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Abstract. We present discrete dualities for groupoid-based algebras
and their associated frames starting from a plain groupoid and then ex-
panding step by step its signature and/or axioms assuming existence
of a compatible partial ordering, commutativity, associativity, idempo-
tency, existence of the identity element, and existence of left and right
residuals of the groupoid operator. In the final section we present a
brief overview of lattice-ordered groupoids and provide hints how to ob-
tain discrete dualities for these from the dualities established in the
preceding sections and relevant results in the literature.
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1. Introduction

A discrete duality is a duality between a class of algebras and a class of frames
(relational systems). To establish a discrete duality for a class Alg of algebras
and a class Frm of frames we proceed according to the following steps:

S1 For every algebra A in Alg we define its canonical frame XA ⊆ 2A and
prove that it belongs to the class Frm. If f : A → An is an n-ary operator
in the signature of A, then there is an n+ 1-ary relation RA on XA such
that the properties which qualify it as a member of Frm are provable from
the axioms of f in Alg.

S2 For every frame X in Frm we define its complex algebra AX ⊆ 2X and
prove that it belongs to the class Alg. If R is an n + 1-ary relation in
the signature of X, then there is an n-ary operator on AX such that
the properties which qualify it as a member in Alg are provable from the
axioms for R in X.

S3 We prove two representation theorems:
(a) Every algebra A ∈ Alg is embeddable into the complex algebra AXA

of its canonical frame XA.
(b) Every frame X ∈ Frm is embeddable into the canonical frame XAX
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of its complex algebra AX . The embeddings h : A ↪→ AXA
and

k : X ↪→ XAX
are defined by

h(a)
df
= {x ∈ XA : a ∈ x} ⊆ 22

A

, (1)

k(x)
df
= {B ∈ AX : x ∈ B} ⊆ 22

X

. (2)

The tradition to connect n-ary operations on A with n + 1-ary relations
on XA and vice versa goes back to [15] in the context of Boolean algebras
with operators and their ultrafilter frames, a process which led to canonical
extensions of such algebras, see [14] for an overview.

We say that a discrete duality (DD) holds for a class Alg of algebras and a
class Frm of frames whenever the representation theorems are proved.

A discrete duality leads, among others, to what is called duality via truth
(DvT) for a logic whose semantics is determined by the structures for which a
DD holds: For every formula α of the logic, α is true in the algebraic semantics
of the logic if and only if it is true in its frame semantics. To prove DvT we need
a result which says that for every frame X in Frm a formula α is true in X
if and only if it is true in its complex algebra AX . Thus, a discrete duality
contributes to the completeness theorem, once a deduction system for the logic
is given. In this context, a class of algebras and a class of relational structures
(frames) are considered dual, if both provide semantics for the same logic; in
this sense, algebras and frames are considered equally. Details on the process
of DvT and applications can be found in [21, 22].

The algebras for which discrete dualities were established are in most cases
signature extensions of three basic types with their respective axioms: Boolean
algebras, bounded distributive lattices, bounded general lattices. The universes
of the canonical frames are sets of ultrafilters, respectively, prime filters or filter-
ideal pairs. Each of these has ⊆ as a built-in partial order; this order is discrete
in the case of ultrafilters, and thus, it is usually not mentioned. The complex
algebras of the respective frames X are families of subsets of X. Thus, for
the representation of an ordered algebra the order ≤ must be mapped into
the ⊆ relation on the powerset of the universe of its canonical frame. If the
order of the algebra is induced by a lattice operation, this will always be the
case since the order is definable by the operators. In the present paper we
shall explore how far the representation theorems can be carried on groupoids
⟨G, ◦,≤⟩ where the order is compatible with ◦, but not necessarily induced by
a lattice operation.

Groupoid–related structures play an important role in the studies of a large
variety of non-classical logics involving their semantics, proof theory, and appli-
cations. One important family of groupoid-based logics are substructural logics;
for details of such logics and their hierarchy see [24] or [10] and the references
therein. In the present work we restrict ourselves to order based fragments of
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such logics without lattice operations, such as entailment structures and their
relatives.

In studies of substructural logics the frame semantics is usually defined in
terms of ternary relations. It was presented and developed in several papers
[25, 26, 27], see also [7]. There were also attempts to provide a semantics in
terms of binary relations such as [1, 5, 6, 17, 31].

The paper is structured as follows: In Section 3 we discuss if and how a
discrete duality for groupoids without order can be established. In Section 4 a
discrete duality for groupoids with a compatible order is presented; this discrete
duality serves as a basis for discrete dualities established in the sequel. We also
discuss the possible choices for the universes of complex algebras or canonical
frames. Section 5 investigates axiomatic extensions of ordered groupoids such
as commutativity, associativity, and idempotency. In the next two sections
we enrich the signature of ordered groupoids: In Section 6 we augment the
signature of ordered groupoids with a left or a right identity, and in Section 7
we consider ordered groupoids with the left and right residuals of its operator.
Finally, in Section 8 we present a brief overview of existing discrete dualities
for algebras which have a groupoid operator in the signature and are Boolean-
ordered, distributive-lattice-ordered, or general-lattice-ordered.

