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Abstract. In this paper we study Perrin numbers that can be
expressed as sums of two base b repdigits. This can be done using
linear forms in logarithms of algebraic numbers and a version of the
Baker–Davenport reduction method.
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1. Introduction

The Perrin sequence {Pn}n≥0 is the ternary recurrent sequence defined as

Pn+3 = Pn+1 + Pn, (1)

with initial terms P0 = 3, P1 = 0, and P2 = 2. This is the sequence A001608 in
the On-Line Encyclopedia of Integer Sequences (OEIS). The Perrin numbers
are closely associated with the Padovan numbers (cf. A000931, OEIS) whose
recurrence relation is same as that of Perrin sequence with different initials
(1, 0, 0). The first few Perrin numbers are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, . . . .

The closed form of Perrin sequence known as the Binet’s formula is given by

Pn = αn + βn + γn, (2)

where α, β and γ are the roots of the characteristic equation f(x) = x3−x−1 =
0 and they can be expressed in terms of radicals as

α =
r1 + r2

6
, β = γ̄ =

−r1 − r2 + i
√
3(r1 − r2)

12
,

where r1 =
3
√
108+12

√
69 and r2 =

3
√
108−12

√
69. Numerically, the following

estimates hold for α, β and γ :

α ≈ 1.32472, |β| = |γ| ≈ 0.868837.

https://oeis.org/A001608
https://oeis.org/A000931
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One can observe that

|β| = |γ| = α−1/2.

The nth term of the Perrin sequence lies between αn−2 and αn+1 for all n ≥ 2,
that is,

αn−2 ≤ Pn ≤ αn+1. (3)

The above result can easily be shown by using induction.

For an integer b ≥ 2, a natural number N of the form N = a
(

bl−1
b−1

)
for some l ≥ 2 and a ∈ {1, 2, . . . , b − 1} is called a base b repdigit. When
b = 10, N is simply called a repdigit. Recently, many investigations have been
made for searching repdigits in binary as well as ternary recurrent sequences.
For example, Luca [11] proved that 55 and 11 are the largest repdigits in
the Fibonacci and Lucas sequences respectively. Lucas, Pell and Pell-Lucas
numbers as sums of two repdigits have been studied in [1, 2]. Rayaguru and
Panda [13] searched the presence of repdigits in the product of consecutive
balancing or Lucas-balancing numbers. In [14], they found all balancing and
Lucas-balancing numbers which are expressible as sums of two repdigits. Bravo
et al. [3] considered the Narayana’s cows sequence (A000930 in the OEIS) and
obtained all base b repdigits which are sum of two Narayana numbers. Lomeĺi
and Hernández [10] determined all repdigits in Padovan sequence which can be
written as sum of two Padovan numbers. In [7], Ddmulira found all repdigits
which are sum of three Padovan numbers.

In this article we are interested to study Perrin numbers expressible as sums
of two base b repdigits. More precisely, the exponential Diophantine equation

Pn = a1

(
bl1 − 1

b− 1

)
+ a2

(
bl2 − 1

b− 1

)
, (4)

is to be solved in integers 2 ≤ l1 ≤ l2 and a1, a2 ∈ {1, 2, . . . , b − 1}. The
finiteness result can be easily deduced from the S-unit equation theorem, which
was known since long ago. The contribution to the present work lies in the
effectivity, in the sense that, in (4), n can be effectively bounded in terms of
b. This can be achieved using Baker’s method. There exist several different
estimates of Baker-type lower bounds for linear forms in logarithms. In this
study we use the most common Baker-type method due to Matveev ([12] or
[4, Theorem 9.4]). This method also applies to every ternary linear recurrent
sequence under mild assumptions, namely the existence of a dominant root.

Our main result is the following.

Theorem 1.1. Let b ≥ 2 be an integer. Then the Diophantine equation

Pn = a1

(
bl1 − 1

b− 1

)
+ a2

(
bl2 − 1

b− 1

)
,

https://oeis.org/A000930
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has only finitely many solutions in integers (n, a1, a2, l1, l2) with 1 ≤ a1, a2 ≤
b−1 and 2 ≤ l1 ≤ l2. Moreover, n is bounded by 1.35 ·1031 log5 b. In particular,
the only Perrin numbers expressible as sums of two repdigits are P11 = 22 =
11 + 11 and P20 = 277 = 55 + 222.

