset is strictly smaller than the
numerosity of the whole set.

In principle it would be desirable to define the numerosity for the class
of all sets; however, in order to develop the theory, it is convenient to work
in a ”universe” which is a set closed with respect to the main set operations
provided that it is very large. In order to do this we recall a well known notion
in set theory:

Definition 2.1. A cardinal number χ is inaccessible if it is not a sum of fewer
than χ cardinals that are less than χ and ζ < χ implies 2ζ < χ.

χ is strongly inaccessible if it is inaccessible and uncountable.

The first inaccessible cardinal number is ℵ0. The first strongly inaccessi-
ble cardinal number will be denoted by κ. The existence of sets of strongly
inaccessible cardinality is established by the Axiom of Inaccessibility which is
independent from ZFC. We will assume this axiom and in particular we will
assume that there exists a set of atoms1 A having cardinality κ. Then we can
define a ”universe” Λ defined as follows:

Λ = {X ∈ V (A) | |X| < κ} (1)

where for any set A, V (A) denotes the superstructure over A namely

V (A) =
⋃
n∈N

Vn(A)

with V0(A) = A and, for every n ∈ N,

Vn+1(A) = Vn(A) ∪ ℘ (Vn(A)) . (2)

1In set theory, an atom a is any entity that is not a set, namely a is an atom if and only
if

∀x, x /∈ a
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We will refer to Λ as to the accessible universe since its sets have strongly
accessible cardinality (and finite rank2). Λ can be split as follows

Λ = ΛS ∪ A

where ΛS is a family of sets. Notice that A /∈ Λ since |A| = κ.
Now we are ready to state our first axiom:

Axiom 2.2 (Numerosity axiom). The numerosity is a surjective map

num : ΛS → N, N ⊂ A

which satisfies the following properties: if a, b ∈ Λ and A,B,A′,B′ ∈ ΛS ,

1. num ({a}) = num ({b}),

2. if A ⊂ B strictly, then

num (A) < num (B) ,

3. if A ∩B = ∅, num (A) = num (A′) , num (B) = num (B′) , then

num (A ∪B) = num (A′ ∪B′) ,

4. if num (A) = num (A′) , num (B) = num (B′) , then

num (A×B) = num (A′ ×B′) ,

5. if A ∈ ΛS and b ∈ Λ, then num (A× {b}) = num (A) .

If F and F ′ are finite sets of the same cardinality, by 2.2.1 and 2.2.3, it
follows that num (F ) = num (F ′) ; then, by 2.2.5, the numerosities of finite sets
can be identified with the natural numbers N. By 2.2.3, N can be equipped
with an ”addition” by setting

σ + τ = num (A ∪B) ,

where σ = num (A) , τ = num (B) and A ∩ B = ∅; similarly, by 2.2.4, we can
define a ”multiplication”:

σ · τ = num (A×B) .

Clearly 0 = num (∅) is the neutral element with respect to the addition and, by
2.2.5, num ({b}) = 1 is the neutral element with respect to the multiplication
for any b ∈ Λ.

2The rank of ∅ is 0. The rank of a set E ̸= 0 is the least ordinal number greater than
the rank of any element of the set.
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2.2. The Euclidean Field Axiom

Our second axioms identifies the Euclidean (straight) line with a field Eκ ⊆ A.
Usually the Euclidean line is identified with the real line, however we think that
this point of view is too restrictive. In fact, the main intuitive peculiarities of
the Euclidean line are the following:

• two oriented segments of the Euclidean line can be added or subtracted;

• if we choose a unitary segment of the Euclidean line, two segments can
be multiplied or divided;

• once we have chosen two distinguish points O and U on the line, every
magnitude can be posed in a biunivocal correspondence with a point
(provided that the unitary magnitude has been defined).

Then, if we take 0 = O and 1 = U, the Euclidean line gets the stucture
of ordered field and its points can be identified with numbers. Since the nu-
merosities can be considered magnitudes, the Euclidean line should be richer
than the real line. We can formalize these intuitive remarks by the following
axiom:

Axiom 2.3 (Euclidean Field Axiom). There is an ordered field Eκ ⊂ A such
that

• Eκ contains the set numerosities N and the field operations +, · coincide
with the numerosity operations;

• for every ξ ∈ Eκ, there exists E ∈ Λ, such that

|ξ| < num (E) . (3)

We will refer to Eκ as the Euclidean line or the Euclidean field and its
elements will be called Euclidean numbers. Eκ contains infinite numbers, then
it is a non-Archimedean field. Now let us recall some basic definitions relative
to non-Archimedean fields. Since N ⊂ Eκ, the following definition makes sense:

Definition 2.4. Let ξ ∈ Eκ. We say that:

• ξ is infinitesimal if ∀n ∈ N, |ξ| < 1
n ;

• ξ is finite (or bounded) if ∃n ∈ N such as |ξ| < n;

• ξ is infinite (or unbounded) if ∀n ∈ N, |ξ| > n.

The following proposition establishes some relations among Euclidean num-
bers:
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Proposition 2.5. We have the following relations:

(i) If ε e δ are infinitesimal, also ε+ δ , ε− δ and ε · δ are infinitesimal.

(ii) If ξ e σ are bounded also ξ + σ , ξ − σ e ξ · σ are bounded.

(iii) If θ e τ are infinite, also θ · τ is infinite; moreover if θ and τ are postive
infinite (or negative), also ω + τ is postive infinite (or negative).

(iv) If ε is infinitesimal and ξ is bouded ε ·ξ is infinitesimal; moreover if ε ̸= 0
and ξ is not infinitesimal, ξ/ε is infinite.

Proof. The proof of this proposition is easy and it is left to the reder.

Definition 2.6. We say that two numbers ξ, ζ ∈ Eκ are infinitely close if ξ−ζ
is infinitesimal. In this case, we write ξ ∼ ζ.

Clearly, the relation ”∼” of infinite closeness is an equivalence relation.
Then the following definition comes naturally

Definition 2.7. If ξ ∈ Eκ, the monad of ξ is the set of all numbers that are
infinitely close to it:

mon(ξ) = {ζ ∈ Eκ | ξ ∼ ζ},
The galaxy of ξ is the set of all numbers that are finitely close to it:

gal(ξ) = {ζ ∈ Eκ | ξ − ζ is a finite number}.

2.3. The Center Axiom

The notion of monad allows to state our last axiom:

Axiom 2.8. Every monad µ has a distinguished point called center of µ and
denoted by Ctr(µ); the set C of all the centers is an additive subgroup of Eκ

containing N.

For every ξ ∈ Eκ, we will use the notation

ctr (ξ) = Ctr(mon (ξ));

so, every number ξ ∈ Eκ can be decomposed as follows:

ξ = x+ ε (4)

where x = ctr (ξ) and ε ∼ 0. Then Eκ can be decomposed as follows:

Eκ = C×mon (0)

and
ctr : Eκ → C

is a projection.
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3. Structure of the Euclidean numbers

In this section we will examine some peculiarities of Eκ. In particular, we will
see that Eκ contains the ordinal numbers of accessible cardinalities and the real
numbers. Moreover we will introduce the notion Λ-limit which, in this context,
is a very basic tool.

3.1. The ordinal numerosities

In this subsection we introduce a set Ord ⊂ N that is isomorphic (in a sense
specified below) to the initial segment of length κ of ordinal numbers.

Definition 3.1. The set Ord ⊂ N of ordinal numerosities is defined as follows:
τ ∈ Ord if and only if

τ = num (Ωτ ) ,

where
Ωτ = {x ∈ Ord | x < τ} .

It is easy to see by transfinite induction that this is a good recursive defi-
nition. In fact, it is immediate to check that

• 0 ∈ Ord;

• if τ ∈ Ord, then τ + 1 = num (Ωτ ∪ {τ}) ∈ Ord (and hence N ⊂ Ord).

• if τk = num (Ωk) , k ∈ K, (|K| < κ) are ordinal numerosities, then

τ := num

( ⋃
k∈K

Ωk

)
∈ Ord.