2. Notation and first definitions

Suppose that ⟨P,≤⟩ is a partially ordered set. If Q ⊆ P , then ↑Q df
= {y ∈

P : (∃x)[x ∈ Q and x ≤ y}; if Q = {x}, we just write ↑x. Q is called down
directed if each {p, q} ⊆ Q has a lower bound in Q. Q is called an order filter,
if Q ̸= ∅ and Q = ↑Q. The set of all order filters of P is denoted by FO

P , the
set of down directed order filters by FD

P , and the set of principal filters by FP
P ;

clearly, FP
P ⊆ FD

P ⊆ FO
P . It may be worth to remark that FO

P is closed under
∪ and ∩, FD

P is closed under ∩, and FP
P is closed under neither.

With some abuse of notation we shall identify an algebra or a frame with
its respective universe, if no confusion can arise. As we shall work on different
levels of sets, we will generally adhere to the following convention: Elements of
an algebra are denoted by letters from the beginning of the alphabet such as
a, b, c, . . ., elements of a frame by letters towards the end of the alphabet such
as . . . , x, y, z, and elements of the complex algebra of a frame by capital letters
from the front of the alphabet such as A,B,C, . . . Quantifier free axioms are
assumed to be universally quantified.

3. Groupoids

In this section we will take a look at unordered groupoids and unordered frames.
A Brandt–groupoid [4], or simply, groupoid – also called binar or magma – is
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an algebra ⟨G, ◦⟩ where ◦ : G×G → G is a binary operator. Since ◦ is binary,
the frame relation we consider will need to be ternary [15].

We shall start with frames. A G-frame is a relational structure ⟨X,R⟩
where X is a nonempty set and R is a nonempty ternary relation on X. Each
G-frame leads to a binary operation ◦X on 2X defined by

A ◦X B
df
= {z ∈ X : (∃x, y)[x ∈ A and y ∈ B and R(x, y, z)]}. (3)

This is the definition given in [15, Theorem 3.3] which paved the way to connect
algebraic and relational semantics of classical modal logic. It was later used
in [19] and [30] in the context of relevant logics and their algebras, see also [9].
In such a way, we proceed from a ternary frame X to a groupoid on 2X . We
shall fix this definition of ◦X for all structures which we consider.

The other ingredient of a complex algebra of X is its universe GX ⊆ 2X .
The choice of GX may depend on signature extensions of G-frames: If we have
no explicit ordering on X, the most general choice of GX is whole power set of X
without explicitly including ⊆ in the signature. If more resources are available,
such as a partial order on X or a topology, then one may choose the collection
of order filters or open or clopen sets in the topology. A structure ⟨GX , ◦X⟩
is called a complex algebra of X if GX ⊆ 2X and GX is closed under ◦X ; note
that the largest complex algebra of X is ⟨2X , ◦X⟩.

Various first order properties of R induce algebraic properties of GX . Con-
sider the following:

F1 R(x, y, z) ⇒ R(y, x, z).
F2 R(x, y, z) and R(z, y′, z′) ⇒ (∃u)[R(y, y′, u) and R(x, u, z′),
F3 R(x, y, z) and R(x′, z, z′) ⇒ (∃u)[R(x′, x, u) and R(u, y, z′)].

Theorem 3.1. 1. If R satisfies F1, then GX is commutative.
2. If R satisfies F2 and F3, then GX is associative.

Proof. This can be shown by an easy adaptation of [20, Proposition 12.4.1]
for 1, and [20, Proposition 5.2.3]. for 2. These proofs have 2X as a universe,
and do not use any order theoretic properties of 2X . Since commutativity and
associativity are universal statements, the claim is true for each subalgebra
of ⟨2X , ◦X⟩.

Starting from a groupoid ⟨G, ◦⟩, we will define a canonical frame ⟨XG, RG⟩
of G as a family of subsets of G and a suitable ternary relation RG on XG. As
an auxiliary tool we shall use the complex extension ◦c of ◦ over 2G, that is,
for all x, y ⊆ G

x ◦c y = {c ∈ G : (∃a, b)[a ∈ x, b ∈ y and a ◦ b = c}. (4)
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The structure ⟨2G, ◦c⟩ is called the full algebra of complexes of G. Each
groupoid can be embedded into its algebra of complexes by the assignment
a 7→ {a}. For the related topic of Boolean groupoids, we refer the reader to [2].

In most, if not all, signature extensions of groupoids, the universe of the
canonical frame XG is not the whole powerset of G; for example, it is the set
of ultrafilters of an underlying Boolean algebra, or the set of prime filters of an
underlying distributive lattice. In both cases, the structures are explicitly or
implicitly ordered by ⊆; more examples can be found in [20]. But even in an
explicitly order free setup, we cannot escape the implicit ordering of subsets
when choosing RG:

Lemma 3.2. Let ⟨G, ◦⟩ be a groupoid, XG ⊆ 2G and h : G ↪→ GXG
be the

canonical embedding, where ◦XG
is defined by (3). Suppose that x, y, z ∈ XG

and RG(x, y, z). Then, x ◦c y ⊆ z.

Proof. Since h is a homomorphism and by (3) we have for all a, b ∈ G,

h(a) ◦XG
h(b)

(3)
= {z ∈ XG : (∃x, y)[a ∈ x, b ∈ y and RG(x, y, z)]}

= h(a ◦ b), (5)

Suppose that x, y, z ∈ XG as well as RG(x, y, z), and assume that x ◦c y ̸⊆ z.
Then, there are a ∈ x, b ∈ y such that a ◦ b ̸∈ z, that is, z ̸∈ h(a ◦ b). By (5),
a ∈ x and b ∈ y imply that ¬RG(x, y, z), contradicting the hypothesis.

