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Abstract. Based on possibility theory and multi-valued logic and tak-
ing inspiration from the seminal work in probability theory by A. N.
Kolmogorov, we aim at laying a hopefully equally sound foundation
for fuzzy arithmetic. A possibilistic interpretation of fuzzy arithmetic
has long been known even without taking it to its full consequences:
to achieve this aim, in this paper we stress the basic role of the two
limit-cases of possibilistic interactivity, namely deterministic equality
versus non-interactivity, thus getting rid of weak points which have rid-
den more traditional approaches to fuzzy arithmetic. Both complete and
incomplete arithmetic are covered.
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1. Introduction

In the so-called implicit approach to probabilities due to the English mathe-
matician sir Harry Raymond Pitt (1914-2005), random variables and random
numbers X are not explicitly defined, as happens in the explicit Kolmogorov’s
approach, but are rather operationally described through their probability dis-
tribution PX , i.e. through a 1-normed σ-additive measure on the σ-algebra of
Borel sets on R. In the same way random couples (X,Y ) or more generally ran-
dom k-tuples X = X1 . . . Xk rely on bi-dimensional or k-dimensional 1-normed
measures PX,Y or PX on the Borel sets of R2 or Rk, respectively. Pitt does
not even try to “split” suggestive notations as are e.g. Prob{a ≤ X ≤ b} or
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Prob{a ≤ X ≤ b, c ≤ Y ≤ d} into their components, but simply sees them
as inspiring synonyms for the measures (for the probabilities) of the corre-
sponding interval A and the corresponding rectangle B, i.e. for PX(A) and
PX,Y (B), respectively. Needless to say, a metatheorem (actually, a quite obvi-
ous metatheorem) proves that a statement is true in the implicit approach if
and only if it is true in the explicit approach: the two approaches, in a way,
are “interchangeable”.

Thinking of the quote of John of Salisbury and Bernard de Chartres, even
if below we find it more convenient and expedient to mimic Pitt’s approach,
it is on the shoulders of the Russian giant Andrej N. Kolmogorov (1903-1987)
that we shall stand to discuss from a vantage position the maxitive possibility
distribution calculus, as opposed to the more traditional and mature additive
probability distribution calculus.

In the final section we shall comment that fuzzy arithmetic has much to
learn from what was done in probability starting from the letters exchanged by
Blaise Pascal and Pierre de Fermat in 1654: possibility distribution calculus as
covered in Sections 2 to 6 should only serve as a smooth transition tool, meant
to cool down polemic reactions on side of the partisans of fuzzy arithmetic in
its more traditional set-theoretic approach. Fair to say, it is precisely to fuzzy
numbers and to a sound mathematical foundation for fuzzy arithmetic that
this paper is devoted, even if we shall take our time and reach the point only
in Section 6. We will go as far as claiming that old set-theoretic approaches to
fuzzy arithmetic should be entirely relinquished in favor of an approach based
directly on possibility theory.

Early interpretations of fuzzy arithmetic in a possibilistic key go back to as
early as the 80’s [3] and have continued following a more and more “radical”
view [1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20]; based on this, we are now
in a position to present a comprehensive and sound approach to fuzzy arith-
metic and its underlying possibility distribution calculus, without any of the
drawbacks and snags one was used to fight with; cf. Sections 5 and 6.

Even if ours is basically a position paper, the Pitt-like approach to possi-
bilistic arithmetic, and so to fuzzy arithmetic, is here presented for the first
time in a systematic and all-inclusive way, underlying its generality and sim-
plicity: actually, it is precisely trying to speed up computations, as we did in
[6, 8, 9, 10, 11, 19, 20], that we were led to deepen the theoretic approach which
is here presented; cf. the concluding section.