In particular, ω = num (N) is an ordinal. This construction of the ordinal
numbers is similar to the construction of Von Neumann. However, whilst a
Von Neumann ordinal τ is the set of all the Von Neumann ordinals contained
in τ , in our construction an ordinal τ is the numerosity of the set of ordinals
smaller than τ . Hence, here, an ordinal number, as any other numerosity, is an
atom in Eκ.

It is easy to see that Ord is well ordered and hence it is isomorphic to the
initial segment of length κ of the full class of the ordinals. Obviously, not all
numerosities are ordinals: for example, ω − 1 = num (N+) = num (N\ {0}) is
not an ordinal.

The most remarkable thing in this theory is that the numerosity operations
+ and · , correspond to the natural (or Hessenberg) operations between ordinals.
We refer to [13] for an in-depth analysis of this topic.

Remark 3.2. Notice that the existence of Ord depends only on Axiom 1.
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3.2. The Λ-limit theorem

We set
L = {λ ∈ Λ | λ is a finite set}

and
F (L,Eκ) =

{
φ ∈ EL

κ | ∃A ∈ Λ,∀λ ∈ L, φ(λ) = φ(λ ∩A)
}
.

Since (L,⊆) is a directed sets, the elements of F (L,Eκ) are nets. The set
F (L,Eκ) is a partially ordered commutative algebra over Eκ with the operations

(φ+ ψ) (λ) = φ(λ) + ψ(λ) ,

(φ · ψ) (λ) = φ(λ) · ψ(λ) .

Theorem 3.3 (Λ-limit theorem). There is a unique ring homomorphism

J : F (L,Eκ) → Eκ

such that,
∀A ∈ Λ, J(ψA) = num (A) ,

where
ψA (λ) = |A ∩ λ| . (5)

Proof. Let Fq (L,Eκ) be the Eκ-subalgebra of F (L,Eκ) generated by {ψA |A∈
Λ} namely the subset of the elements φ of F (L,Eκ) which can be written as
follows:

φ(λ) =

∑
A∈A aAψA(λ)∑
B∈B bAψB(λ)

,

where A,B are finite subsets of Λ, aA, bA ∈ Eκ, ψA, ψB are defined by (5) and
∀λ ∈ L,

∑
B∈B bAψB(λ) ̸= 0. We define a field homomorphism

Jq : Fq (L,Eκ) → Eκ

as follows:

Jq(φ) =

∑
A∈A aA · num (A)∑
B∈B bA · num (B)

.

Since Im (Jq) = Eκ is a field, ker (Jq) is a maximal ideal in Fq (L,Eκ) ; hence,
the set

U0 =
{
Q ∈ L | ∃ψ ∈ ker (Jq) , Q = ψ−1(0)

}
is a filter over L. We denote by U an ultrafilter such that U0 ⊆ U . Then also

I := {ψ ∈ F (L,Eκ) | ∃Q ∈ U , ∀λ ∈ Q, ψ(λ) = 0}

is a maximal ideal in F (L,Eκ) and hence

F := F (L,Eκ) /I
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is a field. We will see that F is isomorphic to Eκ. We denote by [φ] a generic
element of F and we claim that

∀ [φ] ∈ F, ∃µ̄ ∈ L, ∃Q ∈ U , ∀λ ∈ Q, φ (λ) = φ (µ̄) , (6)

namely
[φ] =

[
Cφ(µ̄)

]
, (7)

where λ 7→ Cξ (λ) denotes the net identically equal to ξ. In order to prove (7)
we set

R− :=
{
µ ∈ L |

[
Cφ(µ)

]
< [φ]

}
, (8)

R0 :=
{
µ ∈ L |

[
Cφ(µ)

]
= [φ]

}
, (9)

R+ :=
{
µ ∈ L |

[
Cφ(µ)

]
> [φ]

}
. (10)

By (8), if R− ̸= ∅, ∀µ ∈ R−, ∃Q−
µ ∈ U such that

∀λ ∈ Q−
µ , Cφ(µ) (λ) < φ (λ)

then,
µ ∈ R− ∩Q−

µ ⇒ Cφ(µ) (µ) < φ (µ)

and since, by definition Cφ(µ) (µ) = φ(µ), it follows that

∀µ ∈ R−, R− ∩Q−
µ = ∅

and hence,
R− /∈ U .

By (10), arguing in the same way, we have that

R+ /∈ U .

Since (R− ∪R+) ∪R0 = L, it follows that R0 ∈ U and hence R0 ̸= ∅. Now, if
you take µ̄ in R0, there is Q0 ∈ U such that

∀λ ∈ Q0, φ (λ) = Cφ(µ̄) (λ) = φ(µ̄) ,

namely (7) is satisfied. Now, we can extend Jq to F (L,Eκ) ; given φ ∈ F (L,Eκ),
using (6) we set

J (φ) =
[
Cφ(µ̄)

]
.

So every function φ in F (L,Eκ) is eventually constant in the sense that

∃ξ ∈ Eκ,∃Q ∈ U ,∀λ ∈ Q, φ (λ) = ξ.

Then F is isomorphic to Eκ.
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It remains to prove the uniqueness of J. Let us assume that J1 and J2
extend Jq to all F (L,Eκ) . We have to prove that for every φ ∈ F (L,Eκ)

J1 (φ) = J2 (φ) .

We set c1 = J1 (φ) ; c2 = J2 (φ),

Aφ = {Jq (ψ) | ψ ∈ Fq (L,Eκ) , ∃Q ∈ U0, ∀λ ∈ Q, ψ(λ), ψ ≤ φ} ;
Bφ = {Jq (ψ) |ψ ∈ Fq (L,Eκ) ∃Q ∈ U0, ∀λ ∈ Q, ψ(λ), ψ > φ} .

Clearly ∀a ∈ Aφ, ∀b ∈ Bφ,

a ≤ c1 ≤ b and a ≤ c2 ≤ b. (11)

and hence, assuming that c1 ≤ c2

∀a ∈ Aφ, ∀b ∈ Bφ, 0 ≤ c2 − c1 ≤ b− a .

Since Aφ ∪Bφ = Fq (L,Eκ) contains
1

num(E) for any set E ∈ ΛS\ {0}, we have

that

0 ≤ c2 − c1 ≤ 1

num (E)

and so, by (3), c2 = c1.

Definition 3.4. The number J (φ) is called Λ-limit of the net φ and will be
denoted by

J (φ) = lim
λ↑Λ

φ(λ).

The reason of this name and notation is that the operation

φ 7→ lim
λ↑Λ

φ(λ)

satisfies some of the properties of the usual limit over a net:

• If eventually φ(λ) ≥ ψ(λ), then

lim
λ↑Λ

φ(λ) ≥ lim
λ↑Λ

ψ(λ).

• If ∀q ∈ Q, Cq (λ) = q, then

lim
λ↑Λ

Cq(λ) = q.

• For all φ,ψ ∈ F (L,Eκ)

lim
λ↑Λ

φ(λ) + lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(φ(λ) + ψ(λ)) ,

lim
λ↑Λ

φ(λ) · lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(φ(λ) · ψ(λ)) .
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In this framework, Λ can be regarded as the ”point at infinity” of L. The Λ-
limit is not a limit in a topological sense, in fact there are also strong differences
with a topological limit; we list some of them:

• Every net φ ∈ F (L,Eκ) has a limit L ∈ Eκ.

• If ∀λ ∈ L, φ(λ) ̸= 0, then limλ↑Λ φ(λ) ̸= 0; in fact,

lim
λ↑Λ

φ(λ) · lim
λ↑Λ

1

φ(λ)
= 1

and hence limλ↑Λ φ(λ) ̸= 0.

• If, ξ ∈ Eκ\R,
lim
λ↑Λ

Cξ (λ) ̸= ξ .

For example, take
ω := lim

λ↑Λ
|λ ∩ N| ;

then ∀λ ∈ L, |λ ∩ N| < ω, so

0 > lim
λ↑Λ

(|λ ∩ N| − ω) = lim
λ↑Λ

|λ ∩ N| − lim
λ↑Λ

ω = ω − lim
λ↑Λ

ω

and hence
ω < lim

λ↑Λ
ω.

