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Squeezing multisets into real numbers
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to Eugenio.

Writing a paper for a special issue dedicated to our lifelong friend and colleague
Eugenio Omodeo is, for the two of us, both a honour and a pleasure. We have
known and worked with Eugenio for such a long time that our first thought,
when we started thinking about the topic for this paper, was how to write some-
thing that not only gave him some pleasure reading it, but was also suitable
to get him directly involved in subsequent developments. Given Eugenio’s in-
terest in decidability themes for Diophantine equations and set theory, we do
hope that he will react positively. Actually, we are sure he will take this further
chance to collaborate with us with the usual enthusiasm, the incredible breadth
of knowledge, and the unique style that he has always been able to contribute
in every single project we undertook together.

Abstract. In this paper we study the encoding

RApxq “
ÿ

yPx

2´RApyq,

mapping hereditarily finite sets and hypersets – hereditarily finite sets
admitting circular chains of memberships – into real numbers. The
map RA somewhat generalizes the well-known Ackermann’s encoding
NApxq “

ř

yPx 2
NApyq, whose co-domain is N, to nonnegative real num-

bers.
In this work we define and study the further natural extension of the
map RA to the so-called multisets. Such an extension is simply obtained
by multiplying by k the code of each element having multiplicity equal
to k.
We prove that, under a rather natural injectivity assumption of RA on
the universe of multisets, the map RA sends almost all multisets into
transcendental numbers.
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1. Introduction

In 1937, W. Ackermann proposed the following encoding of hereditarily finite
sets by natural numbers:

NApxq “
ÿ

yPx

2NApyq

(see [1]).
In this paper we study a very simple variation of NA that turns out to be

much more powerful. Our proposed variant is obtained by simply adding a
minus sign to each of the exponents of 2 in the definition of NApxq. That is:

RApxq “
ÿ

yPx

2´RApyq.

If, on the one hand, the original encoding NA was perfect to prove a strict
correspondence between hereditarily finite sets – the cumulative hierarchy HF
of finite sets whose elements are themselves hereditarily finite sets, see Defi-
nition 2.1 – and the collection N of natural numbers, on the other hand the
function RA can be used to establish a much more ductile link between sets
and (real) numbers. The ductility of the link consists in the fact that RA can
be used to map much larger, albeit still finitary, collections of objects strictly
related to sets.

Any object dubbed “set” we consider here is going to be a hereditary set.
Quoting Halmos in his celebrated Naive Set Theory ([10]):

Sets, as they are usually conceived, have elements or members. An
element of a set may be a wolf, a grape, or a pidgeon. It is important
to know that a set itself may also be an element of some other set.
[...] What may be surprising is not so much that sets may occur
as elements, but that for mathematical purposes no other elements
need ever be considered.

P. Halmos

The fact that it is not restrictive to play with pure sets (i.e., sets whose only
elements are sets themselves) is important and often overlooked. Especially so
when, as in our case, we are mainly interested in encoding sets by numbers.

Hence, given a set h P HF, we are entitled to apply both the mapping NA

and RA to h, as well as to any of its members h1 P h.
As far as NA is concerned, a number of elementary observations and, in our

opinion, basic and natural questions arise. Consider, for example, the following
simple facts – already proved in [5] and reported below in Section 2 for the sake
of completeness:
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• NA is a bijection from HF to N;

• the binary expansion of NAphq, for h P HF, fully describes the membership
relation of h with any other element of HF: h1 P h if and only if there is
a 1 at position NAph1q of the binary expansion of NAphq;

• the mapping NA allows one to cast a (natural) total order on HF.

The first of the above points, namely the fact that NA is bijective, is a strong
limitation for an encoding. Unless significantly modified, NA is unsuitable to
deal with any extension of HF: NA leaves simply “no space” in its range to
map collections extending HF that can, in any reasonable sense, be called sets.
This limitation was considered in [14] and was the main motivation for the
introduction of RA, which can be used to map (the full class of) hereditarily
finite cyclic sets – the so-called hypersets – to real numbers.1 As a matter
of fact, RA is not the only possible encoding for hypersets. Indeed, in [6] a
number of other alternatives has been considered and studied. However, the
coding map RA turns out to be the natural variant of the Ackermann encoding
NA, and it is definitely more elegant than its alternatives.

The fact that RA can be used to encode a richer cumulative hierarchy of
sets stems from the simple fact that its range is R. Consider, for example, the
set-theoretic equation ζ “ tζu, which is satisfied by the sole hyperset having
itself as its only member. The corresponding code is the unique real num-
ber satisfying the equation x “ 2´x, a fact easily seen to be true and briefly
discussed in Section 2.3.

The “extra space” provided by having RA ranging over R suggests other
simple and natural questions. For instance, we can easily observe that the
codes of the first four sets in the HF-hierarchy (namely H, tHu, ttHuu, and
ttHu,Hu) are rational numbers, the codes of the twelve sets of rank 3 in HF
are quadratic irrationals, and – as is easily seen in some specific cases – some
codes are even non-algebraic:

RApHq “ 0, RAptHuq “ 1, RAptHu2q “
1

2
, RAptHu3q “

1
?
2
,

RAptHu4q “ 2
´ 1?

2 , RA

`␣

tHu3,H
(˘

“ 2
´ 1?

2 ` 1, etc.,

where, for the n-th iterated singleton t¨ ¨ ¨ t
loomoon

n

H u ¨ ¨ ¨ u
loomoon

n

of H, we are using the

shorthand tHun. So, tHu2 “ ttHuu, tHu3 “ tttHuuu, etc.

The main result of this paper is that, apart from the codes of the first
sixteen sets of HF in the Ackermann encoding NA, the codes RAphq for h P HF

1To the best of the authors’ knowledge, the term “hyperset” has been first introduced by
Jon Barwise and John Etchemendy in [3, page 38].
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are all non-algebraic real numbers, under a conjecture on the injectivity of the
extension of RA to the multi -sets, to be discussed in Section 4, over a large
portion of the multisets.

Multisets live between sets and numbers, as they are genuine sets but do
use multiplicities to provide the possibility to express the fact that membership
can be numerically qualified.

This “intermediate nature” is an example of a situation in which useful and
syntactically well-defined objects take naturally the scene, while their semantics
still poses some problem. The following quotation from [15] clearly illustrate
the situation:

The case of mathematical logic, where the syntax was developed be-
fore the semantics, is exceptional because of the unusual history of
the subject. An instance of a semantics without syntax is the theory
of multisets. A multiset of a set S is a generalization of a subset
of S, where elements are allowed to occur with multiplicities. Mul-
tisets can be added and multiplied; however, a characterization by
algebraic operations of the family of multisets of a set S – an analog
of what Boolean algebra is for sets – is not known at present.

G.C. Rota

We hope that our suggested usage of RA on multisets – together with the
consequences we will be able to prove here – will contribute to a clarification
and a deeper understanding of their semantics.

2. Basics and Ackermann encoding NA.

In the following, we will extensively use the collection of hereditarily finite sets
as domain of our encodings. Such collection is built using the classic powerset
operator Pp¨q, which, in due time, will be adapted to our needs to build the
cumulative hierarchy of multisets.

Let us begin by fixing some standard notation and notions.
Throughout the paper, we denote by N the set of natural numbers and by

N˚ the set of positive integers.
By recursion, the collection HF of the hereditarily finite sets is defined as

follows.

Definition 2.1. Let

HF0 “ H,
HFn`1 “ PpHFnq, for n P N.

Then
HF “

ď

nPN
HFn
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is the cumulative hierarchy of the hereditarily finite sets.

For every h P HF, the rank of h – denoted rkphq – is the least integer r such
that h P HFr`1.

Remark 2.2. The first four layers of the hierarchy HF are the following ones:

HF0 “ H

HF1 “ t H u

HF2 “
␣

H, t H u
(

HF3 “

!