Thus,

RG(x, y, z) implies x ◦c y ⊆ z (6)

is a necessary condition for the definition of RG in the setup so far. Since we
do not have ⊆ in the signature of the canonical frame,we are left with

RG(x, y, z)
df⇐⇒ x ◦c y = z. (7)

This is the definition given in [15, Theorem 3.3] for Boolean algebras with
operators. However, it will not work in our context. Suppose that RG is
defined by (7). While it is easily shown that h(a) ◦XG

h(b) ⊆ h(a ◦ b), the
reverse inclusion does not always hold:

Example 3.3. Suppose that |G| ≥ 2 and fix some c ∈ G; for all a, b ∈ G let

a◦b df
= c. Then, x ◦c y = {c} for all x, y ∈ XG, and, therefore, RG = {⟨x, y, {c}⟩ :

x, y ∈ XG}. Let a ̸= c, and consider h(a ◦ c); then, {a, c} ∈ h(a ◦ c) = h(c). On
the other hand, ¬RG(x, y, {a, c}), and therefore, {a, c} ̸∈ h(a) ◦xG

h(c).

We conclude that in our setup with ◦X , respectively h, defined by (3),
respectively, by (1), groupoids without ordering cannot be handled well, if at all.
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4. Ordered groupoids

Thus, we turn to ordered groupoids. An O-groupoid ⟨G, ◦,≤⟩ is a groupoid
endowed with a compatible partial order ≤, i.e for all a, b, c ∈ G,

a ≤ b ⇒ a ◦ c ≤ b ◦ c and c ◦ a ≤ c ◦ b. (8)

According to [19], the ordering may be interpreted as a relation of entailment
which partially orders propositions. The embedding h now need not only pre-
serve ◦, but also the ordering ≤. This restricts the choice of XG:

Lemma 4.1. 1. h preserves ≤ if and only if every element of XG is an order
filter of G.

2. Suppose that XG contains all principal order filters of G. Then, ↑ a is
the smallest element of h(a) in ⟨XG,⊆⟩.

Proof. 1. “⇒”: Let x ∈ XG, a ∈ x, that is, x ∈ h(a). If a ≤ b, then
h(a) ⊆ h(b) by the hypothesis, which implies b ∈ x.

“⇐”: Suppose that a, b ∈ G, a ≤ b. and x ∈ h(a). Then, a ∈ x, and a ≤ b
together with the hypothesis implies that b ∈ x, i.e. x ∈ h(b).

2. Let x ∈ h(a). Then, a ∈ x, and the fact that x is an order filter implies
that ↑ a ⊆ x.

Therefore, we suppose in the sequel that XG ⊆ FO
G. In view of Lemma 3.2,

we fix RG ⊆ X3
G as the smallest relation compatible with both (1) and (3),

namely,

RG(x, y, z)
df⇐⇒ x ◦c y ⊆ z. (9)

The relation RG in (9) originates with [27] in the semantic analysis of relevant
logic,1 and was later used, among others, in [30] and [20].

Based on these considerations we define a canonical frame of G as a triple
⟨XG, RG,⊆⟩ where XG ⊆ FO

G, and RG ⊆ X3
G is defined by (9)

In [30] and [20] the operation ⊙ defined on 2G by

x⊙ y
df
= {c ∈ G : (∃a, b)[a ∈ x, b ∈ y, a ◦ b ≤ c]}, (10)

is used for the definition of RG. It is easy to see that x ⊙ y =
⋃
{↑(a ◦ b) :

a ∈ x, b ∈ y}, and, unlike x ◦c y, it is always an order filter of G. Clearly, ⊙ is
compatible with ⊆ and commutative, respectively, associative if and only if ◦ is
commutative, respectively, associative. Observe that ⟨FO

G,⊙,⊆⟩ is an ordered
groupoid itself. For the definition of RG we may use ◦c or ⊙:

1We thank A. Urquhart for pointing this out to us.
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Lemma 4.2. Suppose that x, y, z ∈ XG.
Then, RG(x, y, z) if and only if x⊙ y ⊆ z.

Proof. “⇒”: Suppose that a ∈ x, b ∈ y and a ◦ b ≤ c. Then, a ◦ b ∈ z, and
therefore, c ∈ z since z is increasing.

“⇐”: This follows immediately from x ◦c y ⊆ x⊙ y.

The following observation which leads to a frame condition follows directly
from Lemma 4.2:

Lemma 4.3. Suppose that XG is closed under ⊙. If x, y ∈ XG, there is a
smallest z ∈ XG with respect to ⊆ such that RG(x, y, z).

Proof. Suppose that x, y ∈ XG. Since XG is closed under ⊙, we have x⊙ y ∈
XG, and clearly, x⊙ y is the smallest z ∈ XG with RG(x, y, z).

We consider several choices for XG: The set FP
G of all principal order filters,

the set FD
G of down directed order filters, and the set FO

G of all order filters.
The next lemma generalizes [30, Lemma 2.1] and shows that each of these is a
valid choice for XG to apply Lemma 4.3:

Lemma 4.4. FP
G,FD

G, and FO
G are closed under ⊙.