The last statement suggests the following notation: for any ξ ∈ Eκ, we set

ξ∗ = lim
λ↑Λ

ξ. (12)

3.3. The real numbers

We remark that the notion and the first properties of the Λ-limit do not depend
on Axiom 2.8. In this section we will see that also Axiom 2.8 is very relevant.

Definition 3.5. An Euclidean number is called standard if it is finite and it is
the center of a monad. The set of standard points will be denoted by R, namely

R := C ∩ gal(0).

If ξ is a finite number, then ctr(ξ) is called standard part of x and will be
denoted also by st (ξ) .

First let us examine some (obvious) properties of the function st(·).

Proposition 3.6. Let ξ and ζ be finite numbers, then
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1. ξ ∈ R ⇔ st (ξ) = ξ;

2. ξ ≤ ζ ⇒ st (ξ) ≤ st (ζ) ;

3. st (ξ + ζ) = st (ξ) + st (ζ) ;

4. st (ξ · ζ) = st (ξ) · st (ζ) ;

5. if st (ζ) ̸= 0, then st
(

ξ
ζ

)
= st(ξ)

st(ζ) .

Proof. The first four statements trivially descend from (4) and Proposition 2.5.
In order to prove 3.6.4, we put

ξ = r + ε , ζ = s+ θ ,

where r, s ∈ R, ε ∼ θ ∼ 0. Then,

st (ξ · ζ) = st [(r + ε) (s+ θ)] = st [rs+ (εs+ θr + εθ)] .

Since εs+ θr+ εθ ∼ 0, we have that st (ξ · ζ) = rs = st (ξ) · st (ζ) . Let us prove
3.6.5; by 3.6.4 we have that

st (ζ) · st
(
ξ

ζ

)
= st

(
ζ · ξ

ζ

)
= st (ξ) ;

hence

st

(
ξ

ζ

)
=
st (ξ)

st (ζ)
.

Theorem 3.7. The set of standard numbers R is isomorphic to the set of real
numbers.

Proof. We will prove that every Cauchy sequence of rationals is convergent to
some L ∈ R with respect to the metric topology. Let xn be a Cauchy sequence
in Q. We set

φ(λ) := x|N∩λ|

and

L = st

(
lim
λ↑Λ

φ (λ)

)
.

Then, by Proposition 3.6.1, L ∈ R. We have to prove that L is the Cauchy
limit of xn. We choose a number ε ∈ Q+; then, there exists n0 such that
∀n,m ≥ n0,

|xn − xm| < ε .

Now take λ0 ∈ L such that |N ∩ λ0| ≥ n0; thus, ∀λ ⊃ λ0, we have that |N ∩ λ| ≥
n0. Then

|φ(λ)− xm| =
∣∣x|N∩λ| − xm

∣∣ < ε
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and taking the Λ-limit, we get the conclusion:

ε > lim
λ↑Λ

|φ(λ)− xm| =
∣∣∣∣limλ↑Λ

φ(λ)− xm

∣∣∣∣ = |L− xm| .

From now on, the set R of standard numbers will be identified with the set
of real numbers, namely the real number will be considered ”special” points on
the Euclidean line.

Given a net φ : Λ → R, since Λ is a directed set, also the Cauchy limit is
well defined:

L = lim
λ→Λ

φ(λ) ⇔ ∀ε ∈ R+,∃λ0 ∈ L,∀λ ⊃ λ0, |φ(λ)− L| ≤ ε . (13)

Notice that in order to distinguish the Cauchy limit (13) from the Λ-limit,
we have used the symbols ”λ→ Λ” and ”λ ↑ Λ” respectively.

The standard part of a number is related to the Cauchy notion of limit. If
a real net xλ admits the Cauchy limit, the relation with the Λ-limit is given by
the following identity:

lim
λ→Λ

xλ = st

(
lim
λ↑Λ

xλ

)
. (14)

Another important relation between the two limits is the following:

Proposition 3.8. If
lim
λ↑Λ

xλ = ξ ∈ Eκ

and ξ is bounded, then there exist a sequence λn ∈ L such that

lim
n→∞

xλn = st(ξ).

Proof. Set x0 = st(ξ) and for every n ∈ N, take λn such that xλn
∈ [x0 −

1/n, x0 + 1/n].

Remark 3.9. As we have remarked in the intruduction, the Centrum Axiom
is necessary to prove Theorem 3.7. Actually it is not difficult to prove that the
Centrum Axiom is equivalent to the following:

Eκ contains a subfield isomorphic to the field of real numbers.

The notion of ”standard entity” can be extended from numbers (i.e. the
real numbers) to other elements of the universe by the following definition:

Definition 3.10. An element E ∈ V (R) is called standard and V (R) is called
standard universe; V (Eκ) is called Euclidean universe.

Notice that
V (R) ⊂ Λ ⊂ V (Eκ).

Also the second inclusion is strict since V (Eκ) contains sets of inaccessible
cardinality such as Eκ.



THE EUCLIDEAN UNIVERSE 13

4. The Euclidean universe

In this section we will inestigate the structure of the Euclidean universe V (Eκ).

4.1. Λ-limit of sets

By Definition 3.4, the Λ-limit has been defined for every net φ ∈ F (L,Eκ) ;
next we will extend this notion to the nets of sets in

F (L, Vn(Eκ)) =
{
Φ ∈ Vn (Eκ)

L | ∃A ∈ Λ,∀λ ∈ L, Φ(λ) = Φ(λ ∩A)
}

for every n ∈ N. In the following, in order to simplify the notation, a net of
sets Φ ∈ F (L, Vn(Eκ)) will be denoted by {Eλ} where Eλ = Φ(λ) .

We define the Λ-limit of sets by induction over n. If n = 0, limλ↑Λ Φ (λ) is
a net of numbers defined by Definition 3.4; if n > 0, we set

EΛ=lim
λ↑Λ

Eλ :=

{
lim
λ↑Λ

Ψ(λ) | Ψ ∈ F (L, Vn−1(Eκ)) ,∀λ∈L : Ψ(λ)∈Eλ

}
. (15)

Clearly, by (1), EΛ ∈ V (Eκ).

Definition 4.1. A set E obtained as Λ-limit of a net of sets

{Eλ} ∈ F (L, Vn(Eκ))

is called internal. If not it, is called external.

For example the set R is external.

If CA (λ) = A ∈ ΛS is a constant net, we set

A∗ := lim
λ↑Λ

CA (λ)=

{
lim
λ↑Λ

Ψ(λ) |Ψ∈F (L, Vn−1(Eκ)) ,∀λ∈L : Ψ(λ)∈A
}
; (16)

then, if A ∈ Vn(Eκ), also A
∗ ∈ Vn(Eκ). This definition extends (12) to all the

elements of Λ = ΛS ∪ Eκ. A
∗ will be called the ∗-transform of A.

The ∗-transform allows to build a family {Ej}j∈Ord of subsets of Eκ as
follows:

• E0 = R;

• Ej+1 = E∗
j ;

• if j ≤ κ is a limit ordinal, then Ej =
⋃
k<j

Ek.
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4.2. Λ-limit of functions

Since in set theory a function f can be identified with its graph Γf ,

fΛ := lim
λ↑Λ

fλ

is well defined. However, it is not immediate to see that fΛ is function. For
this reason, we will analyze this situation explicitly.

Theorem 4.2. Given a net of functions {fλ}

fλ : Aλ → Bλ, Aλ, Bλ ∈ Vn(Eκ),

then fΛ : AΛ → BΛ defined by

fΛ

(
lim
λ↑Λ

xλ

)
= lim

λ↑Λ
fλ (xλ) ; (17)

is a function and we have that

ΓfΛ = (Γf )Λ .

Proof. First, we will prove that (17) is a good definition, namely that fΛ(ξ)
does not depend on the net xλ which defines ξ. We set

ξ = lim
λ↑Λ

xλ = lim
λ↑Λ

yλ

and we have to prove that

lim
λ↑Λ

f (xλ) = lim
λ↑Λ

f (yλ) .

We take

χ (λ) =

{
1 if xλ = yλ
0 if xλ ̸= yλ

.