In Sections 2 to 5 terms as are fuzzy number or fuzzy arithmetic will be
avoided. They will be explicitly used only in Section 6, once we possess all the
possibilistic tools which are needed.
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2. A Pitt-like approach to possibility numbers

A possibility number X or more compactly a Π-number X is implicitly de-
fined through its possibility distribution ΠX on the subsets of R. In its turn a
possibility distribution Π = ΠX on R is defined by a non-negative possibility
distribution function fX(x) : R → [0, 1] with the single normality constraint
that the equation fX(x) = 1 should have at least one solution (cf. however
Section 3); the more specific notation ΠX is used beside the generic one Π to
stress which Π-number is involved. For any subset A of R one sets

Π(A) = ΠX(A) = Poss{X ∈ A} =̇ sup
x∈A

fX(x) ,

where =̇ means “equal by definition”. Notice that one has fX(x) = Poss{X =
x}, unlike what happens with probability distribution functions.

An observation: we will not discuss the meaning of possibilities, their “phi-
losophy”, for which we refer e.g. to [4, 18, 15], but rather their mathematical
or “technical” maxitive structure. We acknowledge that “possibility” is quite a
committal term, possibility theory being a deep and relevant chapter of multi-
valued logics.

A further observation: the reader might object that our definitions are too
loose and generous: an event is any subset of R and the distribution function
might be quite pathological. The reason is that suprema (generalized maxima),
unlike generalized sums (Radon-Nikodym integrals), are quite user-friendly and
do not bring about any mathematical snag (devoted mathematicians might
add: “unfortunately”). We will be as general as possible, quite conscious that
in practice only very special subsets and very special distributions functions
will be needed, and that relevant theorems might require to impose restrictions
on subsets and on distribution functions.

As an example, we will not rule out the vacuous (uninformative) distri-
bution functions fX(x) = 1, x ∈ R, which is the analogue of the uniform
probability function, with the non-trivial observation that uniform probabil-
ity functions are defined e.g. on intervals, while a uniform probability on the
whole of R breaks the usual σ-additive frame and is allowed only in the very
special finitely additive frame of subjectivist probability theorists as was Bruno
de Finetti (1906-1985). While uniform probability distributions are meant to
code total uncertainty, uniform possibility distributions are meant to code total
ignorance, a distinction which is quite familiar in evidence theory [21] from
which the term “vacuous” is derived.

Further examples, made thinking directly of fuzzy arithmetic, are Π-inter-
vals (u, a, b, v) with u < a < b < v, where the possibility distribution function is
0 outside [u, v], grows linearly from 0 to 1 on [u, a], remains equal to 1 on [a, b]
and decreases linearly from 1 to 0 on [b, v]. Limit cases thereof are Π-triangles
(u, a = b, v) when a = b, and crisp numbers r when u = a = b = v=̇r, f(r) = 1
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and f(x) = 0 for x ̸= r. Crisp numbers (usual real numbers) are at the other
extreme of the vacuous number, crisp knowledge (no ignorance) versus total
ignorance.

We move to possibilistic k-tuples X and their distribution functions

fX(x1, . . . , xk) : Rk → [0, 1] .

Actually, to make our point, it will be enough to deal with couples (X,Y )
whose distribution functions fX,Y (x, y) have domain R2 and such that for at
least one couple (ξ, ζ) ∈ R2 one has fX,Y (ξ, ζ) = 1. Starting from a joint
(bidimensional) possibility distribution function fX,Y (x, y) one may derive the
two corresponding marginal (1-dimensional) distribution functions fX(x) and
fY (y):

fX(x) = Poss{X = x} = Poss{X = x, Y ∈ R} =̇ sup
y∈R

fX,Y (x, y)

and the analogue for ΠY . These definitions are in accordance with the maxitive
nature of possibilities and remind one of marginalization in probability theory,
additive rather than maxitive.

In the other direction, one might start from the two marginals for X and Y
and “stick” them together to obtain an admissible joint distribution which
would give back the two marginals one had started with. One convenient way
to do this is to use a ⊤-norm (to be read tee-norm), i.e. an “abstract” logical
conjunction (e.g., see [4, 11, 12, 15, 18, 20]) x⊤y, where the two logical values
(x, y) belong to the unit square [0 ≤ x ≤ 1, 0 ≤ y ≤ 1], 0=false, 1= true.