Proof. FP
G: Let a, b ∈ G; then

c ∈ ↑ a⊙ ↑ b ⇐⇒ (∃a′, b′)[a ≤ a′, b ≤ b′, a′ ◦ b′ ≤ c],

⇐⇒ a ◦ b ≤ c, by (8),

⇐⇒ c ∈ ↑(a ◦ b).

FD
G: Let x, y ∈ FD

G, and c1, c2 ∈ x ⊙ y; then there are a1, a2 ∈ x, b1, b2 ∈ y
such that a1 ◦ b1 ≤ c1 and a2 ◦ b2 ≤ c2. Since x and y are down directed, there
are d1 ∈ x, d2 ∈ y such that d1 ≤ a1, a2 and d2 ≤ b1, b2. By compatibility,
d1 ◦ d2 ≤ a1 ◦ b1 ≤ c1, and d1 ◦ d2 ≤ a2 ◦ b2 ≤ c2, and thus, d1 ◦ d2 is a lower
bound of {c1, c2} in FD

G.
FO

G: This follows immediately from the definitions.

The choice of XG has some connection to the completion of ordered algebras;
for example, if XG = FP

G, the order of the embedding algebra GXG
of G is

isomorphic to its order ideal completion of ⟨G,≤⟩. We shall not pursue this
further, and invite the reader to consult [12] for an overview.

Conversely, an O-frame is a frame ⟨X,R,≤⟩ where ≤ is a partial order, and
R is a ternary relation on X which satisfies for all x, y, z, x′, y′, z′ the conditions

F4 R(x, y, z), x′ ≤ x, y′ ≤ y, z ≤ z′ ⇒ R(x′, y′, z′), (Monotonicity).
F5 For all x, y ∈ X there is a smallest z ∈ X such that R(x, y, z),

(From Lemma 4.3).
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The monotonicity property F4 ensures that ⊆ is compatible with ◦X . As
in Lemma 4.1 it can be easily shown that

Lemma 4.5. k preserves ≤ if and only if every element of GX is an order filter
of ⟨2X ,⊆⟩.

This restricts the choice of GX , and we define a complex algebra of X as an
ordered groupoid ⟨GX , ◦X ,⊆⟩, where

1. GX ⊆ FO
X ,

2. ◦X is defined by (3),
3. GX is closed under ◦X .

In analogy to Lemma 4.4 we exhibit several choices for GX :

Lemma 4.6. FP
X , FD

X , and FO
X are closed under ◦X .

Proof. FP
X : Let x, y ∈ X. By F5 there is smallest z with R(x, y, z). Then,

↑x ◦X ↑ y = ↑ z.
FD

X : Suppose that A ,B ∈ FD
X , x , x′ ∈ A, y , y′ ∈ B, R(x, y, z), and

R(x′, y′, z′). Since A,B are down directed, there are u ∈ A, v ∈ B such that
u ≤ x, x′ and v ≤ y, y′. From F4 we obtain R(u, v, z) and R(u, v, z′), and by
F5 there is some w such that R(u, v, w) and w ≤ z, z′. Thus, w ∈ A ◦G B, and
w is a lower bound of {z, z′}.

FO
X : This follows immediately from F4.

This shows that the largest complex algebra of X is the ordered groupoid
⟨FO

X , ◦X ,⊆⟩, and that FD
X and FP

X are subalgebras of FO
G.

In the rest of the paper, we suppose that ⟨G, ◦,≤⟩ is an O-groupoid, XG

a set of order filters of ⟨G,≤⟩ containing all principal order filters and closed
under ⊙, and that ⟨X,R,≤⟩ is an O-frame and GX is a set of order filters of
⟨X,≤⟩ containing all principal order filters and closed under ◦X .

We now have the tools necessary to prove a discrete duality for O-groupoids
and O-frames. Such theorems have been known for some time for lattice or-
dered structures that have a groupoid reduct, for example, relation algebras or
distributive residuated lattices [20]. These situations differ from ours since we
have only a binary operation and a compatible ordering and no lattice opera-
tion.

Theorem 4.7. 1. h is an embedding of O-groupoids.
2. k is an embedding of O-frames.

Proof. 1. Because XG contains all principal filters, h(a) ̸= ∅ for all a ∈ G,
and h is injective since ≤ is antisymmetric. By Lemma 4.1, h preserves the
ordering ≤. Let a, b ∈ G; we need to show that h(a) ◦XG

h(b) = h(a ◦ b).
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“⊆”: We have

z ∈ h(a) ◦XG
h(b)

⇒ (∃x, y)[x ∈ h(a), y ∈ h(b), RG(x, y, z)], definition of ◦X .

⇒ (∃x, y)[a ∈ x, b ∈ y, x ◦c y ⊆ z], definition of RG,

⇒ a ◦ b ∈ z, as a ∈ x, b ∈ y,

⇒ z ∈ h(a ◦ b). definition of h.

“⊇”: Let z ∈ h(a◦ b), i.e. a◦ b ∈ z. Set x
df
= ↑ a, y df

= ↑ b; then, x ∈ h(a), y ∈
h(b), and all that is left to show is RG(x, y, z), i.e. that ↑ a ◦c ↑ b ⊆ z. Suppose
that c ∈ ↑ a ◦c ↑ b; then, there are a′, b′ such that a ≤ a′, b ≤ b′ and a′ ◦ b′ = c.
By (8), a ◦ b ≤ c, and a ◦ b ∈ z as well as the fact that z is an order filter imply
that c ∈ z.