H, t H u,
␣

t H u
(

,
␣

H, t H u
(

)

.

Hence,

rkpHq “ 0, rkpt H uq “ 1, rkp
␣

t H u
(

q “ rkp
␣

H, t H u
(

q “ 2, etc.

The Ackermann encoding NA, introduced in [1], is so defined.

Definition 2.3. For h P HF, by recursion on rkphq we put:

NAphq “
ÿ

xPh

2NApxq,

where, conventionally, the empty sum is evalutated to 0.

A number of very natural and elegant properties of NA can be proved. To
begin with, it is easy to see that the map NA is a bijection between HF and N,
inducing an order over HF that we will call Ackermann order. Thus, we will
henceforth denote by hi the i-th element of HF in the Ackermann ordering;
that is,

NAphiq “ i, for i P N.

We will denote by ă the Ackermann order on HF induced by NA, namely

hi ă hj iff i ă j, for i, j P N.

Plainly, for all hereditarily finite sets hi and hj , we have:

hi P hj ùñ i ă j. (1)

Indeed, if hi P hj then

i ă 2i “ 2NAphiq ď
ÿ

xPhj

2NApxq “ NAphjq “ j.

The following proposition can be read as a restating of the bitwise compar-
ison among natural numbers in set-theoretic terms.
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Proposition 2.4. For hi, hj P HF, we have:

hi ă hj iff max
ă

phizhjq ă max
ă

phjzhiq,

where we agree that maxă H ă maxă h, for any nonnull hereditarily finite set
h.

Proof. Since hi ă hj is equivalent to saying that i ă j, it is sufficient to
compare the base-two expansions of i and j in light of Definition 2.3 and the
definition of Ackermann order.

An immediate consequence of Proposition 2.4 is stated next.

Corollary 2.5. For hi, hj P HF, if hi Ĺ hj then i ă j.

2.1. The real-valued map RA.

The map RA is defined by recursion on rank as follows.

Definition 2.6. For h P HF, we put:

RAphq “
ÿ

xPh

2´RApxq.

The above definition bears a strong formal similarity with NA, as it is
obtained from NA by simply prefixing a minus sign to each of the exponents
of 2 in NApxq, but calls into play real numbers.

Plainly, RAphq ě 0, for every h P HF. In addition, we immediately have:

Lemma 2.7. For h P HF,

RAphq “ 0 iff h “ H.

From the principle of inclusion and exclusion, the following additional prop-
erty for the map RA can also be easily proved.

Lemma 2.8. For h, h1 P HF,

RAph Y h1q “ RAphq ` RAph1q ´ RAph X h1q.

Hence, if h X h1 “ H, we have

RAph Y h1q “ RAphq ` RAph1q.

Table 1 reports the first 16 hereditarily finite sets and their RA-codes.



SQUEEZING MULTISETS INTO REAL NUMBERS 7

Table 1: The first 16 hereditarily finite sets and their RA-codes

i hi RAphiq

0 H 0

1 t H u 1

2 t H u2 1
2

3
␣

t H u,H
(

3
2

4 t H u3 1?
2

5
␣

t H u2,H
(

1?
2

` 1

6
␣

t H u2, t H u
(

1?
2

` 1
2

7
␣

t H u2, t H u,H
(

1?
2

` 3
2

8
␣ ␣

t H u,H
( (

1
2

?
2

9
␣ ␣

t H u,H
(

,H
(

1
2

?
2

` 1

10
␣ ␣

t H u,H
(

, t H u
(

1
2

?
2

` 1
2

11
␣ ␣

t H u,H
(

, t H u,H
(

1
2

?
2

` 3
2

12
␣ ␣

t H u,H
(

, t H u2
(

3
2

?
2

13
␣ ␣

t H u,H
(

, t H u2,H
(

3
2

?
2

` 1

14
␣ ␣

t H u,H
(

, t H u2, t H u
(

3
2

?
2

` 1
2

15
␣ ␣

t H u,H
(

, t H u2, t H u,H
(

3
2

?
2

` 3
2
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2.2. Algebraic and transcendental RA-codes

We recall that a real number is algebraic if it is a root of a non-zero polynomial
in one variable with integer coefficients. Algebraic real numbers are closed
under sum, difference, product, and quotient (with a non-zero denominator).

A real number that is not algebraic is transcendental.
By inspecting Table 1, it turns out that the RA-codes of the first sixteen

h.f. sets have the form

1

2

´

a `
b

?
2

¯

, for 0 ď a, b ď 3.

In particular, the first four h.f. sets have rational RA-codes of the form a
2 (for

0 ď a ď 3), while the subsequent twelve sets in HF have quadratic irrational

RA-codes of the form 1
2

´

a ` b?
2

¯

(for 0 ď a ď 3 and 1 ď b ď 3).

As an application of the Gelfond-Schneider-theorem (whose variant for real
numbers is recalled below), we can prove that all the sets in HF of the form
thi u Y hj , where 4 ď i ď 15 and 0 ď j ď 15, have a transcendental RA-code.

Gelfond-Schneider theorem (for real numbers) ([9, 16]). If a and b
are algebraic real numbers (where a ą 0, a ‰ 1, and b is irrational), then ab is
transcendental.2

Lemma 2.9. For all i and j such that 4 ď i ď 15 and 0 ď j ď 15, the code
RApthiu Y hjq is transcendental.

Proof. It is enough to observe that RAphiq is an irrational algebraic number for
every i such that 4 ď i ď 15 , so that RApthiuq “ 2´RAphiq is transcendental by
the Gelfond-Schneider theorem, and that RAphjq is algebraic for every j such
that 0 ď j ď 15 (see Table 1). Thus, RApthiu Y hjq “ RApthiuq ` RAphjq is
transcendental for 4 ď i ď 15 and 0 ď j ď 15.

In fact, we conjecture that all hi’s in HF such that i ě 16 have a tran-
scendental RA code. This will be shown to be a consequence of an injectivity
conjecture for the extension Rµ

A of RA to multisets, to be stated in Section 4.2.

2.3. RA on Hereditarily Finite Hypersets

Following [5], it can be seen that the domain of RA can be expanded so as
to include also the non-well-founded hereditarily finite sets, namely, the sets

2We recall that the Gelfond-Schneider theorem, obtained independently in 1934 by A. O.
Gelfond and Th. Schneider, solves completely the seventh in a well-celebrated list of twenty-
three problems posed by David Hilbert at the International Congress of Mathematicians
held in Paris, 1900 (see [11]).
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defined by (finite) systems of equations of the following form

$

’

’

&

’

’

%

ς1 “ tς1,1, . . . , ς1,m1
u

...

ςn “ tςn,1, . . . , ςn,mn
u,

(2)

with bisimilarity as equality criterion (see [2] and [4], where the term hyperset
is also used). For instance, the special case of the single set equation ς “ tςu

results into the equation (in real numbers)

x “ 2´x, (3)

which provides the code of the unique (under bisimilarity) hyperset Ω “ tΩu.
Systems of set-theoretic equations of the form (2) are intended to fully

specify the entire transitive closure of a collection of sets. To express this fact
it is customary to require that any ςi,j is chosen among ς1, . . . , ςn, a choice that
also underlines the hereditary finiteness of the objects under study.

Going back to Ω, it is easy to see that the equation (3) has a unique so-
lution in R, since the functions x and 2´x are, respectively, strictly increasing
and strictly decreasing, so that the function x ´ 2´x is strictly increasing. In
addition, we have:

x ´ 2´x|x“ 1
2

“
1

2
´

1
?
2

ă 0 ă 1 ´
1

2
“ x ´ 2´x|x“1.