Hence ∀λ, χ (λ) + (xλ − yλ) ̸= 0 and so

lim
λ↑Λ

[χ (λ) + (xλ − yλ)] ̸= 0,

then,

lim
λ↑Λ

χ (λ) = lim
λ↑Λ

χ (λ) + lim
λ↑Λ

xλ − lim
λ↑Λ

yλ

= lim
λ↑Λ

[χ (λ) + (xλ − yλ)] ̸= 0.

Moreover, we have that

∀λ, χ (λ) · [fλ (xλ)− fλ (yλ)] = 0;
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then

0 = lim
λ↑Λ

(χ (λ) · [f (xλ)− f (yλ)]) = lim
λ↑Λ

χ (λ) · lim
λ↑Λ

[fλ (xλ)− fλ (yλ)] .

Since limλ↑Λ χ (λ) ̸= 0, we have that

0 = lim
λ↑Λ

[fλ (xλ)− fλ (yλ)] = lim
λ↑Λ

fλ (xλ)− lim
λ↑Λ

fλ (yλ) .

Finally, it is immediate to check that f∗ is the graph of the function (17), in
fact

(Γf )Λ =

{
lim
λ↑Λ

(xλ, fλ (xλ)) | ∀λ, (xλ, fλ (xλ)) ∈ Γfλ

}
=

{(
lim
λ↑Λ

xλ, lim
λ↑Λ

fλ (xλ)

)
| ∀λ, xλ = fλ (xλ)

}
= {(ξ, fΛ (ξ)) | ξ = fΛ (ξ)} = ΓfΛ .

Definition 4.3. A function f obtained as Λ-limit of a net of functions fλ is
called internal. Otherwise is called external.

If {f} is a constant net, we set

f∗ = lim
λ↑Λ

f ; (18)

then, if f : A → B, then f∗ : A∗ → B∗ and f∗ will be called the ∗-transform
of f .

4.3. Hyperfinite sets

Another fundamental notion in Euclidean calculus is the following:

Definition 4.4. We say that a set F ∈ V (Eκ) is hyperfinite if there is a net
{Fλ}λ∈Λ of finite sets such that

F = lim
λ↑Λ

Fλ =

{
lim
λ↑Λ

xλ | xλ ∈ Fλ

}
.

The hyperfinite sets share many properties of finite sets. For example, a
hyperfinite set F ⊂ Eκ has a maximum xM and a minimum xm respectively
given by

xM = lim
λ↑Λ

maxFλ; xm = lim
λ↑Λ

minFλ .
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Moreover, it is possible to ”add” the elements of an hyperfinite set of num-
bers. If F is an hyperfinite set of numbers, the hyperfinite sum of the elements
of F is defined as follows: ∑

x∈F

x = lim
λ↑Λ

∑
x∈Fλ

x.

One peculiarity of Euclidean analysis the possibility to associate a unique
hyperfinite set E⊚ to any set E ∈ V (Eκ) according to the following definition:

Definition 4.5. Given a set E ∈ ΛS , the set

E⊚ := lim
λ↑Λ

(E ∩ λ)

is called hyperfinite extension of E.

If F = limλ↑Λ Fλ is a hyperfinite set, its hypercardinality is given by

|F |∗ = lim
λ↑Λ

|Fλ| ,

where |·|∗ is the ∗-tranform of the fuction ”cardinality” defined on finite sets.
Notice that, by vitue of (5), the hypercardinality of E⊚, given by∣∣E⊚

∣∣∗ = lim
λ↑Λ

|E ∩ λ| ,

is the numerosity of E as it has been defined by Axiom 2.2.
If we put

Eσ = {x∗ | x ∈ E} ,

we can associate the sets Eσ, E⊚ and E∗ to any set E ∈ Λ. They are ordered
as follows:

Eσ ⊆ E⊚ ⊆ E∗;

in particular, if E ⊆ R, Eσ = E. The hyperfinite analysis is very relevant in
the applications and the operator ”⊚” plays a special role. You can see some
examples of this fact in Section 6.3.

5. Nonstandard Analysis

Even if some notions and definitions of Nonstandard Analysis have already been
introduced in the previous sections, now we will treat this topic in details. In
this section, we assume that the reader is familiar with the basic notions on
NSA.
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5.1. Nonstandard theories

In this subsection, we recall the basic notion of Nonstandard Analysis how have
been developed in the superstructure approach. Following Keisler (see [17]), we
give the following definition:

Definition 5.1. A nonstandard theory is a triple (V (R) , V (R•) , •) such that3

• V (R) is a superstructure over R called standard universe;

• R• is a set such that R ⊂ R• which is called field of the (•)-hyperreal
numbers;

• V (R•) is a superstructure over R• called nonstandard universe;

• the map
• : V (R) → V (R•)

satisfies the Leibniz principle and

∀r ∈ R, r = r•. (19)

We recall the notion of Leibniz (or transfer) Principle. It is well known that
the map • transforms any elementary sentence P (a1, a2, ..., an) to a elementary
sentence P (a•1, a

•
2, ..., a

•
n) in V (R•) where a1, a2, ..., an are constants in V (R) .

The adjective elementary refers to the fact that the quantifiers in elementary
sentences are of the form (∀x ∈ y) or (∃x ∈ y) where x is a variable and y is
a constant or a variable. The Leibniz principle states that P (a1, a2, ..., an) is
true if an only if P (a•1, a

•
2, ..., a

•
n) is true. For details, see e.g. [8] or [17].

Definition 5.2. Given two sets A and S, a superstructure embedding is a triple
(V (A) , V (S) , •) where • : V (A) → V (S) is a injective map such that

A• = S ,

∀x, y ∈ V (A) , x ∈ y ⇔ x• ∈ y• .

The following fact is well known:

Theorem 5.3. If (V (A) , V (S) , •) is superstructure embedding then the map •
satisfies the Leibniz principle.

Proof. This result can be proved by induction over the complexity of the sen-
tences; see e.g. [8] Th. 5.8. or [17].

3To be precise, Keisler calls (V (R) , V (R•) , •) nonstandard universe while we use the
espression nonstandard universe to denote the set V (R•).
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By the above theorem, we get the following result:

Corollary 5.4. If (V (R) , V (S) , •) is a superstructure embedding such that
R ̸= S, then, (V (R) , V (R•) , •) is a nonstandard theory with R• = S.

An isomorphism beetwen nonstandard theories is defined as follows:

Definition 5.5. Two nonstandard theories

(V (R) , V (R•) , •) and (V (R) , V (R⋆) , ⋆)

are isomorphic if there is a map

h : V (R•) → V (R⋆)

such that

1. ∀r ∈ R, h(r) = r;

2. h maps R• one to one onto R⋆;

3. for each A ∈ V (R•) \R•,

h(A) = {h(a) | a ∈ A} ,

4. for each A ∈ V (R) , h(A•) = A⋆.

Definition 5.6. A nonstandard theory (V (R) , V (R•) , •) is called saturated
if any family of sets S ∈ Vn (R)• with cardinality smaller than R• and with the
finite intersection property has non empty intersection; namely if

S1 ∩ ... ∩ Sn ̸= ∅, Si ∈ S; |S| < |R•| ,

then ⋂
S ̸= ∅.

Among all the nonstandard theories there is a privileged one which is unique
up to isomorphisms.

Theorem 5.7. A saturated nonstandard theory (V (R) , V (R•) , •) with

|R•| = κ

is unique up to isomorphism. In this case, V (R•) will be called Keisler uni-
verse.

Proof. See [17].
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5.2. The Normal Universe

According to the theory of the previous section we give following

Definition 5.8. If ”∗” is the map defined by (16), V (R∗) will be called normal
universe; R∗ will be called normal Euclidean field and from now on, it will be
simply denoted by E.

Theorem 5.9. The triple (V (R) , V (E) , ∗) is a nonstandard theory and V (E)
is a Keisler universe.

Proof. By the definition of V (E) , it follows that (V (R) , V (E) , ∗) is a super-
structure embedding. Then by Cor. 5.4, we have to prove that |E| = κ and
that (V (R) , V (E) , ∗) is saturated. Since

E = R∗ =

{
lim
λ→Λ

xλ | xλ ∈ F (L,R)
}

we have that

|E| ≤ |F (L,R)| .