2. Let x, y, z ∈ X. We need to show that

R(x, y, z) if and only if RGX
(k(x), k(y), k(z)).

Observe that

RGX
(k(x), k(y), k(z)) ⇐⇒ k(x) ◦cX k(y) ⊆ k(z), by (9)

⇐⇒ (∀A,B ∈ GX)[x ∈ A and y ∈ B ⇒ z ∈ A ◦X B],

⇐⇒ (∀A,B ∈ GX)[x ∈ A and y ∈ B ⇒
(∃u, v ∈ X)(u ∈ A, v ∈ B and R(u, v, z))].

If R(x, y, z), then we set u
df
= x and v

df
= y showing that RGX

(k(x), k(y), k(z)).

Conversely, if RGX
(k(x), k(y), k(z)), then setting A

df
= ↑x and B

df
= ↑ y shows

that R(x, y, z). By Lemma 4.5, k preserves the ordering as well.

In the sequel we shall use this result to establish discrete dualities for various
axiomatic and signature extension of G, respectively, of X.

5. Some axiomatic extensions of O-groupoids

In Theorem 3.1 we have shown that certain frame properties imply algebraic
properties of GX . We will use this to establish discrete dualities for these:

Theorem 5.1. 1. There is a discrete duality between commutative O-group-
oids and O-frames that satisfy F1.

2. There is a discrete duality between associative O-groupoids and O-frames
that satisfy F2 and F3.
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Proof. By Theorem 3.1 it is sufficient that XG has the frame property corre-
sponding to the algebraic property.

1. This can be shown by adapting the proof of [20, Proposition 12.4.2] for
commutative residuated lattices, which uses only the definition of RG and holds
for XG ⊆ FP

G.
2. Here, we cannot directly use the corresponding result for composition

of relation algebras given in [20, Proposition 5.2.4], since the universe of the
canonical frame of a relation algebra is the set of the ultrafilters of its Boolean
reduct which we do not have at our disposal. Nevertheless, the proofs for
groupoids follow a similar strategy. For F2, let x, y, y′, z, z′ ∈ XG, and suppose
that RG(x, y, z) and RG(z, y′, z′); then, x ◦c y ⊆ z and z ◦c y′ ⊆ z′ by definition

of RG. Set u
df
= y ◦c y′; then, R(y, y′, u) by definition of RG, and

RG(x, y, z) and RG(z, y′, z′)

⇒ x ◦c y ⊆ z and z ◦c y′ ⊆ z′, by definition of RG

⇒ (x ◦c y) ◦c y′ ⊆ z′,

⇒ x ◦c(y ◦c y′) ⊆ z′, by associativity

⇒ x ◦c u ⊆ z′, by definition of u

⇒ RG(x, u, z′), by definition of RG.

F3 is shown analogously. Note that the ordering was only used for the definition
of RG.

Next, we turn to idempotency. The operation ◦ is called expanding, if
a ≤ a◦a, and contracting, if a◦a ≤ a for all a ∈ G. It is called idempotent, if it
is both expanding and contracting. We shall start with an expanding operator.
The relevant frame condition

F6 R(x, x, x)

was introduced in [19] as part of the semantics for basic relevant logics, and
they state that it is related to modus ponens. The following lemma shows that
it works for all order filters on the frame side:

Lemma 5.2. ◦X is expanding if and only if F6 holds in X.

Proof. “⇒”: Let z ∈ X; then ↑ z ⊆ ↑ z ◦X ↑ z by the hypothesis, in particular,
z ∈ ↑ z ◦X ↑ z. By (3) there are x, y ∈ X such that z ≤ x, y and R(x, y, z).
Now, F4 implies R(z, z, z).

“⇐”: Suppose that A ∈ GX , and x ∈ A. Then, R(x, x, x) and (3) imply
that x ∈ A ◦X A.

The proof which uses only principal filters implies that the result continues
to hold if GX = FP

X or GX = FD
X . On the other hand, the following example
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shows that there is some G such that ◦ is expanding, and F6 does not hold in
XG, if XG is the set of all order filters of G.

Example 5.3. Let G = {a, b, c}, and define ◦ and ≤ as below:

◦ a b c
a a c c
b c b c
c c c c

a b

c

≤

@@

≤

__

Then, ◦ is idempotent and compatible with ≤; indeed, ⟨G, ◦,≤⟩ is a meet

semilattice. Let XG be the set of all order filters of G, and set x
df
= {a, b};

then, x ∈ XG, and x ◦c x = G. Since c ∈ x ◦c x, but c ̸∈ x, it follows that
¬RG(x, x, x).

The reason for the failure of the condition seems to be that by allowing
all order filters in XG, we catch too many elements outside h[G], for which
A ⊆ A ◦X A does not hold, in our example the union of two incomparable
principal filters. Indeed, a necessary and sufficient condition for RG(x, x, x) is
that each x ∈ XG is an increasing subgroupoid of G. If we restrict XG to FD

G,
then F6 holds in XG:

Lemma 5.4. Suppose that XG is the set of down directed order filters of G.
Then, G is contracting if and only if RG(x, x, x) for all x ∈ XG.

