
Rend. Istit. Mat. Univ. Trieste
Vol. 53 (2021), Art. No. 22, pp. 1–8 (electronic)

DOI: 10.13137/2464-8728/33308

Random generation of
essential directed acyclic graphs

Romeo Rizzi and Alexandru I. Tomescu

Thank you Eugenio for your infinite encouragement, spiraling conversations
and hyper-science, during the wonderful years 2009–2011 in

Udine, Trieste and Monfalcone.

Abstract. A directed acyclic graph (DAG) is called essential if for
every edge (u, v) it holds that the set of in-neighbors of u is different
than the set of in-neighbors of v minus vertex u. Essential DAGs have
applications in Bayesian networks, where a basic problem is to generate
uniformly at random a labeled essential DAGs with a given number of
vertices. In this paper we prove a new decomposition of essential DAGs,
which entails: (i) a new counting recurrence, and (ii) a new random
generation algorithm, that may be of potential use for their applications
in Bayesian networks.

Keywords: Directed acyclic graph, counting recurrence, sampling.
MS Classification 2020: 05C20, 05C30, 68R10, 05C80.

1. Introduction

Directed acyclic graphs (DAGs) are a most basic class of graphs, with appli-
cations in various areas of Mathematics and Computer Science. For example,
in Set Theory, hereditarily finite well-founded sets correspond to a subclass of
DAGs (extensional DAGs) when one interprets each set as a vertex, and each
membership relation x ∋ y as an edge (x, y), see e.g. [7]. In Computer Science,
a DAG guarantees, e.g. the existence of a topological order among its vertices,
enabling various optimal algorithms on DAGs, for problems that are otherwise
NP-hard on general graphs (e.g. longest path).

A basic combinatorial question about DAGs is: given a natural number n,
how many labeled DAGs with n vertices {1, . . . , n} exist? Here, by “labeled” we
mean that we consider two labeled DAGs to be the same if and only if they have
the same set of edges (see Figure 1 for an example). For general DAGs, the first
counting results date back to [2, 3, 5, 12, 13]. This question has been addressed
for other subclasses of DAGs, for example extensional DAGs [8, 10, 16].

2 R. RIZZI AND A. I. TOMESCU

1 1 2

1 2 3
1

2 3

2

1 3

3

1 2

1

2

3

1

2

3

2

1 3

2

3 1

3

1 2

Figure 1: Three labeled DAGs with vertex set {1, 2, 3}. The two left-most
DAGs are the same, since their set of edges is the same, namely {(1, 2), (3, 2)}.
The DAG on the right is not the same as the other two ones, since its set of
edges is {(1, 3), (2, 3)}.

In this paper we consider a different subclass of DAGs, namely essential
DAGs. Given a DAG G = (V,E), we denote its vertex set V also by V (G).
Given v ∈ V (G), we denote by N+(v) the set of out-neighbors of v, namely
N+(v) = {w : (v, w) ∈ E}, and by N−(v) the set of in-neighbors of v, namely
N−(v) = {u : (u, v) ∈ E}. We say that G is essential if for any edge (u, v) it
holds that N−(u) ̸= N−(v) \ {u}. See Figures 2 and 3 for examples. Essential
DAGs are used to represent the structure of Bayesian networks [1, 4, 9]. More
specifically, [1] shows that essential DAGs are representatives of the Markov-
equivalence classes of acyclic Bayesian networks (i.e., are Markov-equivalent to
all acyclic networks in its equivalence class). By working only with such repre-
sentatives, [1] claims that various computational problems on acyclic Bayesian
networks are more efficient, or various constraints on prior distributions can be
dropped in model selection algorithms.

1 1 2

1 2 3
1

2 3

2

1 3

3

1 2

1

2

3

1

2

3

Figure 2: All the labeled essential DAGs with one vertex (top left), two vertices
(top right), three vertices (bottom).

Essential DAGs were counted in [14] by inclusion-exclusion, and the asymp-
totic behavior of their number was studied in [15]. We should also note the
similarity between the definition of essential DAGs and that of extensional

RANDOM GENERATION OF ESSENTIAL DAGS 3

DAGs, the later of which requiring that for any two distinct vertices u and v,
it holds that N+(u) ̸= N+(v) [7].