Thus, the solution Ω of (3) over R, namely, the code of the hyperset defined by
the set equation ζ “ tζu, satisfies 1

2 ă Ω ă 1. Furthermore, much by the same

argument used by the Pythagoreans to prove the irrationality of
?
2, it can

easily be shown that Ω is irrational. In fact, Ω is transcendental. Indeed, if Ω
were algebraic, so would be ´Ω and therefore, by the Gelfond-Schneider theo-
rem, 2´Ω “ Ω would be transcendental, contradicting the assumed algebraicity
of Ω. Thus, Ω must be transcendental after all.

It is interesting to notice that the solution to the equation x “ e´x is the
so-called omega constant, introduced by Lambert in [12] and studied also by
Euler in [8].

While the encoding NA is defined inductively (and this is perfectly in line
with our intuition of the very basic properties of the collections of natural
numbers N and of hereditarily finite sets HF – called HF0 in [4]), the definition
of RA, instead, is not inductive when extended to non-well-founded sets, and
thus it requires a more careful analysis, as it must be proved that it univocally
(and possibly injectively) associates (real) numbers to sets.

The injectivity of RA on the collection of well-founded and non-well-founded
hereditarily finite sets – henceforth, to be referred to as HF1{2, see [4] – was
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conjectured in [14] and is still an open problem. In [5] we proved that, given any

finite collection ℏ1, . . . , ℏn of pairwise distinct sets in HF1{2 satisfying a system
of set-theoretic equations of the form (2) in n unknowns, one can univocally
determine real numbers RApℏ1q, . . . ,RApℏnq satisfying the following system of
equations:

$

’

’

&

’

’

%

RApℏ1q “
řm1

k“1 2
´RApℏ1,kq

...

RApℏnq “
řmn

k“1 2
´RApℏn,kq.

A consequence of the results in [5] is the fact that the definition of RA is
well-given, as it associates a unique (real) number to each hereditarily finite

hyperset in HF1{2. This extends to HF1{2 the first of the properties that the
encoding NA enjoys with respect to HF. Should RA also enjoy the injectivity
property, the proposed adaptation of NA would be completely satisfactory, and
RA could be coherently dubbed an encoding for HF1{2.

The proof of the above result was given by defining a procedure operating
by computing successive approximations of the final RA-codes. These approx-
imations – infinitely many of them were necessary when the code involved
hypersets – turned out to be real values that were naturally interpreted as the
encodings of particular multisets. Elements with multiplicities greater than one
resulted as (equal) approximations of different codes that were not yet being
separated by the ongoing precision refinement of their final RA-value.

In [5] a full-fledged extension of RA to the realm of multisets was not un-
dertaken. This is done here, in the following section.

3. A gentle introduction to multisets

Given n distinct objects O1, O2, . . . , On and n positive integersm1,m2, . . . ,mn,
we denote by

“

O1, . . . , O1
looooomooooon

m1

, O2, . . . , O2
looooomooooon

m2

, . . . , On, . . . , On
looooomooooon

mn

‰

, (4)

or any permutation of it, the multiset containing extacly mi copies of Oi, for
i “ 1, . . . , n, and no additional members. Hence, the cardinality of (4) is
m1 `m2 ` ¨ ¨ ¨ `mn. The integer mi, for i “ 1, . . . ,m, is the multiplicity of Oi

in (4).

We refer to the list notation (4) as the multiset-builder square-bracket no-
tation. Thus, with the square-bracket notation element repetitions do count,
whereas the order of elements is still irrelevant.
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The multiset (4) is also denoted by the expression

tm1O1,
m2O2, . . . ,

mnOnu,

where the mi’s are usually omitted if they are equal to 1. the multiset M whose
elements are O1, . . . , On with multiplicities m1, . . . ,mn, respectively.

3

Given a multiset M , an object O, and a multiplicity m P N˚, as a handy
notation we write

O Pm M (5)

to mean that the object O belongs to M with a multiplicity exactly equal to m.
In the context of multisets, we will also write O P M , when O Pm M for some
m P N˚. We conveniently extend the notation (5) also to the case when m “ 0.
Hence, we write O P0 M to mean that O R M , namely O Rm M for any m P N˚.

Following [13, p. 128], in this paper we define the multiset subset relation
M1 Ď M2 by

p@OqpO P M1 ùñ O P M2q,

namely p@Oq
`

pDm ě 1qO Pm M1 ùñ pDn ě 1qO Pn M2

˘

. This is to be
contrasted with the more common semantics

p@Oq
`

pDm ě 1qO Pm M1 ùñ pDn ě mqO Pn M2

˘

,

which enjoys antisymmetry.
Every multiset M can be conveniently described by its multiplicity map

µM , where µM pOq is the multiplicity, possibly 0, of O in M . Hence, we have

O Pm M ðñ µM pOq “ m,

for all M,O, and m P N.
Multisets can be handily described by means of the following square-brack-

ets comprehension schema:

M “ repx⃗q| φpx⃗qs, (6)

where epx⃗q is a multiset expression over the variables x⃗ and φpx⃗q is a predicate
over x⃗. Specifically, for the multiset M defined by (6), J Pm M if and only if
there are exactly m distinct ways to instantiate the variables x⃗ in (6) in such a
way that epx⃗q “ J and φpx⃗q is true.

We will also make use of the following curly-brackets comprehension schema

M “ tepx⃗q| φpx⃗qu

to define a multiset M such that:

3We have chosen to depart from the more conventional notation for multisets in which
multiplicities are indicated as right-upper indices, since right-upper indices will be used later
as exponents to denote powers of multisets.
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‚ J P M if and only if x⃗ can be instantiated in such a way that epx⃗q “ J
and φpx⃗q is true, and

‚ all the members of M have multiplicity equal to 1.

We refer the reader also to [7] for formal theory of multisets.

3.1. Hereditarily finite multisets

When all the members of a given finite multiset M are finite multisets them-
selves, and this is true at any nesting depth, namely for members of members,
for members of members of members, and so on, we say that M is a hereditarily
finite multiset.

To formally define the collection HFµ of hereditarily finite (h.f., for short)
multisets, we will make use of the finitary µ-power-set operator Pµ (a variant of
the ordinary power-set operator P). Specifically, for each multiset X, PµpXq

is the collection of all the multisets of the form
␣

m1x1, . . . ,
mnxn

(

, each with
multiplicity equal to 1, where x1, . . . , xn stand for distinct members of X and
m1, . . . ,mn P N˚, with n P N. In symbols:

PµpXq “
␣

tm1x1, . . . ,
mnxnu | x1, . . . , xn P X (pairwise distinct) ,

m1, . . . ,mn P N˚, n P N
(

.

We are now ready to define the cumulative hierarchy HFµ of the hereditarily
finite multisets.

Definition 3.1. Let

HFµ
0 “ H,

HFµ
n`1 “ PµpHFµ

nq, for n P N.

Then

HFµ
“

ď

nPN
HFµ

n

is the cumulative hierarchy of the hereditarily finite multisets.

HFµ
“
Ť

nPN HFµ
n is the collection of the hereditarily finite multi-sets, where:

HFµ
0 “ H,

HFµ
n`1 “ PµpHFµ

nq.
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Remark 3.2. The first four layers of the hierarchy HFµ are:

HFµ
0 “ H

HFµ
1 “ t H u

HFµ
2 “

!

␣

0H
(

,
␣

1H
(

,
␣

2H
(

, . . .
)

(where t 0H u stands for H)

HFµ
3 “

!

␣

m1
␣

n1H
(

,m2
␣

n2H
(

, . . . ,mk
␣

nkH
( (

| n1 ă n2 ă ¨ ¨ ¨ ă nk,

m1,m2, . . . ,mk P N˚, k P N
)

.

On the grounds of the above definition, we can introduce a natural extension
of the rank function to h.f. multisets.

Definition 3.3. The rank rkpHq of a multiset H P HFµ is the least integer r
such that H P HFµ

r`1.