Moreover

F (L,R) =
{
φ ∈ RL | ∃A ∈ Λ,∀λ ∈ L, φ(λ) = φ(λ ∩A)

}
and hence

|F (L,R)| =

∣∣∣∣∣ ⋃
A∈Λ

RA

∣∣∣∣∣
and since

∣∣RA
∣∣ < κ and |Λ| = κ, we have that

|E| ≤

∣∣∣∣∣ ⋃
A∈Λ

RA

∣∣∣∣∣ = κ .

Also we have that

|E| ≥ |N| ≥ |Ord| = κ.

Then |E| = κ. It remains to prove that it is saturated.
If S ∈ Vn (R)∗ , then

S = {Eµ | µ ∈ H} ,

where H is a set of indices with |H| < κ. Since |H| < κ, it is not restrictive to
assume that H ⊂ L. For every µ ∈ H, let φµ(λ) be a net such that

lim
λ↑Λ

φµ(λ) = Eµ .
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For any fixed λ, pick an element

ψ(λ) ∈
⋂
µ⊆λ

φµ(λ)

if this intersection is nonempty. Otherwise, pick

ψ(λ) ∈
⋂

µ⊆λ\{x1}

φµ(λ); x1 ∈ λ

if this intersection is nonempty, and continue in this manner until the element
ψ(λ) is defined. In case that this intersection is always empty, we set ψ(λ) = ∅.
As a consequence of this definition, the following property holds:⋂

µ⊆τ

φµ(λ) ̸= ∅ ⇒ ∀λ ⊇ τ, ψ(λ) ∈
⋂
µ⊆τ

φµ(λ) (20)

Now let τ ∈ H be fixed. By the finite intersection property,

∅ ̸=
⋂
µ⊆τ

Eµ =
⋂
µ⊆τ

lim
λ↑Λ

φµ(λ) = lim
λ↑Λ

⋂
µ⊆τ

φµ(λ)

 .

Then, there exists a set Q ∈ U (U is defined in the proof of Th. 3.3) such that,

∀λ ∈ Q,
⋂
µ⊆τ

φµ(λ) ̸= ∅;

and hence, by (20), it follows that

∀λ ∈ Q, ψ(λ) ∈
⋂
µ⊆τ

φµ(λ) ̸= ∅

and taking the Λ-limit

lim
λ↑Λ

ψ(λ) ∈
⋂
µ⊆τ

lim
λ↑Λ

φµ(λ) =
⋂
µ⊆τ

Eµ

and in particular,

lim
λ↑Λ

ψ(λ) ∈ Eτ .

As this holds for every τ ∈ H, we conclude that

lim
λ↑Λ

ψ(λ) ∈
⋂
τ∈H

Eτ =
⋂

S.
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V (E) is not the only Keisler universe contained in V (Eκ). For example,
using the notations at the end of Section 4.1, we have that also

(V (R) , V (E2) , ∗∗) , (V (R) , V (E3) , ∗ ∗ ∗) , etc.

are saturated nonstandard theories and hence we have infinite Keisler universes
included in V (Eκ). More in general, for 0 < j ≤ κ, it is possible to define a
Keisler universe (

V (R) , V (Ej) , ∗j
)

where the map ∗j is defined ∀A ∈ V (R) as follows:

• if j = 1, A∗1

= A∗ ⊂ E1(= E),

• if j = k + 1, A∗j+1

=
(
A∗j

)∗
⊂ Ej+1,

• if k is a limit ordinal, and A ∈ V (Ek) , then A ∈ V (Ej) for some j < k

and hence A∗k

= A∗j

.

In particular we have that all the fields Ej , j ≤ κ are isomorphic; for j < κ,
the map

∗ : Ej → Ej+1

is a field homomorphism and if k is a limit ordinal, the map

∗ : Ek → Ek

is a field isomorphism. In any case, the only fixed points of ∗ are the real
numbers. The spaces Ej ’s differ from each other by the way they are embedded
in A.

Moreover in a Euclidean universe there are other interesting superstructure
embeddings which can be useful in some application. For example,

(V (Ej) , V (Ej+1) , ∗)

is a superstructure embedding; however is not a nonstandard theory, since
Ej ̸= R; moreover (V (Ej) , V (Ej+1) , ∗) violates an other important request of
Definition 5.1, namely

∃ξ ∈ Ej , ξ ̸= ξ∗

in contrast with (19). Nevertheless, by Th. 5.3, (V (Ej) , V (Ej+1) , ∗) satisfies
the Leibniz principle. Then the following fact follows straightforwardly:

Theorem 5.10. (V (Eκ) , V (Eκ) , ∗) is a superstructure embedding that satisfies
the Leibniz principle.
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5.3. The α-theory

The α-theory has been introduced in [7] and it represents an elementary ap-
proach to nonstandard analysis particularly suitable for some application; see
e.g [5, 8, 12] and references. Actually, the Euclidean universe contains many
non-standard universes which can be easily defined and, therefore, are more
suitable for the elementary applications of practitioners. The α-theory is one of
them and it can be constructed using the notion of α-limit where α = num (N+),
N+ = N\ {0}.

Definition 5.11. Given a sequence φ : N → Vn(Eκ), we set

lim
n↑α

φ(n) := lim
λ↑Λ

φ
(∣∣λ ∩ N+

∣∣) .
If Cb(n) is the constant sequence with value b ∈ V (Eκ), we set

b∗α = lim
n↑α

Cb(n) .

Then, by Th. 5.3, it follows that

(V (R) , V (R∗α) , ∗α)

is a nonstandard theory.

Definition 5.12. The nonstandard theory (V (R) , V (R∗α) , ∗α) is called α-
theory.

If
i : N → Eκ; i(n) = n

then taking the α-limit we get that

lim
n↑α

i(n) = lim
λ↑Λ

i
(∣∣λ ∩ N+

∣∣) = num(N+) = α .

Hence, the set of (∗α)-hyperreal numbers R∗α can be characterized as follows:

R∗α =

{
lim
n↑α

φ(n) | φ : N → R
}

namely, every (∗α)-hyperreal numbers is the α-limit of real sequence. For
example, we have that ω is a (∗α)-hyperreal number since

ω = num(N) = num(N+) + num({0})
= α+ 1 = lim

n↑α
(n+ 1).

As we will see in Section 7.1, the construction of a model of the theory,
there is an ultrafilter U which plays a central role (see definition (23)). By
choosing U in a suitable way, then we get the following result:
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Theorem 5.13. It is compatible with axioms 1-3 that the number α satisfies
the following properties:

• Divisibility Property : For every k ∈ N, the number α is a multiple
of k and the numerosity of the set of multiples of k:

num({k, 2k, 3k, ..., nk, ...}) = α

k

• Root Property: For every k ∈ N, the number α is a k-th power and
the numerosity of the set of k-th powers:

num({1k, 2k, 3k, ..., nk, ...}) = k
√
α

• Power Property: If we set ℘fin(A) = {F ∈ ℘(A) | F is a finite set},
then

num(℘fin(N+)) = 2α

• Integer numbers Property:

num(Z) = 2α+ 1

• Rational numbers Property: For every q ∈ Q,

num((q, q + 1] ∩Q) = num((0, 1] ∩Q) = α

and
num(Q) = 2α2 + 1.

Proof. See [8, Sections 16.6 and 16.7].

5.4. About the idea of continuum

The idea of (linear) continuum is described or modeled by the geometric line.
In classical Euclidean geometry, lines and segments are not considered sets of
points; on the contrary, in the last two centuries the reductionist attitude of
modern mathematics has described Euclidean geometry through a set interpre-
tation. In the last century, the geometric continuum has been identified with
the Dedekind continuum and the geometric line has been identified with the
set of real numbers (once the origin O and a unitary segment OU have been
fixed). Even is this identification, today, is almost universally accepted, we
have seen that also the Euclidean line, as defined by Axiom 2.3, has some right
to represent the geometric continuum. In this section we will compare R and
E (∼= Eκ) with respect to the idea of geometric continuum.
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In our naive intuition, we think of a linear continuum as a linearly ordered
set without interruptions, that is, without holes between one part and the
other. Let’s make this definition rigorous. Contrary to our intuition, a set X
satisfying the following property

∀a, b ∈ X, a < b, ∃c ∈ X, a ≤ c ≤ b

it cannot be considered a continuum: this notion, satisfied for example by the
set of rational numbers, is not a good candidate for a continuum as the set of
rationals is full of holes represented by irrational numbers.