We shortly recall that ⊤-norms are defined by axioms which impose com-
mutativity x⊤y = y⊤x, associativity (x⊤y)⊤z = x⊤(y⊤z) and monotony:
y ≤ z implies x⊤y ≤ x⊤z, with 1 as ⊤-identity element x⊤1 = x; by using
monotony with respect to the ⊤-identity element 1 ≥ x one soon proves that
0 is a nullific for ⊤, i.e., x⊤0 = 0. The negation is simply x=̇1− x. By resort-
ing to one of the two De Morgan rules one can soon derive a dual ⊤-conorm
x⊥y=̇x⊤y, i.e. an abstract disjunction; we recall that the axioms for ⊤-conorms
are the same as for ⊤-norms, save that the ⊤-identity element is 0 and so the
⊥’s nullific is 1, i.e., x⊥1 = 1.

Sticking together two marginals by use of a ⊤-norm, as soon checked, defines
an admissible joint distribution. No doubt, the most popular norms are:

• standard : x⊤y = min[x, y]=̇x ∧ y , x⊥y = max[x, y]=̇x ∨ y ,

•  Lukasiewicz : x⊤y = max[0, x+ y − 1] , x⊥y = min[1, x+ y],

• probabilistic: x⊤y = x · y , x⊥y = x+ y − x · y .

The standard norms are those most used in fuzzy logic as made popular by
Lotfi A. Zadeh (1921-2017).
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Using the definitions of the two marginal distributions ΠX and ΠY derived
from the joint distribution ΠX,Y one soon proves that, whatever the event A,
one has ΠX,Y (A) ≤

[
ΠX ∧ΠY

]
(A), that is, in terms of possibility distribution

functions, whatever the couple (x, y) ∈ R2:

fX,Y (x, y) ≤ fX(x) ∧ fY (y) = min
[
sup
y∈R

fX,Y (x, y) , sup
x∈R

fX,Y (x, y)
]
.

Thus, to maximize joint possibilities one should use the standard ⊤-norm based
on minima. This fact, cf. e.g. [4, 15, 18], has lead possibility theorists to define
non-interactivity, which is meant to be the appropriate possibilistic analogue
of probabilistic independence, precisely by means of the standard ⊤-norm: two
Π-numbers X and Y are non-interactive when fX,Y (x, y) = min[fX(x), fY (y)].
Unsurprisingly, non-interactivity will play a basic role in what follows; observe
that the product of probabilistic independence has been replaced by the mini-
mum of possibilistic non-interactivity.

Another basic way exists to stick together two marginals, limited to the
case when the two Π-numbers X and Y are equidistributed, i.e. when fX(x) =
fY (x) for all x ∈ R. We are thinking of deterministic equality, where one sets
fX,Y (x, x) = fX(x) = fY (x), else fX,Y (x, y) = 0.

We stress that one should carefully distinguish between equidistribution
X ≈ Y i.e. fX(x) = fY (x) and deterministic equality X = Y ; only in the
latter case X and Y are the same Π-number and the two symbols X and Y are
synonyms (one of the two might be disposed of). Two equidistributed numbers
X and Y may be interactive in an infinite variety of ways (unless at least
one of the two is a crisp number), going from deterministic equality, indeed a
tight form of interactivity, to non-interactivity, when there is no “exchange of
information” between them. This observation may sound trivial to probability
theorists, but unfortunately it is not always so in the traditional set-theoretic
approach to fuzzy arithmetic; cf. our comments in Section 6.

3. A detour to incomplete distributions

One might consider also possibility distribution functions which are incomplete
or sub-normal, i.e. for which supx∈R f(x) might be strictly less than 1. Unlike
incomplete probabilities, an odd notion indeed, incomplete possibilities do pop
up in important contexts as is fuzzy control, as based on the fuzzy extension
of the logical syllogism called modus ponens: the reader is referred e.g. to
[4, 15, 18] for an exhaustive discussion; however, to facilitate self-readability,
we have provided the Remark below.