Thus, for instance,

rkpHq “ 0

rk
`

t H u
˘

“ rk
`

t 2H u
˘

“ rk
`

t 3H u
˘

“ . . . “ 1

rk
´

␣

m1
␣

n1H
(

,m2
␣

n2H
(

, . . . ,mk
␣

nkH
( (

¯

“ 2,

for all pairwise distinct n1, n2, . . . , nk P N such that n1 ` ¨ ¨ ¨ ` nk ě 1 and all
m1, . . . ,mk P N˚, with k ě 1.

As is the case for sets in HF, for all multisets H,H 1 P HFµ such that H P H 1,
we plainly have rkpHq ă rkpH 1q.

However, contrary to the case of ordinary sets, there are infinitely many
multisets for any given rank k ě 1, that is HFµ

k`1 is infinite for all k ě 1.
The cardinality operator can be extended to multisets in the most natural

way, by putting
|H| “

ÿ

JPH

µHpJq,

for all H P HFµ.

3.2. Set-theoretic operations on multisets

Given H,K P HFµ, the Boolean combinations H Y K, H X K, and HzK of H
and K, and the multiset

Ť

H are defined in such a way that their multiplicity
maps µHYK , µHXK , µHzK , and µŤ

H satisfy pointwise the following identities:

µHYK “ max pµH , µKq,

µHXK “ min pµH , µKq,

µHzK “ µH ´ µHXK ,

µŤ

H “ max tµJ| J P Hu.
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Plainly, when H and K are ordinary sets, the above definitions just yield
the standard operators of union, intersection, set difference, and unary union,
respectively.

From the very definition of
Ť

H, for every multiset H we have

Ť

H “
Ť

tK|K P Hu.

In addition, much as with ordinary sets, for all H,J P HFµ, we have:

J P
ď

H ðñ J P H 1, for some H 1 P H.

Indeed,

J P
ď

H ðñ µŤ

HpJq ě 1

ðñ µH1 pJq ě 1, for some H 1 P H

ðñ J P H 1, for some H 1 P H.

The operators of sum and product, which we define next, are specific to
multisets

For H,K P HFµ, we denote by H ` K the multiset whose multiplicity map
is µH`K “ µH ` µK , so that

H ` K “

!

µHpJq`µKpJqJ| J P H Y K
)

.

Accordingly, for H1, . . . ,Hn P HFµ, we denote by
řn

i“1 Hi the multiset whose
multiplicity map is

řn
i“1 µHi . Thus, we have:

n
ÿ

i“1

Hi “

!

řn
i“1 µHi

pJqJ | J P

n
ď

i“1

Hi

)

,

and therefore for all J we have

J P

n
ÿ

i“1

Hi ðñ J P

n
ď

i“1

Hi, (7)

though in general
řn

i“1 Hi ‰
Ťn

i“1 Hi.
4

Plainly, for all H1, . . . ,Hn P HFµ we have

ˇ

ˇ

ˇ

n
ÿ

i“1

Hi

ˇ

ˇ

ˇ
“

n
ÿ

i“1

|Hi|.

4In fact,
řn

i“1 Hi “
Ťn

i“1 Hi holds true if and only if the multisetsH1, . . . , Hn are pairwise
disjoint.
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Indeed,

ˇ

ˇ

ˇ

n
ÿ

i“1

Hi

ˇ

ˇ

ˇ
“

ÿ

JP
Ťn

i“1Hi

n
ÿ

i“1

µHi
pJq “

n
ÿ

i“1

ÿ

JP
Ťn

i“1Hi

µHi
pJq

“

n
ÿ

i“1

ÿ

JPHi

µHipJq “

n
ÿ

i“1

|Hi|.

Next, for H P HFµ and a P N, we denote by aH the multiset H ` ¨ ¨ ¨ ` H
loooooomoooooon

a times

,

namely the multiset whose multiplicity map is aµH . Thus, we have:

aH “
␣

aµHpJqJ| J P H
(

,

and when a “ 0 we have aH “ H.
Notice that, for H,J P HFµ and a P N˚, we have:

J P aH ðñ J P H, (8)

and |aH| “ a|H|.
Finally, the product H ¨ K of two multisets H and K is defined as

H ¨ K “

”

µHpH1
qµKpK1

q
`

H 1 ` K 1
˘

|H 1 P H, K 1 P K
ı

. (9)

Plainly, we have:
|H ¨ K| “ |H| ¨ |K|.

Indeed,

|H ¨ K| “
ÿ

H1
PH

K1
PK

µHpH 1qµKpK 1q “
ÿ

K1PK

´

µKpK 1q ¨
ÿ

H1PH

µHpH 1q

¯

“
ÿ

K1PK

`

µKpK 1q ¨ |H|
˘

“ |H| ¨
ÿ

K1PK

µKpK 1q “ |H| ¨ |K|.

By iterating the operation of multisets product, we can define powers of mul-
tisets with positive integer exponents. Specifically, for H P HFµ, we put
pHq1 “ H, and recursively, for n P N˚, we put pHqn`1 “ pHqn ¨H. Plainly, by
induction it can be proved that |pHqn| “ |H|n. Moreover, we have:

pHqn “

„

śn
i“1 µHpHiq

´

n
ÿ

i“1

Hi

¯

|H1, . . . ,Hn P H

ȷ

, (10)

for all n P N˚.
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Indeed, (10) clearly holds for n “ 1. In addition, by assuming that (10)
holds for a given n P N˚, we have:

pHqn`1 “ pHqn ¨ H

“

„

śn
i“1 µHpHiq

´

n
ÿ

i“1

Hi

¯

|H1, . . . ,Hn P H

ȷ

¨ H

“

„

`

śn
i“1 µHpHiq

˘

¨µHpHn`1q

ˆ

´

n
ÿ

i“1

Hi

¯

` Hn`1

˙

|H1, . . . ,Hn P H ^ Hn`1 P H

ȷ

“

„

śn`1
i“1 µHpHiq

ˆ n`1
ÿ

i“1

Hi

˙

|H1, . . . ,Hn, Hn`1 P H

ȷ

,

proving that (10) holds for n ` 1 too. Thus, by induction, we get (10) for all
n P N˚.

From (10), it follows immediately that

J P pHqn ðñ J “

n
ÿ

i“1

Hi, for some H1, . . . ,Hn P H, (11)

for all H,J P HFµ and n P N˚.
Finally, we mention that the direct image of a multiset H under a map

f : HFµ
Ñ HFµ can be expressed as follows

f rHs “
ÿ

JPH

␣

µHpJqfpJq
(

.

Direct images distribute over multiset sums, namely for all H,K P HFµ we
have:

f rH ` Ks “ f rHs ` f rKs. (12)

Indeed,

f rH ` Ks “
ÿ

JPH`K

␣

µH`KpJqfpJq
(

“
ÿ

JPH`K

␣

µHpJq`µKpJqfpJq
(

“
ÿ

JPH`K

`␣

µHpJqfpJq
(

`
␣

µKpJqfpJq
(˘

“
ÿ

JPH`K

␣

µHpJqfpJq
(

`
ÿ

JPH`K

␣

µKpJqfpJq
(

“ f rHs ` f rKs.
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Then, by induction, we have

f rnHs “ nf rHs, (13)

for all H P HFµ and n P N.
Remark 3.4. It is easy to check that the multiset operators of union, inter-
section, sum, and product defined above are commutative and associative.

3.3. Embedding HF into HFµ

Ordinary sets can just be regarded as multisets in which all multiplicities are
equal to 1, at any nesting depth. More precisely, the collection HF can be
embedded into HFµ in a very simple and natural manner, via the following
recursively defined canonical embedding E : HF Ñ HFµ, where

Ephq “
␣

Eph1q | h1 P h
(

, for every h P HF.

It is not hard to prove that the canonical embedding E is an injective homo-
morphism from HF into HFµ, which, among many others, satisfies the following
basic properties, for all h, h1 P HF:

(a) rkpEphqq “ rkphq;

(b) |Ephq| “ |h|;

(c) Eph Y h1q “ Ephq Y Eph1q;

(d) Eph X h1q “ Ephq X Eph1q;

(e) Ep
Ť

hq “
Ť

Ephq;

(f) h1 P h ðñ Eph1q P Ephq;

(g) h1 Ď h ðñ Eph1q Ď Ephq.