So we are led to discuss the notion of κ-saturation and to the Eudoxus
Principle:

Definition 5.14. A linearly ordered set X is called κ-saturated if it satisfies
following property: given two sets A,B ⊂ X, such that

|A| , |B| < κ , (21)

∀a ∈ A, ∀b ∈ B, a < b ,

then ∃c ∈ X,
∀a ∈ A, ∀b ∈ B, a ≤ c ≤ b.

Definition 5.15 (Eudoxus Principle). A linearly ordered Abelian group F sat-
isfies the Eudoxus Principle if given two sets A,B ⊂ F such that

∀a ∈ A, ∀b ∈ B, a < b ,

∀ε ∈ F+, ∃a ∈ A, ∃b ∈ B, b− a < ε.

then ∃c ∈ X,
∀a ∈ A, ∀b ∈ B, a ≤ c ≤ b.

Using these notions, we can characterize R and E as follows:

Theorem 5.16. The field of the real numbers R is the only field F such that:

(i) satisfies the Eudoxus Principle,

(ii) satisfies the Archimedes’ Axiom, namely :

∀a, b ∈ F+, ∃n ∈ N, na > b .

Proof. Well known.

The request (ii) is necessary; in fact, for example, the field of rational
functions with a suitable order structure4 satisfy (i) but not (ii).

4For example the field of rational fuction F can be equipped with an order structure by
setting

F+ =

{
rnxn + rn−1xn−1 + ....+ r0

wmxm + wm−1xm−1 + ....+ w0
|

rn

wm
> 0

}
.
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Theorem 5.17. The field of the Euclidean numbers E is the smallest field that:

(i) is κ-saturated,

(ii) is a real closed field, namely every polynomial of odd degree has at least
one root.

Proof. By Theorem 5.9, it is easy to check that E is κ-saturated according to
Definition 5.14. Moreover, since E is hyperreal, it is real closed. All the real
closed fields of cardinality κ are isomorphic and |E| = κ; hence E is the smallest
of such fields .

Notice that the request (ii) is necessary; in fact Q∗ is a κ-saturated field,
but it does not satisfy (i) since the equation x3 = 2 does not have any solution
in Q∗. We observe that the request (ii) fits well the idea of continuity, in fact,
a polynomial of odd degree must take positive and negative values and hence,
by continuity, it must have some 0’s.

The above discussion suggests the following definitions of continuum:

Definition 5.18. A linearly ordered Abelian group F is a Dedekind continuum
if it satisfies the following property: given two sets A,B ⊂ X such that

A,B ̸= ∅ , (22)

∀a ∈ A, ∀b ∈ B, a < b ,

then ∃c ∈ X,
∀a ∈ A, ∀b ∈ B, a ≤ c ≤ b;

A linearly ordered ordered field F is an absolute continuum5 if it is saturated
and real closed.

With these notions of continuity R and E have the following characteri-
zation: R is the only Dedekind continuum field; E is the smallest absolutely
continuum field.

6. Euclidean Calculus

In this section we pretend to not know the classical calculus and we will define
the basic notion of calculus, derivative and integral, in the most natural way
provided that you are equipped with infinitesimal and infinite numbers. Hence,
these definitions are very similar to those of the XVIII century. With these
definitions, we will discover that every function is both integrable and it has a

5This notion of absolute contiuum has been introduced by Ehrlich in [15]. However in his
definition F is a class in the sense of Von Neumann–Bernays–Gödel set theory.
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left and right derivative. Of course, if a function is differentiable, the Euclidean
derivative corresponds to the usual derivative and if it is Lebesgue-integrable,
the Euclidean integral corresponds to the usual Lebesgue integral. We limit
this game to the normal functions as defined below.

Of course this game could be extended to other notions and to a larger
class of functions and it might have some interest for the foundations and the
philosophy of Mathematics.

The idea to work directly in a nonstandard unverse is not new; we recall
[1, 16, 19]. This section can be considered an other experiment in that direction.

6.1. Normal functions and sets

In most application, the space Eκ and the Euclidean universe V (Eκ) are too
large and hence might imply useless technicalities. It is more convenient to
work in the normal Euclidean field E = R∗ and in the normal universe V (E).
So we are lead to the following definition:

Definition 6.1. A function f : E → E is called normal if

f = h∗

where h is a standard real function, i.e. f ∈ RE , E ⊆ R.

If f is normal then ∀x ∈ R, f (x) ∈ R.

Definition 6.2. A subset N ⊂ E is called normal if N = A∗ for some set
A ⊂ R.

Remark 6.3. In the nonstandard analysis community there is the habit to call
standard both functions and sets of the form f∗, A∗ and functions and sets in
V (R). Here we call standard the elements of V (R) and normal their counterpart
defined as above.

The usual functions used in the applications of mathematics can be regarded
as normal functions and not as standard functions. The advantadge of this
point of view is that the main notions of infinitesimal analysis can be defined
using the ”actual infinitesimal” in a natural way and hence they assume a
different meaning.

6.2. The notion of derivative

Since the normal functions are in a biunivocal correspondence with the real
functions, sometimes we will denote both with the same symbol. The same we
will do with the intervals.
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Now let us introduce some notions of Euclidean calculus. In order to in-
toduce a ”Euclidean derivative”, we will take the advantage to have a distin-
guished infinite number, namely α; then we can define a distinguished infinites-
imal number as follows:

η :=
1

α
.

Definition 6.4. The right derivative of a normal function f : (a, b) → E in
a standard point x0 ∈ (a, b), in the sense of Euclidean Calculus, is defined as
follows:

D+f(x0) = ctr

(
f(x0 + η)− f(x0)

η

)
;

similarly the left E-derivative is defined as follows:

D−f(x0) = ctr

(
f(x0)− f(x0 − η)

η

)
;

the mean E-derivative is defined as follows:

Df(x0) =
1

2

[
D+f(x0) +D−f(x0)

]
= ctr

(
f(x0 + η)− f(x0 − η)

2η

)
.

We say that a function is derivable in a point x0 ∈ (a, b) if Df(x0) = D+f(x0)
and Df(x0) ∈ R. In this case,

Df(x0) = st

(
f(x0 + η)− f(x0)

η

)
is called generalized derivative in the sense of Euclidean Calculus or simply
E-derivative.

It is easy to check that given a real function f differentiable in a point
x0 ∈ (a, b) ∩ R, then

Df(x0) = f ′(x0)

but the converse is not true; for example the function f(x) = x sin 1
x2 is not

differentiable for x = 0, but

D+f(0) = ctr

(
sin

1

η2

)
= ctr

(
sin

1

(−η)2

)
= D−f(0)

and hence the E-derivative, given by[
D

(
x sin

1

x2

)]
x=0

= st

(
sin

1

η2

)
,
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is well defined.
The notion of E-derivative is more general and consequently the fact that

if f is E-derivable does not imply that f (resticted to R) is continuous. For
example the Dirichlet function

fD(x) :=

1 if x ∈ Q∗

0 if x ∈ R∗\Q∗

is E-derivable in every point with DfD = 0 (remember that by Th. 5.13,
η ∈ Q∗), but it is not continuous.

As far, we have defined the derivative of a normal function in a standard
point. The following definition extends the notion of derivative to every Eu-
clidean point, namely it defines the function ”derivative” in all the points of
(a, b) while Definition 6.4 defines it only for x ∈ (a, b) ∩ R.

Definition 6.5. The E-derivative of a normal derivable function f : (a, b) → E
is defined by

Df :=
(
Df |(a,b)∩R

)∗
.