A limit-case of incomplete distributions is the all-0 distribution function;
in fuzzy control, such an unpleasant mathematical object is obtained when
the logical premise and the logical implication are at contradiction with one
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another, cf. Remark 3.1. So, while the vacuous (all-1 and so complete) dis-
tribution describes total ignorance, cf. Section 2, one might be tempted to go
as far as claiming that the all-0 distribution is an adequate description of a
totally self-contradictory state of knowledge about the possibilistic quantity X.
Managing contradiction in logic is a hard nut, indeed: once again, however,
we notice that similar situations are found in evidence theory [21], where they
have been amply discussed and commented upon. As for the link between in-
completeness and the representation of logical contradiction in evidence theory,
cf. [22].

Remark 3.1 (Incompleteness). In modus ponens, or rather in its fuzzy exten-
sion which we shall shortly cover “adapting” it to the possibilistic terminol-
ogy used so far in this paper, one has two possibilistic quantities X and Y ,
X ∼ fX(x) which is well-known, the premise of the syllogism, and Y ∼ gY (y)
which is unknown, to be computed in the conclusion (the symbol ∼ refers
here to the respective distribution functions). One has also the inference rule:
“were X ∼ ϕX(x) then one would have Y ∼ ψY (y)” (the two “hypothetical”
distributions ϕX(x) and ψY (y) are known and can be used in calculations):

• premise: X ∼ fX(x)

• inference rule: if X ∼ ϕX(x) then Y ∼ ψY (y)

• conclusion: Y ∼ gY (y) to be computed

The logical operations are those standard in fuzzy logic, maximum for disjunc-
tion x ∨ y, minimum x ∧ y for conjunction and implication (we are using the
so-called Mamdani implication as is standard in fuzzy control, cf. e.g. [4, 15, 18];
x and y are two logical values in the interval [0,1]; as is usual, the symbols ∨
and ∧ are “double-use”, both logical and numerical). Computations show that

gY (y) = ψY (y) ∧ sup
x∈R

[
fX(x) ∧ ϕX(x)

]
Even if the three distributions one starts with are complete, the resulting dis-
tribution gY (y) is not complete unless the supremum is equal to 1, i.e. unless
ξ exists such that fX(ξ) ∧ ϕX(ξ) = 1, a case which fuzzy logicians and fuzzy-
control people consider scarcely interesting and rarely met in applications

(
in

this case one would have gY (y) = ψY (y)
)
. Even more rarely met in appli-

cations is the case when the supremum is 0 because the two X-supports, the
one in the premise and the other in the inference rule, are disjoint : in such
an unfortunate situation of conflicting distributions one would have an all-0
distribution function for Y in the conclusion.
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4. Possibility distribution calculus

We deal with deterministic functions of Π-numbers Z = ϕ(X) and with deter-
ministic functions of a Π-couple, i.e. with binary operations Z = X ◦Y , where ◦
denotes a generic binary function, x ◦ y = Φ(x, y). Below, probability theorists
will readily recognize what one does in probability distribution calculus.

It will be enough to be able to compute the distribution functions fZ =
fϕ(X) and fZ = fX◦Y starting from fX(x) and fY (y). Mimicking what we
already did when marginalizing, one has:

fZ(z) = Poss{Z = z} = Poss{ϕ(X) = z} = sup
x:ϕ(x)=z

fX(x)

and

fZ(z) = Poss{Z = z} = Poss{X ◦ Y = z} = sup
x,y: x◦y=z

fX,Y (x, y) ,

where we set, as it should be, fZ(z) = 0 when the minimization set where one
takes the supremum is void.