1 1 2

1 2 3
1

2 3

2

1 3

3

1 2

1

2

3

1

2

3

Figure 3: Two DAGs that are not essential. In the DAG on the left, for the
edge (3, 2) it holds that ∅ = N−(3) = N−(2) \ {3}. In the DAG on the right,
for the edge (2, 1) it holds that {3} = N−(2) = N−(1) \ {2}.

Given their applications in Bayesian networks (e.g., in model selection,
see [1]), a basic problem on essential DAGs is: given a natural number n,
generate uniformly at random (u.a.r.) a labeled essential DAGs with n ver-
tices. This problem can be solved by a result showing that the number of
labeled DAGs with n vertices and the number of labeled essential DAGs on n
vertices are asymptotically the same, up a factor of ≈ 13.65 [15]. This guar-
antees that one can generate u.a.r. an essential DAG by repeatedly generating
u.a.r. a general DAG (using e.g. [6]) until getting one that is essential.

In this paper, we show another, direct approach, using the same recursive
approach used for extensional DAGs from [7, Chapter 7]. For achieving this,
we introduce a new decomposition of essential DAGs, and first show that it
leads to a new counting recurrence for them. Then, we exploit this new insight
in obtaining the direct recursive random generation procedure. This paper
contains results from our preprint [11].

2. Counting

Our decompositions of essential DAGs is symmetric to the one by rank intro-
duced in [10] for extensional DAGs, where the rank of a vertex v of a DAG is
defined as the length of a longest path from v to a sink (i.e. to a vertex with no
out-neighbors). By definition, vertices of maximum rank have their set of out-
neighbors different from the set of out-neighbors of any vertex of smaller rank.
This was a key insight in [10] in decomposing extensional DAGs by vertices of
maximum rank.

Since essential DAGs are defined in terms of in-neighbors, we need the
opposite notion of rank. Define the depth of a vertex x in a DAG as the length
of any longest path from a source (i.e. from a vertex with no in-neighbors)
to x. Note that a vertex of maximum depth in G must be a sink of G, but

4 R. RIZZI AND A. I. TOMESCU

the converse does not necessarily hold. Let us denote by d(n, k) the number
of labeled essential DAGs with n vertices, and in which there are exactly k
vertices of maximum depth. The following theorem, via its proof, explains the
new decomposition of essential DAGs by vertices of maximum depth.

Theorem 2.1. For any n ≥ 1, d(n, n) = 1 holds. Moreover, for any k ∈
{1, . . . , n− 1}, the following recurrence relation holds:

d(n, k) =

(
n

k

) n−k∑
s=1

d(n− k, s)
(
s(2n−k−s − 1) + (2s − (1 + s))2n−k−s

)k

.

Proof. There are
(
n
k

)
ways to choose the k vertices of maximum depth, and by

removing them we obtain an essential DAG with n− k vertices and s vertices
of maximum depth, for some s ∈ {1, . . . , n− k}. Each vertex x of maximum
depth must have an in-neighbor among these s vertices, by definition of depth
and maximality. We distinguish two cases.

First, x has precisely one in-neighbor y among these s vertices. In this case,
any subset of the remaining n−k−s vertices, except for the in-neighborhood of
y, can act as in-neighborhood of x, when restricted to these n− k− s vertices.
Thus, there are s(2n−k−s − 1) ways of choosing the in-neighborhood of x in
this manner, where the −1 term accounts for the fact that x does not have zero
in-neighbors among the s vertices.

Second, x has at least two neighbors among the s vertices. In this case
any, subset of the remaining n − k − s vertices can act as in-neighborhood
of x, restricted to these n − k − s vertices. This holds because no vertex
among the n − k vertices can have an in-neighbor among the s vertices of
maximum depth, by definition of depth, maximality and acyclicity. Thus, there
are (2s − (1 + s))2n−k−s ways of choosing the in-neighborhood of x, where the
term −(1 + s) accounts for the fact that x does not have nor zero, nor exactly
one in-neighbor among the s vertices.

Trivially, the number of labeled essential DAGs with n vertices is obtained
as

∑n
k=1 d(n, k). The values of this number for small n were given in [14]. In

Table 1 we present the values of d(n, 1) and d(n, 2) for small n.
We should note that even if our decomposition uses the notions of source,

sink and rank, and parameterizes the counts based on them, these notions do
not have immediate applications in Bayesian networks: they are technical tools
useful in obtaining the final random generation procedure.