Proof. “⇒”: Suppose that a ≤ a ◦a for all a ∈ G. Let x ∈ XG, and c ∈ x ◦c x;
then, there are a, b ∈ x such that a ◦ b = c. Since x is down directed, there
is some d ∈ x such that d ≤ a, b, and d = d ◦ d ≤ a ◦ b ≤ c, and thus, c ∈ x
because x is an order filter.

“⇐”: Suppose that RG(x, x, x), i.e. x ◦c x ⊆ x, and a ∈ G. Then,
↑ a ◦c ↑ a ⊆ ↑ a which implies a ≤ a ◦ a. Note that this direction does not
require x to be down directed.

Thus, if XG is the set of all down directed filters, the frame condition
R(x, x, x) assures that a ≤ a ◦ a holds in G if and only if A ⊆ A ◦XGX

A holds
in GXG

. Together with Lemma 5.4, we have shown

Theorem 5.5. There is a discrete duality between O-groupoids ⟨G, ◦,≤⟩ with
◦ expanding and XG = FD

G, and O-frames with GX = FD
X that satisfy F6.

Next, we consider the case that ◦ is contracting, starting with an example
which shows that the condition F6 has no connection to a ◦ a ≤ a:

Example 5.6. Let G be the set of negative integers with the natural order,

and set a◦b df
= min{a, b}−1. Then, ◦ is compatible to ≤, and satisfies a◦a ⪇ a.

If x is a proper order filter, then x is principal, say, x = ↑ a. Since a−1 ∈ x◦x,
we have x ◦c x ̸⊆ x, therefore, ¬RG(x, x, x).
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Theorem 5.5 shows that choosing XG as the set of down directed order
filters establishes the discrete duality for expanding ◦ and frames satisfying F6.
A similar situation occurs when we consider a contracting ◦. First, we shall
show that A◦XG

A ⊆ A need not hold if XG is closed under unions of principal
filters such as FO

G.

Example 5.7. Let ⟨G, ◦⟩ be the groupoid of Example 5.3, and order G by the
converse order of Example 5.3, that is, a ≤ c, b ≤ c. Then, ◦ is compatible with
≤, and ⟨G, ◦,≤⟩ is a join semilattice. The order filters of G are

u
df
= {a, b, c}, x df

= {a, c}, y df
= {b, c}, z df

= {c}.

Note that {x, y, u} is not down directed, and that {x, y, u} ◦XG
{x, y, u} ̸⊆

{x, y, u}. Hence, ◦XG
is not contracting. If we allow only down directed order

filters in GXG
, then ◦XG

is contracting.

Consider the frame condition

F7 R(x, x, z) ⇒ x ≤ z.

Lemma 5.8. 1. Suppose that GX is the set of all down directed order filters
of X, and that R satisfies F7. Then, ◦X is contracting.

2. If ◦ is contracting on G, then RG satisfies F7.

Proof. 1. Let A ∈ GX and z ∈ A ◦X A; then, there are x, y ∈ A such that
R(x, y, z). Since A is down directed, there is some u ∈ A such that u ≤ x, y.
Now, F4 implies R(u, u, z).

2. Suppose that x, z ∈ XG, and RG(x, x, z). Let a ∈ x. Since RG(x, x, z) it
follows that x ◦c x ⊆ z, in particular, that a ◦ a ∈ x. Now, a ◦ a ≤ a and the
fact that z is an order filter imply that a ∈ z.

The discrete duality is now immediate:

Theorem 5.9. There is a discrete duality between O-groupoids ⟨G, ◦,≤⟩ with
◦ contracting and XG = FD

G, and O-frames for which GX = FD
X and that

satisfy F7.

Theorem 5.5 and Theorem 5.9 lead to the discrete duality of idempotent
O-groupoids.

Table 1 shows the resources required for the discrete dualities. Sadly, we do
not know any logics whose algebraic semantics consists of groupoids discussed
in the previous sections.

6. O-groupoids with identity

In this section we suppose that XG = FO
G and GX = FO

X . As the next step,
let us consider an O-groupoid ⟨G, ◦,≤, e⟩ with a left identity element e. Its
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XG GX Frame condition

Commutative FO
G FO

X R(x, y, z) ⇒ R(y, x, z)

Associative R(x, y, z)&R(z, y′, z′)
⇒ (∃u)[R(y, y′, u) and R(x, u, z′)]

R(x, y, z)&R(x′, z, z′)
⇒ (∃u)[R(x′, x, u) and R(u, y, z′)]

Expanding FD
G FO

X R(x, x, x)

Contracting FO
G FD

X R(x, x, z) ⇒ x ≤ z.

Table 1: Conditions for axiomatic extensions

canonical frame is the structure ⟨XG, RG,⊆, ↑ e⟩. An LO-frame is an O-frame
with an added designated element i satisfying the frame condition

F8 (∀y, z)[y ≤ z ⇐⇒ R(i, y, z))].

This is the condition d1 in [19] and No. 5 in [30], adjusted in the first component
by the monotonicity condition F4.

Lemma 6.1. 1. If ⟨X,R,⊆, i⟩ is an O-frame with designated element i sat-
isfying F8, then ↑ i ◦X A = A for all A ∈ GX .