Generalizing to the case of a k-argument deterministic function

Z = ϕ(X1, . . . , Xk) , k ≥ 1 ,

where the possibilistic k-tuple (X1, . . . , Xk) is defined by the possibility distri-
bution function fX1,...,Xk

(x1, . . . , xk), one has:

fZ(z) = Poss{Z = z} = sup
x1,...,xk: ϕ(x1,...,xk)=z

fX1,...,Xk
(x1, . . . , xk) ,

with the by now usual convention fZ(z) = 0 when the minimization set is void.
The additive mathematics of measure theory is more complicated than the

often unassuming mathematics of suprema, indeed; actually, convenient tools
could be developed to shorten calculations, the most relevant being possibly
irrelevance first introduced in [19] and then used in [6, 7, 8, 20]. We shall
shortly mention this tool in the last Section, Remark 6.1.

We stress that completeness was never used in this section 4; on the other
hand, as soon checked, if one starts with complete distributions, completeness
of the resulting distributions is ensured.

5. Montecatini lemma

Lemma 5.1 (Montecatini lemma [20]). The equality

f(x1, . . . , xn) = g(x1, . . . , xn)
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is an identity for crisp numbers if and only if the two possibilistic quantities
Z1=̇f(X1, . . . , Xn) and Z2=̇g(X1, . . . , Xn) are deterministically equal whatever
the joint distribution of X1, . . . , Xn.

E.g., since x(y + z) = xy + xz for any crisp numbers x, y and z, one has
X(Y + Z) = XY +XZ for any possibilistic quantities X,Y and Z, whatever
their joint distribution. Since log xy = log x + log y for positive x and y one
has logXY = logX + log Y for any possibilistic quantities X and Y whatever
their joint distribution with positive support.

Proving the lemma is trivial in both directions. To prove the equidistribu-
tion of Z1 and Z2 just observe that one is taking the supremum of the same
function over two sets, {x : f(x) = z} and {x : g(x) = z}, which are however
equal (are the very same set). As for deterministic equality Z1 = Z2, one can-
not have f(x) ̸= g(x), and so the joint distribution of the possibilistic couple
(Z1, Z2) is zero outside the main diagonal z1 = z2.

Remark 5.2. Completeness is never used and so is not requested, but it is
preserved whenever present at the start.

Remark 5.3. The lemma is stated in terms of arbitrary possibilistic distri-
bution functions; if one insists on certain properties, e.g. upper continuity or
unimodality, one should of course check stability, i.e check whether the result
Z = f(X1, . . . , Xn) = g(X1, . . . , Xn) still verifies those properties.

Remark 5.4. The curious name of the lemma (Montecatini is a resort spa
in Tuscany) simply reminds of a lively discussion held at an INdAM-GNCS
meeting held there. However trivial the lemma might be, its consequences on
fuzzy arithmetic, as we shall now argue, are quite remarkable.

6. Does possibility distribution calculus offer
a sound basis for fuzzy arithmetic?

In fuzzy arithmetic a fuzzy number X is once more described through a func-
tion fX(x) : R → [0, 1] but this function is rather seen as the membership
function of a fuzzy set, which explains why we are calling this approach the
set-theoretic approach to fuzzy arithmetic. This different interpretation will be
of no special consequence in the following; what matters is that we are dealing
with a non-negative function fX(x) which takes on the value 1 at least once
(the corresponding fuzzy set must be normal). Usually a lot of restrictions are
imposed on the function fX(x), which has so to be quite “regular”. We shall
come to this moot point later; for the moment being no additional restriction
will be imposed on fX(x) and to stress this fact we find it convenient to replace
the rather ambitious term “number” with the less committal term “quantity”.
Thus a fuzzy quantity is described, at least formally, in exactly the same way
as the Π-numbers of Section 2.
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Nothing like a joint distribution is present, however: in a way, a fuzzy
quantity X is the same as its corresponding function fX(x). In particular,
two equidistributed numbers are the very same number: equidistribution boils
down to strict equality, is indistinguishable from it. Given a binary operation
Z = X ◦ Y fuzzy arithmetic states that

fZ(z) = fX◦Y =̇ sup
x,y: x◦y=z

min
[
fX(x), fY (y) ,

]
with fZ(z) = 0 if the minimization set is void. By the way, the functions in-
volved are usually so regular that the supremum is almost unavoidably a maxi-
mum. Even if the definition is usually justified by means of the so-called exten-
sion principle of fuzzy-set theory (cf. e.g. [4, 18]), the reader will recognize the
corresponding definition for Π-numbers in the special case of non-interactivity,
when fX,Y (x, y) = min

[
fX(x), fY (y)

]
.