In the multiset context, in what follows we will freely identify a h.f. set h
with its multiset image Ephq, but this should generate no confusion.

3.4. Multiset polynomial expressions

Let Nrxs be the collection of all polynomials in a single indeterminate x with
coefficients in N.

For every multiset H P HFµ and every polynomial P “ anx
n ` an´1x

n´1 `

. . . ` a1x ` a0 in Nrxs with an ą 0, we can define the multiset P pHq by
recursion on the degree n “ degpP q of P , where we put degpP0q “ 0 for the
null polynomial P0 “ 0.
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For the base case, if degpP q “ 0 and P “ a0 ą 0, we put P pHq “
␣

a0H
(

,
whereas if P “ 0 we put P pHq “ H. Then, for n ě 1, by assuming that
P “ anx

n ` Q (with an ě 1 and degpQq ă n), we recursively set P pHq “

anpHqn ` QpHq.
The following property holds.

Lemma 3.5. Let P P Nrxs be any polynomial of positive degree with a null

constant term. Then, for all H P HFµ and J P P pHq, we have J “
řℓ

i“1 Hi,
for some H1, . . . ,Hℓ P H and 1 ď ℓ ď degpP q.

Proof. Let P “ anx
n `an´1x

n´1 ` . . .`a1x, with n, an ě 1, and let H P HFµ.
Then we have:

J P P pHq ðñ J P

n
ÿ

ℓ“1

aℓpHqℓ

ðñ J P

n
ď

ℓ“1

pHqℓ (by (7) and (8))

ðñ

n
ł

ℓ“1

J P pHqℓ

ðñ

n
ł

ℓ“1

´

J “

ℓ
ÿ

i“1

Hi

¯

, for some H1, . . . ,Hn P H (by (11))

ðñ J “

ℓ
ÿ

i“1

Hi, for some H1, . . . ,Hℓ P H

and 1 ď ℓ ď n “ degpP q,

proving the lemma.

Next, we intend to prove that for any two polynomials P,Q P Nrxs with
distinct degrees and any set h P HF of rank at least 2, the multisets P phq and
Qphq are distinct. Later, we will strengthen this fact to prove the main result
of the paper, namely the transcendentality of the RA-codes of all the h.f. sets
of rank at least 4 under the conjectured hypothesis that the coding map Rµ

A is
injective over a certain portion of HFµ.

For every nonempty multiset H P HFµ, we denote by HJ the multiset
comprising the members of H of maximum rank with the same multiplicities
as in H, namely

HJ “ rJ| J P H ^ rkpJq ` 1 “ rkpHqs,

and we write J 9P H as a shorthand for J P HJ.
We now define a basic operator over multisets, which will play a key role in

our proof of transcendentality.
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Definition 3.6. For every nonempty multiset H P HFµ, we define MpHq as
the largest multiplicity in H of any member of maximum rank in H, namely

MpHq “ maxµH rHJs.

It is convenient to extend the map M also to H, by conventionally setting
MpHq “ 0.

Notice that MpHq ě 1, for every nonempty multiset H, and that Mphq “ 1,
for every nonempty hereditarily finite set h.

The following lemma collects some basic properties of the operator M.

Lemma 3.7. For all H,K P HFµ and h P HF such that rkphq ě 4, the following
equalities hold true:

(a) MpH ` Kq ď MpHq ` MpKq, and therefore M
`
řn

i“1 Hi

˘

ď
řn

i“1 MpHiq

for all H1, . . . ,Hn P HFµ;

(b) if
Ť

H ‰ H, then M
`
Ť

H
˘

“ max tMpJq| J 9P Hu;

(c) M
`
Ť

pH ` Kq
˘

“ max
`

Mp
Ť

Hq,Mp
Ť

Kq
˘

;

(d) M
`
Ť

paHq
˘

“ Mp
Ť

Hq, for every a P N˚;

(e) M
`
Ť

phqn
˘

“ n;

(f) M
`
Ť

P phq
˘

“ degpP q.

Proof. Concerning (a), if either one of H and K is empty, say H, then

MpH ` Kq “ MpKq “ MpHq ` MpKq.

On the other hand, if H ‰ H and K ‰ H, then we have

MpH ` Kq “ maxµH`KrH ` Ks

“ max tµHpJq ` µKpJq| J P H ` Ku

“ max tµHpJq ` µKpJq| J P H Y Ku

ď MpHq ` MpKq,

since µHpJq ď MpHq and µKpJq ď MpKq for all J P H Y K. In addition, by
induction on n P N˚, it is immediate to prove that M

`
řn

i“1 Hi

˘

ď
řn

i“1 MpHiq,
for all H1, . . . ,Hn P HFµ.
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Next, as for (b), if
Ť

H ‰ H we have:

M
`
Ť

H
˘

“ max µŤ

H r
Ť

Hs

“ max tµŤ

HpH2q|H2 P
Ť

Hu

“ max
␣

max tµH1 pH2q|H 1 P Hu|H2 P
Ť

H
(

“ max
␣

max
`

tµH1 pH2q|H2 P H 1 P Hu Y t0u
˘

|H2 P
Ť

H
(

“ max
␣

max tµH1 pH2q|H2 P H 1u|H ‰ H 1 P H
(

“ max tmax µH1 rH 1s|H ‰ H 1 P Hu

“ max tMpH 1q|H ‰ H 1 P Hu.

Regarding (c), if
Ť

H “ H, then
Ť

pH ` Kq “
Ť

K and Mp
Ť

Hq “ 0.
Therefore M

`
Ť

pH ` Kq
˘

“ M
`
Ť

K
˘

“ max
`

Mp
Ť

Hq,Mp
Ť

Kq
˘

. Likewise, if
Ť

K “ H, then M
`
Ť

pH ` Kq
˘

“ max
`

Mp
Ť

Hq,Mp
Ť

Kq
˘

.
On the other hand, if

Ť

H ‰ H and
Ť

K ‰ H, then we have:

M
`
Ť

pH ` Kq
˘

“ max tMpJq| J 9P H ` Ku (by (b))

“ max
`

tMpJq| J 9P Hu Y tMpJq| J 9P Ku
˘

“ max
`

max tMpJq| J 9P Hu,max tMpJq| J 9P Ku
˘

“ max
`

Mp
Ť

Hq,Mp
Ť

Kq
˘

(by (b)).

Next, concerning (d), let a P N˚. If
Ť

H “ H then
Ť

paHq “ H, and
therefore M

`
Ť

paHq
˘

“ 0 “ Mp
Ť

Hq. On the other hand, if
Ť

H ‰ H, then by
two applications of (b)) we have:

M
`
Ť

paHq
˘

“ max tMpJq| J 9P aHuu

“ max tMpJq| H ‰ J 9P Huu

“ Mp
Ť

Hq.

Concerning (e), we plainly have

Mp
Ť

phqnq “ max
!

M
´

n
ÿ

i“1

h1
i

¯

|H ‰

n
ÿ

i“1

h1
i ^ h1

1, . . . , h
1
n P h

)

. (14)

Indeed,

Mp
Ť

phqnq “ max tMpH 1q|H ‰ H 1 P phqnu (by (b))

“ max
!

M
´

n
ÿ

i“1

h1
i

¯

|H ‰

n
ÿ

i“1

h1
i ^ h1

1, . . . , h
1
n P h

)

(by (10)).
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Hence, we have

Mp
Ť

phqnq ď n, (15)

since, by (a),

M
´

n
ÿ

i“1

h1
i

¯

ď

n
ÿ

i“1

Mph1
iq ď n,

for all h1
1, . . . , h

1
n P h.