2. If ⟨G, ◦,≤, e⟩ is an ordered groupoid with left identity, then its canonical
frame satisfies F8 with i = ↑ e.

Proof. 1. Suppose that A ∈ GX ; we need to show that ↑ i ◦X A = A:
“⊆”: Let z ∈ ↑ i ◦X A; there are x ≥ i, y ∈ A such that R(x, y, z) by

definition of ◦X . (F8) implies that y ≤ z, and y ∈ A and the fact that A is
increasing imply z ∈ A.

“⊇”: Let z ∈ A. Setting y = z in (F8), we have R(i, z, z), and thus,
z ∈ ↑ i ◦X A.

2. Let y, z ∈ XG.
“⇒”: Let y ⊆ z, and c ∈ ↑ e ◦c y. Then, there are a, b such that e ≤ a, b ∈ y,

and a◦b = c. Since e ≤ a, the compatibility of ≤ implies that b = e◦b ≤ a◦b = c,
and therefore, c ∈ y because y is an order filter. The hypothesis y ⊆ z now
implies that c ∈ z.

“⇐”: Conversely, suppose that RG(↑ e, y, z) for some y, z ∈ XG; then,
↑ e ◦c y ⊆ z by definition of RG. If a ∈ y, then a = e ◦ a ∈ ↑ e ◦c y, hence,
a ∈ z.

The discrete duality theorem follows immediately:

Theorem 6.2. There is a discrete duality between O-groupoids ⟨G, ◦,≤, e⟩ with
a left identity element e, and LO-frames.
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For the right identity, we consider the frame condition

F9 (∀y, z)[y ≤ z ⇐⇒ R(y, i, z))].

An RO-frame is an O-frame with an added designated element i satisfying the
frame condition F9. The proof of the discrete duality theorem is analogous to
the previous one:

Theorem 6.3. There is a discrete duality between O-groupoids ⟨G, ◦,≤, e⟩ with
a right identity element e, and RO-frames.

7. Residuated O-groupoids

Finally, we enhance an O-groupoid by residuals. For this, we suppose that XG

and GX are the sets of all order filters in the respective orderings. The left
residual with respect to ◦, denoted by �, is a binary operator on G such that

(∀a, b, c)[a ◦ b ≤ c ⇐⇒ a ≤ b� c]. (11)

In the complex algebra of an O-frame we define the corresponding opera-
tion �X by

A�X B
df
= {x : (∀y, z)[(R(x, y, z) and y ∈ A) ⇒ z ∈ B]}. (12)

This is the definition for dual algebras of relevant spaces in [30], for complex
algebras of R-frames given in [20, Chapter 12.2], and also in [19] in a slightly
different form. It also works in our reduced setup:

Theorem 7.1. There is a discrete duality between O-groupoids with a left resid-
ual � and O-frames with �X defined by (12).

Proof. Taking into account our previous results, it is enough to show
1. �X is the left residual of ◦X .
2. h preserves �.
1. Suppose that A,B,C ∈ GX ; we are going to show that (11) holds for ◦X

and �X .
“⇒”: Let A ◦X B ⊆ C, and choose some x ∈ A. Suppose that R(x, y, z)

and y ∈ B. Since x ∈ A, y ∈ B, and R(x, y, z), we have z ∈ A ◦X B. The
hypothesis now implies z ∈ C.

“⇐”: Let z ∈ A ◦X B; then, there are x ∈ A, y ∈ B such that R(x, y, z).
The hypothesis implies that x ∈ B�X C; y ∈ B, R(x, y, z) and the definition
of �X imply that z ∈ C.

2. Let a, b, c ∈ G. We show that h(b)�XG
h(c) = h(b� c). First, note that

by (12)

x ∈ h(b)�XG
h(c) ⇐⇒ (∀y, z ∈ XG)[x ◦c y ⊆ z and b ∈ y ⇒ c ∈ z]. (13)
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“⊆”: Suppose that b� c ̸∈ x; then, c ̸∈ x ◦c ↑ b. Setting y
df
= ↑ b and z

df
= x ◦c ↑ b,

(13) shows that x ̸∈ h(b)�XG
h(c).

“⊇”: Let b� c ∈ x. Suppose that x ◦c y ⊆ z and b ∈ y; then, a ◦ b ∈ z for
all a ∈ x. Assume that c ̸∈ z. Then, a ◦ b ̸≤ c for all a ∈ x since z is increasing
and a ◦ b ∈ z. By (11), a ̸≤ b� c, contradicting b� c ∈ x.

The right residual of ◦ is a binary operator, denoted by �, defined by

(∀a, b, c)[a ◦ b ≤ c ⇐⇒ b ≤ a� c]. (14)

The corresponding complex algebra operation is

A�X B
df
= {x : (∀y, z)[(R(y, x, z) and y ∈ A) ⇒ z ∈ B]}. (15)

Theorem 7.2. There is a discrete duality between O-groupoids with a right
residual � and O-frames with �X defined by (15).

Proof. That �X is the right residual of ◦X was shown in [20, Proposition
12.2.2], the proof of which does not use any resources apart from the ordering
and the definition of ◦X by (3) and of �X by (15). The proof that h preserves �
is analogous to the one for � in Theorem 7.1.