Example 6.6. Take f(x) = x sin 1
x2 ; then

D

(
x sin

1

x2

)
=

sin 1
x2 − 2

x2 cos
1
x2 if x ∈ E\ {0}

st
(
sin 1

η2

)
if x = 0 .

Obviously, the E-derivability does not imply the differentiability defined as
follows:

Definition 6.7. A normal function f : (a, b) → E is said to be differentiable
in a point x0 ∈ (a, b) if there exists a linear function t 7→ df (x0) [t] such that,
for every infinitesimal ε,

f(x0 + ε) = f(x0) + df (x0) [ε] + εε1

where ε1 is an infinitesimal (which might depend on ε).

It is immediate to check that a function is differentiable in x0 if and and
only if

∀ε ∈ mon (0) \ {0} , Df (x0) = st

(
f(x0 + ε)− f(x0)

ε

)
.

Then, if a function is differentiable in x0 ∈ (a, b)∩R, it has the E-derivative
in that point and

df (x0) [t] = Df(x0) · t.
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but the converse is not true. The derivability of a function does not coin-
cide with the differentiability; it is well known that in ”classic calculus” this
phenomenon occurs only in dimension ≥ 2.

Remark 6.8. With the above definitions, the two classical problems of the
”istantaneous velocity” and of the ”tangent” get different solutions given by the
E-derivative and the differential respectively. They coincide only for continuous
functions.

Even if the E-derivative is weaker than the usual one, it is quite surprising
that the main theorems of calculus remain true. For example, let us consider
the Fermat theorem:

Theorem 6.9 (Fermat theorem). If a normal function f : (a, b) → E achieves
a local maximum (or minimum) in a point x0 ∈ (a + η, b − η) and it has the
E-derivative in that point, then

Df(x0) = 0 .

Proof. We have that D+f(x0) ≤ 0, and D−f(x0) ≥ 0. Since D+f(x0) =
D−f(x0), it follows that

Df(x0) = D+f(x0) = 0.

Following the usual procedure, we can prove Rolle theorem, the Lagrange
intermediate value theorem and most of the theorems of real calculus for a
class of function that are not necessarely differentiable, but have only the E-
derivative. We will sketch this fact (see [3] for details). First of all we recall
some well known fact in NSA:

Definition 6.10. A function f : D → E, D ⊂ E is called continuous in a
point ξ ∈ D iff

ξ ∼ x⇒ f (ξ) ∼ f (x) ;

It is called continuous in D if it is normal and it is continuous in every point
ξ ∈ D ∩ R. It is called uniformly continuous in D if it is normal and it is
continuous in every point ξ ∈ D.

Theorem 6.11 (Weierstrass). Let f be a continuous fuction on an interval
[a, b] . Then f has a maximum point in [a, b] and it is a standard point.

Proof. Since the set [a, b] ∩ R⊚ is hyperfinite, f restricted to [a, b] ∩ R⊚ has a
maximum point ξ. We calim that c = st (ξ) is the maximum in [a, b] ; in fact,
since [a, b] ∩ R ⊂ [a, b] ∩ R⊚, ∀x ∈ [a, b] ∩ R

f (ξ) ≥ f (x)



30 VIERI BENCI

and hence by the continuity of f, ∀x ∈ [a, b] ∩ R

f (c) = st [f (ξ)] ≥ st [f (x)] = f(x).

The inequality above, can be extended to every ζ = limλ↑Λ xλ ∈ [a, b] , xλ ∈
[a, b] ∩ R. In fact, since f (c) ≥ f(xλ),

f (c) = lim
λ↑Λ

f (c) = lim
λ↑Λ

f (xλ) = f (ζ) .

So we have the following result involving the E-derivative:

Lemma 6.12 (Rolle). Let f be a continuous fuction on an interval [a, b] such
that f(a) = f(b); then if f is E-derivable in (a, b), there is a point c ∈ (a, b)
such that

Df (c) = 0 .

Proof. By Fermat’s and Weierstrass’ theorems, the proof is equal to the usual
one.

Theorem 6.13 (Lagrange). Let f be a continuous fuction on an interval [a, b]
and E-derivable in (a, b), there is a point c ∈ (a, b) such that

Df (c) =
f(b)− f(a)

b− a
.

Proof. By Rolle’s lemma, the proof is equal to the usual one.

These results show that even if a E-derivable function can be quite wild
(think of the Dirichlet function), the continuous E-derivable functions behave
quite well. For example, the space of the solutions of the equation

Df = 0

in general, is not finite-dimensional. However, by the Lagrange theorem it
follows that the only continuous functions which solve the above equations are
the constants. Among the other consequences of the Lagrange’s teorem, we get
the following result:

Theorem 6.14. A sufficient condition for a function f to be differentiable in
x0 ∈ (a, b) ∩ R is that both f and Df be continuous in x0.

Proof. See [3].

This discussion shows that the notion of E-derivability, even if it is essen-
tially irrelevant for the applications, it seems interesting for the foundation of
the notion of derivative and its relation with the differentiability.
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Remark 6.15. In the framework of Euclidean calculus there are several other
notions of ”generalzed derivative” which make sense. For example we can define
the right grid derivative as follows:

D+f(x0) = ctr

(
f(x+)− f(x)

x+ − x

)
where

x+ = min
{
y ∈ R⊚ | y > x

}
and similarly the left grid derivative etc. An other notion of generalized deriva-
tive useful for the applications can be found in [4]. In this paper the notion
of grid derivative is combined with the notion of weak derivative in such a
way to include the derivative of distributions (identified with suitable internal
functions).

6.3. The integral

Also the definition of the integral takes advantage of a peculiarity of Euclidean
analysis, namely of the operator ”⊚” introduced by Definition 4.5.

Definition 6.16. Given a normal function f : [a, b] → E, we define the E-
integral as follows:∫ b

a

f(x)dx := ctr

 ∑
x∈[a,b]⊚

f(x)
(
x+ − x

)
where

x+ = min
{
y ∈ R⊚ | y > x

}
.

Clearly, if f is Riemann integrable, the E-integral coincides with the Rie-
mann integral. Moreover the E-integral is well defined for every normal function
even when [a, b] = R or/and f is unbounded. However, the most interesting
property of the E-integral is given by the following theorem:

Theorem 6.17. Let f be a bounded Lebesgue integrable function, then the E-
integral is equal to the Lebesgue integral.

Proof. Assume that f is a bounded Lebesgue integrable function in [a, b] and
set

fλ(x) :=
∑

z∈[a,b]∩λ

f(z)χ[z,z+
λ )

(x)

where χ[z,z+
λ )

is the characteristic function of
[
z, z+λ

)
and

z+λ = min {y ∈ λ | y > z} .
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Now let us denote by
∫
L
the Lebesgue integral; then∫

L

fλ(x)dx =

∫
fλ(x)dx .

The net of functions {fλ} converges to f in every point x ∈ [a, b] ∩ R since
[a, b] ∩ R ⊂ [a, b]

⊚
; in fact, eventually we have that ∀x ∈ [a, b] ∩ R

fλ(x) = f(x)

and hence by (14), ∀x ∈ [a, b] ∩ R,

lim
λ→Λ

fλ(x) = st [f(x)] = f(x)

where limλ→Λ is the usual Cauchy limit. By the Dominated Convergence The-
orem,

lim
λ→Λ

∫
L

fλ(x)dx =

∫
L

lim
λ→Λ

fλ(x)dx =

∫
L

f(x)dx .

On the other hand,

lim
λ↑Λ

∫
fλ(x)dx = lim

λ↑Λ

 ∑
z∈[a,b]∩λ

f(z)χ[z,z+
λ )

(x)


=

∑
x∈[a,b]⊚

f(x)
(
x+ − x

)
.

Then, by (14), ∫
L

f(x)dx ∼
∑

x∈[a,b]⊚

f(x)
(
x+ − x

)
and hence ∫

L

f(x)dx = st

 ∑
x∈[a,b]⊚

f(x)
(
x+ − x

) =

∫
f(x)dx.