In addition, letting ¯̄h P h̄ P h (since
Ť

h ‰ H), then by (14) and (15) we
have

n “ µnh̄

`¯̄h
˘

ď Mpnh̄q ď Mp
Ť

phqnq ď n,

and therefore Mp
Ť

phqnq “ n.

Finally, as for (f), we proceed by induction on n “ degpP q. If degpP q “ 0,
then

Ť

P phq “ H, and therefore Mp
Ť

P phqq “ 0 “ degpP q. For the inductive
step, if n “ degpP q ě 1, then P “ an ¨ xn ` Q, for some an ě 1 and Q P Nrxs

such that degpQq ă n, so that

Mp
Ť

P phqq “ M
`
Ť

pan ¨ phqn ` Qphqq
˘

“ max
´

M
`
Ť

pan ¨ phqnq
˘

,M
`
Ť

Qphq
˘

¯

(by (c))

“ max
´

M
`
Ť

phqn
˘

,M
`
Ť

Qphq
˘

¯

(by (d))

“ max
´

n,M
`
Ť

Qphq
˘

¯

(by (e)).

Since, by inductive hypothesis, M
`
Ť

Qphq
˘

“ degpQq ă n, then we have
maxpn,Mp

Ť

Qphqqq “ n, so that Mp
Ť

P phqq “ n “ degpP q. Thus, by in-
duction, property (f) follows.

Later we will prove that properties (e) and (f) of the preceding lemma can
be generalized with a certain reduction map to be defined in due course (see
Definition 4.6 and Lemma 4.10(b),(c)).

The preceding lemma yields readily the following interesting injectivity re-
sult.

Corollary 3.8. Let h P HF be such that rkphq ě 2, and let P,Q P Nrxs be
polynomials with distinct degrees. Then P phq ‰ Qphq.

Proof. From Lemma 3.7(f), we have

M
`
Ť

P phq
˘

“ degpP q ‰ degpQq “ M
`
Ť

Qphq
˘

.

Hence, it follows immediately that P phq ‰ Qphq.
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4. Rµ
A on Hereditarily Finite Multisets

The map RA can be extended in a very natural manner to a map Rµ
A over the

collection HFµ of the h.f. multisets.

Definition 4.1. For every multiset H P HFµ, we put recursively:

Rµ
ApHq “

ÿ

KPH

µHpKq ¨ 2´Rµ
ApKq.

It can easily be proved that for each h P HF, we have Rµ
A

`

Ephq
˘

“ RAphq,
where E is the canonical embedding of HF into HFµ defined in Section 3.3.
Often we will freely write Rµ

Aphq in place of Rµ
A

`

Ephq
˘

, for h P HF, but this will
cause no confusion.

Remark 4.2. It should be readily observed that there are cases in which the
injectivity of Rµ

A does not hold, e.g.,

Rµ
AprtHu, tHusq “ 2 ¨ 2´1 “ 1 “ 2´0 “ Rµ

AprHsq.

An analogous – rather annoying – feature would occur even if we modified (RA

and) Rµ
A replacing the base 2 with any integer. Moreover, this fact will force

us to state our conjecture (Conjecture 4.11) on the injectivity of Rµ
A over just a

portion of the universe of hereditarily finite multisets. Under Conjecture 4.11
we will prove the transcendence of RA-codes (Theorem 4.12).

We suspect that by replacing the base 2 of the exponent in the definition
of (RA and) Rµ

A with non integral positive numbers greater than 1, say with e,
we can solve this local problem and obtain the transcendence of the (modified)
RA-codes under the assumption of the injectivity of Rµ

A over the full HFµ.
However, we did not pursue this path here since the current definition of Rµ

A is
perfectly in line with RA (and, ultimately, with NA) and, moreover, since we
believe the base 2 could ease the proof of injectivity of RA.

Finally, we observe that, had we used a transcendental base for RA, the
application of Gelfond-Schneider theorem, giving us some initial insight on the
status of the collection of codes, would not have been possible.

4.1. Some basic identities of Rµ
A

We prove some basic identities related to the coding map Rµ
A.

Lemma 4.3. For every n P N˚ and H,H1, . . . ,Hn P HFµ, the following identi-
ties hold true:

(a) Rµ
A

´

řn
i“1 Hi

¯

“
řn

i“1 R
µ
ApHiq,

(b) Rµ
ApnHq “ n ¨ Rµ

ApHq, and
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(c) Rµ
ApH1 ¨ H2q “ Rµ

ApH1q ¨ Rµ
ApH2q.

Proof. As for (a), letting H̄ “
řn

i“1 Hi we have:

Rµ
A

´

n
ÿ

i“1

Hi

¯

“
ÿ

KPH̄

µH̄pKq ¨ 2´Rµ
ApKq “

ÿ

KPH̄

´

n
ÿ

i“1

µHi
pKq

¯

¨ 2´Rµ
ApKq

“

n
ÿ

i“1

ÿ

KPH̄

µHipKq ¨ 2´Rµ
ApKq

“

n
ÿ

i“1

ÿ

KPHi

µHi
pKq ¨ 2´Rµ

ApKq “

n
ÿ

i“1

Rµ
ApHiq.

Next, concerning (b) we have:

Rµ
ApnHq “

ÿ

KPnH

µnHpKq ¨ 2´Rµ
ApKq “ n

ÿ

KPH

µHpKq ¨ 2´Rµ
ApKq “ n ¨ Rµ

Aphq.

Finally, as regards (c) we have:

Rµ
ApH1 ¨ H2q “

ÿ

KPH1¨H2

µH1¨H2pKq ¨ 2´Rµ
ApKq

“
ÿ

K1PH1
K2PH2

µH1
pK1q ¨ µH2

pK2q ¨ 2´Rµ
ApK1`K2q

“
ÿ

K1PH1
K2PH2

µH1pK1q ¨ µH2pK2q ¨ 2´pRµ
ApK1q`Rµ

ApK2qq (by (a))

“
ÿ

K1PH1

µH1
pK1q2´Rµ

ApK1q ¨
ÿ

K2PH2

µH2
pK2q2´Rµ

ApK2q

“ Rµ
ApH1q ¨ Rµ

ApH2q.

Lemma 4.4. For h P HF and P P NrXs, we have

Rµ
A

`

P phq
˘

“ P
`

RAphq
˘

.

Proof. If P “ 0, then P phq “ H and P pRAphqq “ 0. Hence, Rµ
ApP phqq “

Rµ
ApHq “ 0 “ P pRAphqq.
If P “ a0 ą 0, then P phq “

␣

a0H
(

and P pRAphqq “ a0. Hence,

Rµ
A

`␣

a0H
(˘

“ µta0HupHq ¨ 2´Rµ
ApHq “ a0 “ P pRAphqq.

For n “ degpP q ą 0, we proceed inductively. In this case, we have P phq “

anphqn ` Qphq, for some an P N˚ and some polynomial Q P Nrxs of degree
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strictly less than n. Hence, we have:

Rµ
ApP phqq “ Rµ

Apanphqn ` Qphqq

“ Rµ
Apanphqnq ` Rµ

ApQphqq (by Lemma 4.3(a))

“ an ¨
`

RAphq
˘n

` QpRAphqq (by Lemma 4.3(b) and

by inductive hypothesis)

“ P pRAphqq.

4.2. A conjecture and some consequences

We say that a multiset J occurs in (the transitive closure of) a multiset K at
nesting depth n ě 0, when there exist multisets H1, H2, . . . ,Hn such that

J P H1 P H2 P ¨ ¨ ¨ P Hn P K

(hence, J occurs in a multiset K at nesting depth 0 just when J P K holds).

The following construction will allow us to single out a maximal portion
of HFµ on which it is reasonable to expect Rµ

A to be injective, in view of
Remark 4.2. The steps we take below are based on the observation that, in
order to obtain injectivity, it is necessary to enforce a restriction that allow us to
uniquely retrieve m and n from any equation of the form Rµ

AptmH, ntHuuq “ a
2 ,

where a P N˚. The simplest restriction takes the form n ď 1, namely n P t0, 1u,
which amounts to forbidding multiple occurrences of tHu at any level of depth
in multisets.