Such signature extensions of ordered groupoids have a place in logical sys-
tems. An Ackermann groupoid is a structure ⟨G, ◦,≤,�, e⟩ where ⟨G, ◦,≤⟩ is
an O-groupoid, e is a left identity, and � is the left residual with respect to ◦.
These were considered in [19] as the “most basic relevant algebra, . . . introduced
for the specific purpose of explicating pure implicational calculi.” A discrete
duality for Ackermann groupoids can be obtained from the discrete dualities
presented in Section 6 and this section.

8. Some remarks on further axiomatic or signature
extensions of groupoids and their discrete dualities

Groupoids are the basic component in semantic structures of a large variety
of non-classical logics. In Sections 3–7 we studied the very basic structures
whose signatures did not include lattice operations. In the present section
we briefly describe groupoids endowed with the lattice operations and their
discrete dualities which play an important role in algebra and logic.

A positive Ackermann groupoid is a signature extension of an Ackermann
groupoid by the operations ∧,∨ such that ⟨G,∧,∨⟩ is a distributive lattice
with ≤ as its natural order. They are reducts of the algebras of relevant logics
which were investigated in [30]. It was shown in [19] that positive Ackermann
groupoids provide algebraic models for the logic B+ which they introduced
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in [25]. It is interesting to note that in their setup the universe of the com-
plex algebras of the ternary frames for the logic are the order filters of the
frame universe. A discrete duality for positive Ackermann groupoids, that is,
distributive-lattice-ordered Ackermann groupoids, can be obtained based the
discrete duality for distributive residuated lattices [20, Chapter 12] and the
discrete dualities from Sections 6 and 7.

A Church monoid, also introduced in [19], is an axiomatic extension of
Ackermann groupoids which, in addition, are commutative and associative,
and ◦ is expanding. A signature extension of a Church monoid with ∧ and ∨
as for positive Ackermann groupoids is called a Dunn monoid.

A discrete duality for Church monoids can be obtained based on discrete
duality for Ackermann groupoids and Theorem 5.1. A discrete duality for Dunn
monoids can be obtained based on discrete dualities for positive Ackermann
groupoids.

A residuated-lattice-ordered monoid is a lattice-ordered monoid endowed
with right and left residuals of its groupoid operator. Algebraic signature
extensions or axiomatic extensions of such lattices provide algebraic semantics
for a number of non-classical logics, in particular substructural logics, multiple-
valued logics, and fuzzy logics, see, for example, [3, 10, 11]. Discrete dualities for
residuated lattices were studied both for distributive lattices and not necessarily
distributive ones. The representation theorem for distributive lattices has been
well known since the fundamental work by Stone [29]; a modern form based
on ordered topological spaces was presented by Priestley [23]. Its topology-free
version, extended to residuals as in Section 7, easily leads to a discrete duality
for residuated distributive-lattice-ordered monoids.

For a number of their axiomatic extensions discrete dualities exist, for ex-
ample: Integral distributive-residuated-lattice-ordered monoids where the unit
element of the lattice coincides with the unit element of the monoid, commuta-
tive distributive-residuated-lattice-ordered monoids, where the operator of the
monoid is commutative, monoidal t-norm fuzzy logic algebras (MTL) which are
both integral and commutative distributive-residuated-lattice-ordered monoids
with the axiom of prelinearity, MTL algebras with a negation. A Tarski rela-
tion algebra is a Boolean-algebra-ordered monoid with some additional axioms
which reflect relationships of Boolean operators with monoid operators. A dis-
crete duality for relation algebras and their frames follows from representation
theorems in [28] and [16] and from developments in [18].

In case of non-distributive lattices, a topology free version of Urquhart’s rep-
resentation [8] or the representation of general lattices in [13] may be a starting
point for developing discrete dualities. Based on Urquhart’s lattice represen-
tation [30] discrete dualities for general-lattice-ordered groupoids exist, among
others, for general-lattice-ordered monoids with left and right residuals of their
operators, residuated general-lattice-ordered monoids with involution, general-
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lattice-ordered relation algebras, the class of FL algebras corresponding to full
Lambek Calculus and its axiomatic extensions FLe, FLc, FLw, FLew, among
others. The class FLew provides a basis for the Esteva-Godo-Ono hierarchy of
substructural and fuzzy logics presented in [10]. Details of the discrete dualities
mentioned above can be found in [20].

9. Conclusion

In this paper discrete dualities for groupoids were studied. For every chosen
class of groupoids the task of proving discrete duality included establishing the
appropriate class of frames and then proceeding as it is described in steps S1, S2,
and S3 in the introduction. It was observed that for the class of plain groupoids
the definition of canonical frame analogous to the definition given in [15] did not
enable us proving preservation of the groupoid operator under the embedding
due to lack of any ordering in the groupoids. Thus in the subsequent sections
ordered groupoids are considered and some of their axiomatic or signature
extensions. For the class of groupoids with a partial ordering compatible with
their operators the class of frames was proposed based on the frame semantics
of relevant logic presented in [27] and discrete dualities were proved for these
classes of structures. In subsequent sections discrete dualities were presented for
several axiomatic extension of the classes of ordered groupoids including classes
of commutative, associative, and idempotent groupoids; signature extensions
of the classes of ordered groupoids included ordered groupoids with identity
and ordered groupoids with residuals of their operators. Finally, in Section 8
further axiomatic or signature extensions of groupoids were mentioned together
with bibliographical information on discrete duality results for these.
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