Remark 6.18. All the normal functions are E-integrable; however the func-
tions which are not Lebesgue-integrable might have a pathological behavior;
for example their integral is not invariant for translations. Nevertheless L1,
the space of the Lebesgue-integrable functions, can be easily characterized as
the closure of the continuous functions with compact support with respect to
the norm

∥f∥ =

∫
|f(x)| dx.
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7. Consistency of the axioms

In this sections, we will prove the consistency of the three axioms introduced
in Section 2 by building a model in ZFC+{Axiom of Inaccessibility}.
Remark 7.1. In many models on nonstandard analysis, the axiom of regularity
of ZFC may fail for external sets (see e.g. [14, 10]). However, in this paper,
both, the standard universe V (R) and the Euclidean universe V (Eκ) contain
only sets of finite rank and this peculiarity allows to have a model in ZFC. We
are forced to work with sets of finite rank by axiom 2.2. In fact, assuming that
Λ contains a set A of infinite rank, we would get a contradiction. Take for
instance a set a defined as follows:

A = {bn | n ∈ N}

where b0 = a and
bn+1 = (bn, a)

namely
A = {a, (a, a) , (a, a, a) , (a, a, a, a) , , ....} .

Then, setting

B = A× {a} = {(a, a) , (a, a, a) , (a, a, a, a) , ....} =
{
bn | n ∈ N+

}
we have that B ⊂ A and hence, by Axiom 2.2.2

num (B) < num (A) ,

while, by Axiom 2.2.5

num (B) = num (A× {a}) = num (A) · num ({a}) = num (A) · 1 = num (A) .

Contradiction!

7.1. The construction of the field E
We assume that A is a set of atoms having cardinality |A| = κ and that it
contains a set R isomorphic to the real numbers. Moreover, we assume that
ΛS , Λ and L be sets as defined in Section 2.1.

If n0 ∈ N, and λ0 ∈ L, we set

Q (n0, λ0) = {Vn (λ) ∈ L | n ∈ N, n ≥ n0; λ ∈ L, λ ⊇ λ0} .

We have that Q (n0, λ0) ⊂ L and

Q (n0, λ0) ∩Q (m0, µ0) = Q (max {n0,m0} , λ0 ∪ µ0) .
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Hence there exists an ultrafilter U over L such that ∀n ∈ N, ∀λ ∈ L,

Q (n, λ) ∈ U . (23)

Now, for any j < κ, we define by transfinite induction a sequence of ordered
fields Kj ⊂ A such that |Kj | < κ and

Kj ⊂ Kk if j < k.

For j = 0, we set
K0 = R

and for every ordinal j < κ, we set

Fj+1 := F (L,Kj) /Ij , (24)

where
Fj (L,Kj) =

{
φ ∈ (Kj)

L | ∀λ ∈ L, φ(λ) = φ(λ ∩Kj)
}

and Ij ⊂ Fj (L,Kj) is the maximal ideal defined as follows:

Ij := {φ ∈ Fj (L,Kj) | ∃Q ∈ U , ∀λ ∈ Q, φ(λ) = 0} .

Then Fj+1 is a field and the projection

Πj : Fj (L,Kj) → Fj+1

defined by
Πj (φ) = [φ]U := φ+ Ij

is a surjective ring homomorphism. Now, since |Kj | < κ, also |Fj+1| < κ; then
we can define an injetive map

Θj : Fj+1 → A

such that ∀ξ ∈ Kj ,
Θj

(
[Cξ]U

)
= ξ ,

where ∀λ ∈ L, Cξ (λ) := ξ ∈ Kj . The set Kj+1 := ImΘj can be equipped with
the structure of ordered field by setting, ∀ξ, ζ ∈ Kj+1

ξ + ζ = Θj

(
Θ−1

j (ξ) + Θ−1
j (ζ)

)
,

ξ · ζ = Θj

(
Θ−1

j (ξ) ·Θ−1
j (ζ)

)
.

Then Kj+1 is a field which contains the real numbers. Now set

Jj = Θj ◦Πj : F (L,Kj) → Kj+1 .
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By this construction, Jj is a surjective ring homomorphism.
If k ≤ κ is a limit ordinal, we set

Kk =
⋃
j<k

Kj

and
Jk = lim

−→
Jj ,

namely, Jk (φ) = Jj (φ) for every j such that φ ∈ F (L,Kj) . Then, also

Jk : F (L,Kk) → Kk

is a surjective ring homomorphism.
In particular, if j = κ, we have that

J := Jκ : F (L,Kκ) → Kκ ⊂ A (25)

is a surjective ring homomorphism and |Eκ| = κ.
If A ∈ Λ, by the definition of Λ (see (1)), we have that |A| < κ, then the

net {λ 7→ |λ ∩A|} ∈ F (L,Kκ) . Then, we can define the numerosity of A as
follows:

num (A) = J (|λ ∩A|) , (26)

where, with some abuse of notation, |λ ∩A| denotes the net {λ 7→ |λ ∩A|} .

7.2. Proof of the consistency of Axioms 1-3

Now we can prove the consistency of our axioms.

Theorem 7.2. The numerosity function defined by (26) satisfies the request of
Axiom 2.2.

Proof. 2.2.1 and 2.2.2 follows directly by the definition (26) of num.
2.2.3 - We have that

num (A ∪B) = J (|λ ∩ (A ∪B)|) = J (|(λ ∩A) ∪ (λ ∩B)|)
= J (|(λ ∩A)|+ |(λ ∩B)|) = J (|(λ ∩A)|) + J (|(λ ∩A)|)
= num (A) + num (B) .

2.2.4 - Let n0 be so large that A,B ∈ Vn0
(Eκ) , then A× B ∈ Vn0+2 (Eκ) ;

if we take Vn (λ) ∈ Q (n0 + 2, λ) , we have that

|Vn (λ) ∩ (A×B)| = |(Vn (λ) ∩A)× (Vn (λ) ∩B)|
= |Vn (λ) ∩A| · |Vn (λ) ∩B| . (27)
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If we set
φE (λ) = |Vn (λ) ∩ E|

by (27), we have that ∀λ ∈ Q (n0 + 2, λ0) ,

φA×B (λ) = φA (λ) · φB (λ)

and since Q (n0 + 2, λ0) ∈ U ,

J (φA×B) = J (φA) · J (φB) .

Then

num (A×B) = J (φA×B) = J (φA) · J (φB) = num (A) · num (B) . (28)

2.2.5 - It follows immediately from (28).

Theorem 7.3. The set Eκ satisfies the request of Axiom 2.3.

Proof. Trivial by our construction.

We define the set of the Euclidean integers as follows:

Z :=
⋃
j<κ

Zj ,

where
Z0 = Z

and, for j < κ

Zj := J

( ⋃
k<j

Zk

)
. (29)

Before proceeding we need the following

Lemma 7.4. Every number ξ ∈ Eκ can be decomposed as follows:

ξ = ζ + µ (30)

where ζ ∈ Z and 0 ≤ µ < 1.

Proof. Let ξ ∈ Ej .We argue by transfinite induction over j. If j = 0, (30) holds
with ζ ∈ Z. If j > 0, then,

ξ := J ({ξλ})
with ξλ ∈ Ek for some k < j. By our inductive assumption,

ξλ = ζλ + µλ, ζλ ∈ Z and 0 ≤ µλ < 1.

Then
ξ := J ({ζλ + µλ}) = J ({ζλ}) + J ({µλ})

By (29), ζ := J ({ζλ}) ∈ Z and if we set µ := J ({µλ}) , we have that 0 ≤ µ <
1. Then (30) is satisfied.
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We now set
C := {ζ + r | ζ ∈ Z, r ∈ R} . (31)

Clearly Z and R are additive subgroups of Eκ and hence also C is an additive
group. C is the set of the centers.

Theorem 7.5. The set C defined by (31) satisfies the requests of Axiom 2.8.

Proof. Since Eκ contains the real numbers, if θ ∈ Eκ is bounded, st(θ) is well
defined. If ξ ∈ Eκ, by Lemma 7.4, we can write ξ = ζ + µ, with ζ ∈ Z and
0 ≤ µ < 1; then we set

ctr(ζ + µ) = ζ + st(µ).

Then ctr(ζ + µ) ∈ C.
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