For n P N, we let Hn
1 be the collection of h.f. multisets that, at any nesting

depth at most n, contain no occurrence of the set tHu with a multiplicity
larger than 1. Similarly, we let H8

1 be the collection of h.f. multisets that, at
any nesting depth, contain no occurrence of the set tHu with a multiplicity
larger than 1. More formally, we put:

H0
1 “ tH P HFµ

| µHptHuq ď 1u,

and recursively, for n P N,
Hn`1

1 “
␣

H P H0
1|H Ď Hn

1

(

. (16)

Then we set

H8

1 “

8
č

n“0

Hn
1 .

Lemma 4.5. The following properties hold:

(a) if H P H0
1 and H Ď H8

1 , then H P H8

1 ;
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(b) if H P H1
1 and

Ť

H Ď H8

1 , then H P H8

1 ;

(c) HF Ď H8

1 .5

Proof. Concerning (a), let H be such that H P H0
1 and H Ď H8

1 . Hence,

by (16), we have H P Hn`1
1 for every n P N, as H Ď H8

1 Ď Hn
1 . Thus, by

induction, H P
Ş8

n“0H
n
1 “ H8

1 .

Next, as regards (b), let H be such that H P H1
1 and

Ť

H Ď H8

1 , and
assume that H P Hn

1 for some n ě 1. We prove that H Ď Hn
1 . Thus, let J P H,

so that
J Ď

Ť

H Ď H8

1 . (17)

Since H P H1
1, then H Ď H0

1, and therefore J P H0
1. From (a), the latter

membership relation, together with (17), implies J P H8

1 . By the arbitrariness

of J P H, we have H Ď H8

1 Ď Hn
1 . Hence, H P Hn`1

1 , and so by induction
H P

Ş8

n“0H
n
1 “ H8

1 .

Finally, as for (c), we preliminarily observe that we plainly have HF Ď H0
1.

Next, assuming that HF Ď Hn
1 for some n P N, for every h P HF we have

h Ď Hn
1 and h P H0

1, so that (16) yields h P Hn`1
1 . Hence, HF Ď Hn`1

1 holds.
Thus, by induction, we have:

HF Ď

8
č

n“0

Hn
1 “ H8

1 .

We define a reduction operator, which will be of basic relevance in the proof
of transcendentality in Section 4.2.

Definition 4.6 (Reduction operator). The reduction operator ρ : HFµ
Ñ HFµ

is defined by putting

ρpHq “

´

Hz

!

2t k
2 utHu

)¯

`

!

t k
2 uH

)

,

for H P HFµ, where k “ µHptHuq.

In plain terms, the reduction operator ρ replaces each pair of occurrences
of tHu in its argument by a single occurrence of H. Thus, µρpHqptHuq ď 1,

for every H P HFµ, and therefore ρpHq P H0
1.

Lemma 4.7. For every H P HFµ, we have

Rµ
ApρpHqq “ Rµ

ApHq.

5Here and throughout the lemma, we are freely identifying each h.f. set h with its image
Ephq under the canonical embedding E of HF into HFµ.
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Proof. Notice that Rµ
ApρpHqq “ Rµ

ApHq. Indeed, putting again k “ µHptHuq,
we have:

Rµ
ApρpHqq “ Rµ

A

´́

Hz

!

2t k
2 utHu

)¯

`

!

t k
2 uH

)¯

“ Rµ
ApHq ´ Rµ

A

´!

2t k
2 utHu

)¯

` Rµ
A

´!

t k
2 uH

)¯

“ Rµ
ApHq ´ 2

Z

k

2

^

¨ Rµ
A

`␣

tHu
(˘

`

Z

k

2

^

¨ Rµ
A

`

tHu
˘

“ Rµ
ApHq ´ 2

Z

k

2

^

¨
1

2
`

Z

k

2

^

“ Rµ
ApHq.

The preceding lemma yields readily the following result.

Corollary 4.8. For each H P HFµ, we have Rµ
ApρrHsq “ Rµ

ApHq.

Proof. Indeed, by Lemma 4.7:

Rµ
ApρrHsq “ Rµ

A

´

ÿ

JPH

␣

µHpJqρpJq
(

¯

“
ÿ

JPH

Rµ
A

´

␣

µHpJqρpJq
(

¯

“
ÿ

JPH

µHpJq ¨ 2´Rµ
ApρpJqq

“
ÿ

JPH

µHpJq ¨ 2´Rµ
ApJq

“ Rµ
ApHq.

Lemma 4.9. Let h P HF be such that tHu R h and let P P Nrxs be any polyno-
mial with a null constant term. Then ρrP phqs P H8

1 .

Proof. Since P has a null constant term, by Lemma 3.5 all members of P phq

have the form
h1
1 ` ¨ ¨ ¨ ` h1

ℓ, (18)

for some h1
1, . . . , h

1
ℓ P h (with 1 ď ℓ ď degpP q).

In consideration that tHu R h, no element of the form (18) can equal tHu.

Thus, tHu R P phq and therefore tHu R ρrP phqs as well, so that ρrP phqs P H0
1.

In addition, for every K P ρrP phqs, we have K “ ρpHq, for some H P P phq,

and therefore K P H0
1. Hence, ρrP phqs Ď H0

1 and so ρrP phqs P H1
1.

Plainly,
Ť

ρrP phqs Ď HF. Indeed, if J P
Ť

ρrP phqs, then J is a member
of some member of ρrP phqs and so J P ρpHq, for some H P P phq. Hence,
either J “ H or J is a member of a multiset of the form (18). In either
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case, J P HF, and therefore
Ť

ρrP phqs Ď HF. Thus, from Lemma 4.5(c), we
have

Ť

ρrP phqs Ď H8

1 , and therefore Lemma 4.5(b) yields
Ť

ρrP phqs P H8

1 , as
Ť

ρrP phqs P H1
1.

Lemma 4.10. For every H P HFµ such that rkpHq ě 3 and every h P HF such
that rkphq ě 4, the following equalities hold true:

(a) MpρpHqq “ MpHq;

(b) M
`
Ť

ρrphqns
˘

“ n, for every n P N;

(c) M
`
Ť

ρrP phqs
˘

“ degpP q, for every P P Nrxs.

Proof. Concerning (a), let H P HFµ be such that rkpHq ě 3. Hence, ρpHqJ “

HJ, so that

MpρpHqq “ maxµρpHqrρpHqJs “ maxµH rHJs “ MpHq.

Next, as for (b), let n P N. Then we have:

Mp
Ť

ρrphqnsq “ maxtMpHq|H 9P ρrphqnsu (by (10))

“ max
!

M
´

ρ
´

n
ÿ

i“1

h1
i

¯¯

| h1
1 9P h, h1

2, . . . , h
1
n P h

)

.

But,

M
´

ρ
´

n
ÿ

i“1

h1
i

¯¯

“ M
´

n
ÿ

i“1

h1
i

¯

(by (a))

ď

n
ÿ

i“1

Mph1
iq (by Lemma 3.7(a))

ď n,

for all h1
1 9P h, h1

2, . . . , h
1
n P h. Hence,

Mp
Ť

ρrphqnsq ď n (19)

holds.
In addition, letting h̄ 9P h and ¯̄h 9P h̄, we have

n “ µnh̄

`¯̄h
˘

ď Mpnh̄q

ď Mp
Ť

phqnq (since nh̄ Ď
Ť

phqn)

ď Mpρr
Ť

phqnsq (by (a)).