2. Preliminary results

We need some results from Baker’s theory of linear forms in logarithms of
algebraic numbers for the proof of our main result. To start with, let η be an
algebraic number with minimal polynomial

f (X) = a0(X − η(1)) . . . (X − η(k)) ∈ Z [X],

where a0 > 0, and (η(i))1≤i≤k are the conjugates of η. Then,

h(η) =
1

k

log a0 +

k∑
j=1

max{0, log |η(j)|}

 ,

is called the logarithmic height of η. In particular, if η = a/b is a rational number
with gcd(a, b) = 1 and b > 1, then h(η) = log(max{|a|, b}). The following are
some properties of logarithmic height function stated without special reference:

• h(η + γ) ≤ h(η) + h(γ) + log 2,

• h(ηγ±1) ≤ h(η) + h(γ),

• h(ηk) = |k|h(η).

With these notations, Matveev (see [12] or [4, Theorem 9.4]) proved the
following result.

Theorem 2.1. Let L be an algebraic number field of degree dL.
Let η1, η2, . . . , ηl ∈ L be positive real numbers and b1, b2, . . . , bl be non-zero

integers. If Γ =
∏l

i=1 η
bi
i − 1 is not zero, then

log |Γ| > −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D ≥ max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are positive integers such
that

Aj ≥ h′ (ηj) = max{dLh (ηj) , | log ηj |, 0.16} for j = 1, . . . , l.

We use the reduction method of Baker-Davenport due to Dujella and Pethő
[8] for bound reduction. The following result will be used for reducing the
bounds of the variables n, l1, l2 of (4).
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Lemma 2.2 ([8]). Let M be a positive integer and p/q be a convergent of the
continued fraction of the irrational number τ such that τ > 6M . Let A, B, µ
be some real numbers with A > 0 and B > 1. Let ε := ∥µq∥ −M∥τq∥, where
∥.∥ denotes the distance from the nearest integer. If ε > 0, then there exists no
solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

When µ = 0, we get ε < 0. In this case we cannot apply Lemma 2.2. We
use the following lemma due to Legendre.

Lemma 2.3 (Legendre [5, 6]). Let κ be a real number and x, y integers such
that ∣∣∣∣κ− x

y

∣∣∣∣ < 1

2y2
.

Then x/y = pk/qk is a convergent of κ. Further, let M and N be non-negative
integers such that qN > M . Then putting a(M) = max{ai : i = 0, 1, 2, . . . , N},
the inequality ∣∣∣∣κ− x

y

∣∣∣∣ ≥ 1

(a(M) + 2)y2
,

holds for all pairs (x, y) of positive integers with 0 < y < M .

The following result, needed in our proof, appears in [9].

Lemma 2.4. Let r ≥ 1 and H > 0 be such that H > (4r2)r and H > L/(logL)r.
Then L < 2rH(logH)r.

The following result will be useful in proving our main result which gives a
relation between n and l2 of (4).

Lemma 2.5. All solutions of (4) satisfy

(l2 − 1) log b− logα < n logα < l2 log b+ 2.

Proof. From (3), we have αn−2 ≤ Pn < 2 · bl2 . Taking logarithm on both sides,
we get

(n− 2) logα < log 2 + l2 log b,
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which leads to

n logα < l2 log b+ 2.

Similarly, bl2−1 < Pn ≤ αn+1 gives

n logα > (l2 − 1) log b− logα.

This ends the proof.

3. Proof of Theorem 1.1

To start with, we find the upper bounds for the variables n, l1, l2 of (4).
Using (2) in (4), we get

αn + βn + γn = a1

(
bl1 − 1

b− 1

)
+ a2

(
bl2 − 1

b− 1

)
. (5)

We examine (5) in two different steps. Firstly, we write (5) as

αn − a2b
l2

b− 1
=

a1b
l1

b− 1
− a1 + a2

b− 1
− (βn + γn) .

Taking absolute values on both sides, we get∣∣∣∣αn − a2b
l2

b− 1

∣∣∣∣ ≤ ∣∣∣∣a1bl1b− 1

∣∣∣∣+ ∣∣∣∣a1 + a2
b− 1

∣∣∣∣+ |βn + γn| < 3 · bl1 .

Dividing both sides by a2b
l2

b−1 implies∣∣∣∣(b− 1

a2

)
αnb−l2 − 1

∣∣∣∣ < 3

bl2−l1
· b− 1

a2
<

3

bl2−l1−1
. (6)

Put

Γ =

(
b− 1

a2

)
αnb−l2 − 1. (7)

We need to show Γ ̸= 0. Suppose Γ = 0, then

αn =
a2

b− 1
bl2 . (8)

It is easily checked that αn is irrational for every n, since β is not conjugate to
α and |β| ̸= |α|. The irrationality of α immediately implies the non-vanishing
of Γ. To apply Theorem 2.1 in (7), let

η1 =
b− 1

a2
, η2 = α, η3 = b, b1 = 1, b2 = n, b3 = −l2, l = 3,
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where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is 3,
where L is Q(α).