3. Random generation

Thanks to the proof of Theorem 2.1, in order to generate u.a.r. an essential
DAG having V = {1, . . . , n} as vertex set, we can proceed recursively as in the

RANDOM GENERATION OF ESSENTIAL DAGS 5

n d(n, 1) d(n, 2)
1 1 0
2 0 1
3 3 0
4 52 6
5 2175 430
6 254166 49035
7 72025471 14792841
8 48209379128 9973823300
9 73535410411119 15382053998676
10 251181726578388370 52716754248025365
11 1894237921184995595847 398475905881839278515
12 31226024774696489057711172 6575199987017708418484662

Table 1: Values d(n, 1) and d(n, 2), for small n.

case of extensional DAGs [7, Chapter 7]. This recursive procedure is explained
formally in Algorithm 1, and works as follows.

Before calling Algorithm 1, we choose the number k of vertices of maximum

depth, proportional to d(n,k)∑n
t=1 d(n,t) . Then, we choose u.a.r. the k vertices of

maximum depth {v1, . . . , vk} = Z, and call the recursive algorithm for V \ Z,
with a number s of sources chosen as when choosing k. Suppose this recursive
call returns an essential DAG G. It remains to add edges from the vertices of
G to each vi, such that: (i) each vi has maximum depth in the resulting DAG;
and (ii) the resulting DAG is essential.

For each i ∈ {1, . . . , k}, we must choose whether vi has exactly one in-
neighbor among the vertices of maximum depth in G, or at least two in-
neighbors. As such, we choose b ∈ {0, 1} at random such that:

b =

0, with probability

s(2n−k−s − 1)

(s(2n−k−s − 1) + (2s − s− 1)2n−k−s)
;

1, with complementary probability.

If b = 0, then we choose x u.a.r. among the vertices of maximum depth of G,
and we choose u.a.r. a subset W , different from N−(x), of the other vertices of
G, and set N−(vi) = {x} ∪W . Otherwise, if b = 1, we choose u.a.r. a subset
W1 of at least two elements of the vertices of maximum depth of G, and we
choose u.a.r. a subset W2 of the other vertices of G, and set N−(vi) = W1∪W2.

The correctness of this procedure follows from Theorem 2.1 and the argu-
ments given in its proof. We obtain the following:

6 R. RIZZI AND A. I. TOMESCU

Algorithm 1: Generating u.a.r. an essential DAG with n vertices labeled

by the elements of V , |V | = n, out of which k are vertices of maximum

depth.

1 randomGenerationEssDAG(n, k, V)
2 if k = n then return (V, ∅);
3 choose u.a.r. a k-subset Z ⊆ V ;

4 choose s ∈ {1, . . . , n− k} with probability
d(n− k, s)∑n−k
t=1 d(n− k, t)

;

5 G := randomGenerationEssDAG(n− k, s, V \ Z);

6 X := the set vertices of maximum depth of G;
7 Y := V (G) \X;
8 V (G) := V (G) ∪ Z;
9 foreach z ∈ Z do

10 choose b ∈ {0, 1} at random such that

b =

0, with probability
s(2n−k−s − 1)

(s(2n−k−s − 1) + (2s − s− 1)2n−k−s)
;

1, with complementary probability;

11 if b = 0 then
12 choose u.a.r. x ∈ X;
13 choose u.a.r. a subset W of Y , different from N−(x);
14 in G, set N−(z) := W ∪ {x};
15 else
16 choose u.a.r. a subset W1 of X with at least 2 elements;
17 choose u.a.r. a subset W2 of Y ;
18 in G, set N−(z) := W1 ∪W2;

19 return G.

Theorem 3.1. Algorithm 1 correctly generates u.a.r. a labeled essential DAG
with n vertices, out of which k are vertices of maximum depth.

Corollary 3.2. A labeled essential DAG with n vertices can be generated

u.a.r. by choosing k ∈ {1, . . . , n} with probability proportional to d(n,k)∑n
t=1 d(n,t) ,

and calling randomGenerationEssDAG(n, k, {1, . . . , n}).