Thus, in view of (19), we get Mpρr
Ť

phqnsq “ n, proving (b).
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Finally, concerning (c), we proceed by induction on degpP q. If degpP q “ 0,
then

Ť

P phq “ H, and so
Ť

ρrP phqs “ H. Hence, Mp
Ť

ρrP phqsq “ 0 “ degpP q.
For the inductive step, if n “ degpP q ě 1, then P “ anx

n ` Q, for some
an ě 1 and some polynomial Q P Nrxs of degree less than n. Hence, we have:

Mp
Ť

ρrP phqsq “ M
`
Ť

ρranphqn ` Qphqs
˘

“ M
´

Ť
`

ρranphqns ` ρrQphqs
˘

¯

(by (12))

“ max
´

M
`
Ť

ρranphqns
˘

,M
`
Ť

ρrQphqs
˘

¯

(by Lemma 3.7(c))

“ max
´

M
`
Ť

panρrphqnsq
˘

,M
`
Ť

ρrQphqs
˘

¯

(by (13))

“ max
´

M
`
Ť

ρrphqns
˘

,M
`
Ť

ρrQphqs
˘

¯

(by Lemma 3.7(d))

“ max
´

n,M
`
Ť

ρrQphqs
˘

¯

(by (b)).

Since, by inductive hypothesis,

M
`
Ť

ρrQphqs
˘

“ degpQq ă n , maxpn,Mp
Ť

ρrQphqsqq “ n ,

and therefore Mp
Ť

ρrP phqsq “ n “ degpP q. Thus, by induction, property (c)
follows.

Conjecture 4.11. The coding map Rµ
A is injective over the collection H8

1 .

Theorem 4.12. Under Conjecture 4.11, every hereditarily finite set of rank at
least 4 has a transcendental RA-code.

Proof. Let us assume that Conjecture 4.11 holds and that, for contradiction,
there exists a set h P HF of rank at least 4 and such that its code RAphq is
algebraic.

Without loss of generality, we may assume that h X HF3 “ H, namely
that all members of h have rank at least 3. Indeed, letting h̄ “ hzHF3, then
h “ h̄ Y ph X HF3q and therefore, by Lemma 2.8,

RAph̄q “ RAphq ´ RAph X HF3q,

since h̄XphXHF3q “ H. Thus the code RAph̄q is algebraic, as it is the difference
of two algebraic numbers.6 In addition, just by construction we have

rkph̄q “ rkphq ě 4 and h̄ X HF3 “ H.

Let P P Zrxs be any non-null polynomial with a null constant term for which
P pRAphqq “ 0 holds. Let us gather all the positive terms of P in the polynomial

6Indeed, RAph X HF3q P

!

1
2

´

a ` b?
2

¯

| 0 ď a, b ď 3
)

; see Table 1.
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P` P Nrxs and set P´ “ P` ´ P , so that P´ P Nrxs and P “ P` ´ P´.
Given that P pRAphqq “ 0, then P`pRµ

Aphqq “ P´pRµ
Aphqq and therefore, by

Lemma 4.4, we have

Rµ
ApP`phqq “ Rµ

ApP´phqq. (20)

Since both P` and P´ have a null constant term, Lemma 3.5 implies that both
P`phq and P´phq are multisets whose members all have the form h1

1 ` h1
2 `

. . . ` h1
ℓ, with h1

1, h
1
2, . . . , h

1
ℓ P h (for some ℓ P t1, . . . ,degpP qu). Thus, recalling

that H, tHu R h, we get H, tHu R P`phq, P´phq, so that P`phq, P´phq P H0
1.

Given that rkphq ě 4 and that, just by construction, degpP`q ‰ degpP´q,
Corollary 3.8 yields P`phq ‰ P´phq.

If P`phq, P´phq P H8

1 , in view of Conjecture 4.11, we would readily have

Rµ
ApP`phqq ‰ Rµ

ApP´phqq,

contradicting (20).

However, P`phq and/or P´phq may fail to belong to H8

1 , since – as already
observed – all the members of P`phq and P´phq have the form h1

1 ` ¨ ¨ ¨ ` h1
ℓ,

with h1
1, . . . , h

1
ℓ P h, and therefore some of them may contain the set tHu with

a multiplicity strictly greater than 1. If this were the case, we will need to
follow an alternate route, which makes use of the reduction operator ρ.

Specifically, in place of P`phq and P´phq, we will consider their direct
images ρrP`phqs and ρrP´phqs under the reduction operator ρ.

In view of Corollary 4.8, by (20) we have

Rµ
ApρrP`phqsq “ Rµ

ApρrP´phqsq. (21)

On the other hand, by two applications of Lemma 4.10(c), we have

M
`
Ť

ρrP`phqs
˘

“ degpP`q ‰ degpP´q “ M
`
Ť

ρrP´phqs
˘

.

Hence,

ρrP`phqs ‰ ρrP´phqs. (22)

Since ρrP`phqs,ρrP´phqs P H8

1 (by Lemma 4.9), in the light of Conjec-
ture 4.11, (22) yields

Rµ
ApρrP`phqsq ‰ Rµ

ApρrP´phqsq.

However, the latter inequality is in blatant contradiction with (21). Thus, our
initial assumption that (under Conjecture 4.11) there may exist a set h P HF
of rank at least 4 and such that RAphq is algebraic is untenable, proving the
theorem.
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5. Conclusions and Open Problems

The theme we explored in this paper concerns the interplay between sets and
numbers, more specifically, the interplay between hereditarily finite multi-sets
and real numbers. Our initial motivation was the study of a numerical map
RAphq “

ř

h1Ph 2
´RAph1

q sending well-founded hereditarily finite sets into real
numbers, a map that is structured in complete analogy to the celebrated Ack-
ermann bijection NAphq “

ř

h1Ph 2
NAph1

q.
The main characteristic of NA is the fact that it is a recursively defined

bijection. The range of NA (and its surjectivity) impose strict limitations to NA:
it cannot be directly adapted to more extended notions of sets (e.g., non well-
founded structures such hypersets) and it cannot be used to map the “middle-
earth” of multisets into numbers. Both these limitations are overcome when
the range of the map is extended. This move “gives space” for mapping objects
defined by modifying the very notion of set.

The basic feature of a set is that it is fully understood when its elements are
listed. While sets do not change when their elements are listed in a different
order or when some of their elements are listed more than once, multisets are
defined by dropping the latter assumption and keeping into account multiplic-
ities of elements, intended to count the number of times any single element
occurs in them. In this sense, multisets represent a middle-earth between pure
sets and numbers.

Mapping multisets into real numbers is therefore possible and doing it with
Rµ

A – defined in complete analogy to RA,NA – allowed us to use multiplicities
to express the product of codes by integers as an iterated sum of them (see
Section 3.2). Here we proved that the injectivity of Rµ

A on a large portion
of the family of hereditarily finite multisets implies that its range is almost
everywhere non-algebraic. That is, mapping multisets into numbers – in a
manner coherent with NA – calls into play a rather complex numerical field.

The main problem we leave open is, clearly, the injectivity of Rµ
A (on H8

1 ).
We conjecture that Rµ

A is injective – with the limitations discussed above –
and this is a reinforcement of our previous conjecture on the injectivity of RA

(see [14, 5]).

Under the validity of our previous conjecture(s), codes are irrational num-
bers and do not necessarily admit finite representations. Hence, any finite
computation of Rµ

A (respectively, RA) on a given finite collection of multisets
(respectively, sets), must be stopped at some predetermined level of approxi-
mation. A further direction we consider worth exploring is the level of approx-
imation (e.g., the number of digits) that is sufficient to compute in order to
distinguish the codes of an input collection of multisets (respectively, sets).

Finally, we hope that the tools we have developed for the proof of our
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main result here will represent a simple and concrete operational link between
the fields of (multi-)set theories and Diophantine equations. Computational
problems and results written in one of the two mathematical languages can
now be easily rewritten and reconsidered in the other. We hope that studying
and exploring the potential of this transfer can be a source of new ideas and
techniques.
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