In fuzzy arithmetic as built on this basis, several unpleasant facts occur,
which seem to contradict Montecatini lemma, for example:

X(Y + U) ̸= XY +XU , X −X ̸= 0 ,
1

X
̸= X−1 .

In the last case we are of course assuming fX(0) = 0; the first side of 1
X ̸=

X−1 refers to the binary operation of division, while the second side to the
deterministic (1-dimensional) function of inversion; for the crisp number X = 1
seen as a fuzzy number recall that one has fX(1) = 1, else 0.

As a first comment: even in probability theory one would have nasty claims
as the ones above, were one so clumsy as to confuse equidistribution with
deterministic equality. Everything becomes quite clear as soon as one would
write:

even if X and X̃ are equidistributed

X(Y + U) ̸= XY + X̃U , X − X̃ ̸= 0 ,
1

X
̸= X̃−1

as happens also in probability theory, by the way. In accordance with Mon-
tecatini lemma, one has three equalities as soon as X and X̃ are not only
equidistributed but also deterministically equal, and only in this case the sym-
bol X̃ can be disposed of and be replaced by X. This implies that even in
set-theoretic fuzzy arithmetic one should not give up the precious distinction
between equidistribution and deterministic equality, and therefore one should
not use a single symbol X to denote two equidistributed fuzzy number which
are not the same number.

By the way, observe that when dealing with crisp numbers the distinction
between equidistribution and deterministic equality would still make sense

(
the

first and the second co-ordinate of the point (3,3) of the Cartesian plane are
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equal at a certain level of abstraction, but different at another level, proof be
the fact that the first co-ordinate, unlike the second, possesses the qualifica-
tion “abscissa” and can be increased without having to increase the second

)
;

however, in the crisp case the distinction is of no consequence in calculations:
3+3=6 whatever the level of abstraction. We deem that building fuzzy arith-
metic by taking inspiration from crisp arithmetic rather than random arith-
metic has been a sore mistake.

We come to another stumbling block of set-theoretic fuzzy arithmetic: what
should a fuzzy number be, when does a fuzzy quantity deserve to be called a
fuzzy number?

Everybody agrees that (piecewise) linear fuzzy triangles (u, a, v) as in Sec-
tion 2 do qualify for appropriate fuzzy numbers, but the increasing portion on
[u, a] and the decreasing one on [a, v] should be allowed to be non-linear, even
if “regular enough”. Definitions of fuzzy numbers found in the literature are
slightly at divergence from one another, but the following requests appear to
be typical, thinking of a triangular number (u, a, v) as a starting point:

outside [u, v] the function fX(x) is zero, fX(a) = 1, fX(x) is strictly in-
creasing on [u, a] and strictly decreasing on [a, v]; to ensure that the suprema of
marginalizations are also maxima (are actually achieved) one further imposes
upper semicontinuity

We make some critical remarks: definitions like this rule out fuzzy intervals
[u, a, b, v] but then should one be allowed to sum an appropriate fuzzy num-
ber with a fuzzy quantity which is not a number, even if the addition rule is
available and readily usable? More seriously: the support, i.e. the subset of
R where fX(x) ̸= 0, has to be an interval: what about the inverse Y = X−1

of the quite appropriate linear triangle X = (0, 1, 2)? The rule to compute
Y = ϕ(X) = X−1 is available and usable, but it gives back a quantity whose
support is a half-line; the unpleasant consequence would be that the inverse
of a number, be it fuzzy, is not a number, be it fuzzy. All this entails, no
wonder, that the word unstable pops up quite frequently in set-theoretic fuzzy
arithmetic. Unfortunately, unassuming fuzzy quantities, which might work as
a sort of “escape route”, are usually ruled out.