4. Conclusions

Notice that even though we counted essential DAGs in a similar manner to ex-
tensional DAGs, we proceeded “bottom-up” by removing sinks (since essential-
ity involves in-neighborhoods), not “top-down” by removing sources, as for ex-

RANDOM GENERATION OF ESSENTIAL DAGS 7

tensional DAGs (since extensionality involves out-neighborhoods). Since these
two approaches appear hard to combine, we consider as an interesting combi-
natorial problem the one of counting the number of labeled DAGs that are both
extensional and essential. However, if one considers reverse essential DAGs, as
those such that for every edge (u, v) it holds that N+(u) \ {v} ≠ N+(v), then
we believe the top-down approach can apply to count extensional and reverse
essential DAGs, and we leave this for future work.

Acknowledgements

This work was partially funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 851093, SAFEBIO) and by the Academy of Finland (grants
No. 322595, 328877).

References

[1] S. A. Andersson, D. Madigan, and M. D. Perlman, A characterization of
Markov equivalence classes for acyclic digraphs, Ann. Statist. 25 (1997), no. 2,
505–541.

[2] E. A. Bender, L. B. Richmond, R. W. Robinson, and N. C. Wormald,
The asymptotic number of acyclic digraphs, I, Combinatorica 6 (1986), 15–22.

[3] E. A. Bender and R. W. Robinson, The asymptotic number of acyclic di-
graphs, II, J. Combin. Theory 44 (1988), 363–369.

[4] S. B. Gillispie and M. D. Perlman, Enumerating Markov equivalence classes
of acyclic digraph models, Proceedings of the 17th Conference in Uncertainty In
Artificial Intelligence, Morgan Kaufmann, 2001, pp. 171–177.

[5] F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, New
York, 1973.

[6] J. Kuipers and G. Moffa, Uniform generation of large random acyclic di-
graphs, Stat. Comput. 25 (2015), no. 2, 227–242.

[7] E. G. Omodeo, A. Policriti, and A. I. Tomescu, On sets and graphs: Per-
spectives on logic and combinatorics, Springer, 2017.

[8] R. Peddicord, The number of full sets with n elements, Proc. Amer. Math. Soc
13 (1962), 825–828.

[9] Jose M. Peña, Approximate counting of graphical models via MCMC, Pro-
ceedings of the Eleventh International Conference on Artificial Intelligence and
Statistics (Marina Meila and Xiaotong Shen, eds.), Proceedings of Machine
Learning Research, vol. 2, PMLR, 2007, pp. 355–362.

[10] A. Policriti and A. I. Tomescu, Counting extensional acyclic digraphs, In-
form. Process. Lett. 111 (2011), no. 3, 787–791.

[11] R. Rizzi and A. I. Tomescu, Floating-point arithmetic for approximate count-
ing and random generation problems, (2013), CoRR abs/1307.2347.

8 R. RIZZI AND A. I. TOMESCU

[12] R. W. Robinson, Enumeration of acyclic digraphs, Proc. Second Chapel Hill
Conf. on Combinatorial Mathematics and its Applications (Chapel Hill, N.C.),
Univ. North Carolina, 1970.

[13] R. W. Robinson, Counting labeled acyclic digraphs, New directions in the The-
ory of Graphs (F. Harary, ed.), Academic Press, NY, 1973, pp. 239–273.

[14] B. Steinsky, Enumeration of labelled chain graphs and labelled essential directed
acyclic graphs, Discrete Math. 270 (2003), no. 1-3, 266–277.

[15] B. Steinsky, Asymptotic behaviour of the number of labelled essential acyclic
digraphs and labelled chain graphs, Graphs Combin. 20 (2004), no. 3, 399–411.

[16] S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, Algorith-
mica 66 (2013), no. 4, 829–847.

Authors’ addresses:

Romeo Rizzi
Department of Computer Science
University of Verona
Strada le Grazie 15, 37134, Verona, Italia
E-mail: romeo.rizzi@univr.it

Alexandru I. Tomescu
Department of Computer Science
University of Helsinki
P.O. Box 68, FI-00014, Finland
E-mail: alexandru.tomescu@helsinki.fi

Received March 24, 2021
Revised September 6, 2021

Accepted September 6, 2021