Since bl2−1 < Pn < αn+1, we have l2 < n. Therefore, D = max{1, n, l2} =
n. To estimate the parameters A1, A2, A3, we calculate the logarithmic heights
of η1, η2, η3 as follows:

h(η1) = h

(
b− 1

a2

)
≤ h(b− 1) + h(a2) ≤ 2 log(b− 1) < 2 log b,

h(η2) = h(α) =
logα

3
and h(η3) = h(b) = log b.

Thus, one can take

A1 = 6 log b, A2 = logα and A3 = 3 log b.

Then, we apply Theorem 2.1 and find

log |Γ| > −1.4 · 30634.532(1 + log 3)(1 + log n)(6 log b)(logα)(3 log b).

Comparing the above inequality with (6) gives

(l2 − l1 − 1) log b < log 3 + 1.36 · 1013(1 + log n) log2 b

< 1.5 · 1013(1 + log n) log2 b.

Then, we get

(l2 − l1) < 1.6 · 1013(1 + log n) log b. (9)

Secondly, we rewrite (5) as

αn − a1b
l1 + a2b

l2

b− 1
= −a1 + a2

b− 1
− (βn + γn) ,

which implies∣∣∣∣αn − a1b
l1 + a2b

l2

b− 1

∣∣∣∣ ≤ ∣∣∣∣a1 + a2
b− 1

∣∣∣∣+ |βn + γn| < 2.5.

Dividing both sides by αn, we obtain∣∣∣∣1− α−nbl2
(
a1b

l1−l2 + a2
b− 1

)∣∣∣∣ < 2.5

αn
. (10)

Put

Γ′ = 1− α−nbl2
(
a1b

l1−l2 + a2
b− 1

)
.
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Using similar arguments as above we can show that Γ′ ̸= 0. With the notations
of Theorem 2.1, we take

η1 = α, η2 = b, η3 =
a1b

l1−l2 + a2
b− 1

, b1 = −n, b2 = l2, b3 = 1, l = 3,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is 3,
where L = Q(α).

Since l2 < n, D = n. Computing the logarithmic heights of η1, η2 and η3,
we get

h(η1) =
logα

3
, h(η2) = log b

and

h(η3) ≤ h(a1b
l1−l2 + a2) + h(b− 1)

≤ h(a1) + (l2 − l1)h(b) + h(a2) + h(b− 1) + log 2

< 3 log b+ log 2 + (l2 − l1) log b

≤ 4 log b+ (l2 − l1) log b.

Hence from (9), we get

h(η3) < 4 log b+ 1.6 · 1013(1 + log n) log2 b.

So, we take

A1 = logα, A2 = 3 log b and A3 = 4.9 · 1013(1 + log n) log2 b.

Using all these values in Theorem 2.1, we have

log |Γ′| > −1.4 · 30634.532(1 + log 3)(1 + log n)(logα)(3 log b)

· (4.9 · 1013(1 + log n) log2 b).

Comparing the above inequality with (10) gives

n logα− log 2.5 < 1.12 · 1026(1 + log n)2 log3 b. (11)

Thus, we conclude that

n < 4.33 · 1026(1 + log n)2 log3 b. (12)

With the notation of Lemma 2.4, we take r = 2, L = n andH = 4.33·1026 log3 b.
Applying the lemma, we have

n < 22(4.33 · 1026 log3 b)(log(4.33 · 1026 log3 b))2

< (17.32 · 1026 log3 b)(62 + 3 log log b)2

< (17.32 · 1026 log3 b)(88 log b)2

< 1.35 · 1031 log5 b.
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In the above inequality, we have used the fact that 62 + 3 log log b < 88 log b,
which holds for all b ≥ 2. Hence, we summarize that all the solutions of (4)
satisfy

n < 1.35 · 1031 log5 b.

Hence, the proof of Theorem 1.1 is finished.

Remark 3.1. The above inequality allows one to compute all the solutions
to (4) for every fixed b.

Now, as an illustration, we solve (4) for b = 10. When b = 10, the bound
on n becomes

n < 8.74 · 1032.

Using Lemma 2.5, we get l1 ≤ l2 < 1.07 · 1032.
Next, we reduce these bounds with the help of Lemma 2.2. Put

Λ = n logα− l2 log 10 + log

(
9

a2

)
. (13)

The inequality (6) can be written as∣∣∣∣( 9

a2

)
αn10−l2 − 1

∣∣∣∣ = |eΛ − 1| < 3

10l2−l1−1
.