Once more we prefer to mimic probability theory and its authoritative
century-old history. The definition of random variables, both in the explicit
Kolmogorov’s approach and in the implicit Pitt’s approach, are as ample as
the mathematics of σ-additive measures allows it to be, even if this gives obvi-
ously room to “monsters” one will never use in practice. Important theorems
require that the definition be restricted, for example one might require that the
variance of X does exist, or even, as happens in statistics, that X is normal
(gaussian). In our opinion the same should be done in fuzzy arithmetic: the
definition should be as large as the maxitive mathematics of suprema allow it
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to be, precisely as we did in Section 2 with Π-numbers. Needless to say, impor-
tant theorems may require that the fuzzy number is very regular, for example
that it fits the definition with upper semicontinuity given above.

We are strongly convinced that fuzzy arithmetic should be done along the
generous lines that we have settled for possibilistic arithmetic. To resume:

• a fuzzy number X should be defined by a non-negative function fX(x)
without any restriction, save for normality if one is interested only in
complete arithmetic

• one may ignore interactivity, provided one is able to distinguish
at least between equidistribution X ≈ Y , i.e. fX(x) = fY (x), and
deterministic equality X = Y

Remark 6.1 (Irrelevance). A theorem known very early in fuzzy arithmetic,
for which cf. e.g. [3, 4, 7, 8, 18, 20], deals with generalized fuzzy triangles X
and Y whose defining functions fX(x) and fY (x) on the common support [u, v]
are bound to be convex-cup, which certainly is the case in the piecewise linear
situation of an actual triangle. The generalized triangles X and Y are assumed
to be equidistributed, fX(x) = fY (x). Think now of a binary operation X ◦ Y
“regular enough” which might be the sum X + Y or the product X · Y (in
the latter case one has however to assume also u ≥ 0, i.e. a non-negative
support). This is a proto-example of irrelevance, because it can be proven,
using our terminology, that the distribution function fX◦Y (x) of X ◦ Y is the
same both under non-interactivity and under deterministic equality; the choice
of the joint distribution out of these two is irrelevant. This relevant fact, in itself
quite fortunate, has probably had a bad consequence, since it has masqued the
importance of accurately distinguishing between two different ways of sticking
together marginal distributions: irrelevance is not always at hand.

7. Conclusions and future work

We did mathematics rather than philosophy: the discussion remains open
whether a possibilistic number is related or not to a fuzzy number thinking
of the meaning of fuzziness and logical possibilities. Our point is that they
should be tackled in the same way insofar as mathematical calculations are in-
volved: after all, even in probability theory, or rather in probability theories [5],
the same calculations can be interpreted in quite different ways by objectivists
(empiricists, followers of Ludwig von Mises, 1881-1973) versus subjectivists
(neo-Bayesians, followers of Bruno de Finetti, already mentioned, and Leonard
J. Savage, 1917-1971).

The message is: everything works if, beside non-interactivity (which is al-
ways there, even if implicit or even “hidden”), one considers also deterministic
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equality. Crisp arithmetic may ignore the difference, but random and fuzzy
arithmetic cannot.

The theoretic framework which has been presented above is best appreciated
in contexts where heavy computations are needed, a meaningful example being
our coding-theoretic paper [9], to which the reader is referred. As for future
work, one might ask: should a Pitt-like approach to possibilistic and fuzzy
arithmetic be relinquished in favor of an explicit Kolmogorov-like approach? At
present, this remains a moot point: in probability the advantages of the explicit
approach are quite obvious when one moves to complicated stochastic processes,
not even necessarily ergodic, but an analog theory of possibilistic or dynatic
processes is at the moment almost non-existing; cf. however [16, 17] and also [9],
where the possibilistic processes envisaged are actually quite unassuming.
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