Observe that Λ ̸= 0 as eΛ − 1 = Γ ̸= 0. Assuming l2 − 11 ≥ 2, the right-hand
side in the above inequality is at most 3

10 < 1
2 . The inequality |ez − 1| < y for

real values of z and y implies z < 2y. Thus, we get

|Λ| < 6

10l2−l1−1
,

which implies that∣∣∣∣n logα− l2 log 10 + log

(
9

a2

)∣∣∣∣ < 6

10l2−l1−1
.

Dividing both sides by log 10 gives∣∣∣∣n( logα

log 10

)
− l2 +

log (9/a2)

log 10

∣∣∣∣ < 3

10l2−l1−1
. (14)

To apply Lemma 2.2 in (14), let

u = n, τ =

(
logα

log 10

)
, v = l2, µ =

log (9/a2)

log 10
,

A = 3, B = 10, w = l2 − 11 − 1.
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Choose M = 8.74 ·1032. We find q74 exceeds 6M with 0.009322 < ε = ∥µq74∥−
M∥τq74∥. Applying Lemma 2.2 for 1 ≤ a2 < 9, we get l2 − l1 ≤ 36.

For the case a2 = 9, we have that µ(a2) = 0. In this case we apply
Lemma 2.3. The inequality (14) can be rewritten as∣∣∣∣ logαlog 10

− l2
n

∣∣∣∣ < 3

n · 10l2−l1−1
<

1

2n2
,

because n < 8.74 ·1032 = M . It follows from Lemma 2.3 that l2
n is a convergent

of κ = logα
log 10 . So

l2
n is of the form pk/qk for some k = 0, 1, 2, . . . , 74. Thus,

1

(a(M) + 2)n2
≤
∣∣∣∣ logαlog 10

− l2
n

∣∣∣∣ < 3

n · 10l2−l1−1
.

Since a(M) = max{ak : k = 0, 1, 2, . . . , 74} = 49, we get

l2 − l1 − 1 ≤ log(3 · (8.74 · 1032) · 51)
log 10

< 35.12.

Thus l2 − l1 ≤ 36 in both cases.

Now for 1 ≤ a1, a2 ≤ 9 and l2 − l1 ≤ 36, put

Λ′ = −n logα+ l2 log 10 + log

(
a110

l1−l2 + a2
9

)
. (15)

From (5), we have

αn
(
1− eΛ

′
)
= −

(
a1 + a2

9

)
− (βn + γn) .

Furthermore, we obtain

a1 + a2
9

+ (βn + γn) > 0.

So eΛ
′ − 1 > 0. Thus, Λ′ > 0 and we have

0 < Λ′ < eΛ
′
− 1 = |Γ′| < 2.5

αn
.

This implies ∣∣∣∣−n logα+ l2 log 10 + log

(
a110

l1−l2 + a2
9

)∣∣∣∣ < 2.5

αn
.
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Dividing both sides by logα gives∣∣∣∣∣l2
(
log 10

logα

)
− n+

(
log
(
(a110

l1−l2 + a2)/9
)

logα

)∣∣∣∣∣ < 9 · α−n. (16)

Now, let

u = l2, τ =

(
log 10

logα

)
, v = n, µ =

(
log
(
(a110

l1−l2 + a2)/9
)

logα

)
,

A = 9, B = α, w = n.

ChooseM = 8.74·1032. We find q83 exceeds 6M with 0.0000315 < ε = ∥µq83∥−
M∥τq83∥. Then we apply Lemma 2.2 to the inequality (16) for 1 ≤ a1, a2 ≤ 9
and l2 − l1 ≤ 36 and get n ≤ 349.

When l1 = l2 and a1 + a2 = 9, µ(a1, a2) = 0. So, in this case we use
Lemma 2.3. The inequality (16) can be rewritten as∣∣∣∣ log 10logα

− n

l2

∣∣∣∣ < 9

l2αn
<

1

2l22
.

Thus, we have

1

(a(M) + 2)l22
≤
∣∣∣∣ log 10logα

− n

l2

∣∣∣∣ < 9

l2αn
.

Since a(M) = max{ak : k = 0, 1, 2, . . . , 83} = 49, we get

n ≤ log(9 · (8.74 · 1032) · 51)
logα

< 292.

Thus n ≤ 349 in both cases.
We compute all the solutions of (4) usingMathematica for the range n ≤ 349

and find the following solutions,

P11 = 22 = 11 + 11 = 102−1
10−1 + 102−1

10−1 ,

P20 = 277 = 55 + 222 = 5
(

102−1
10−1

)
+ 2

(
103−1
10−1

)
.
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