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A note on the Nielsen realization
problem for connected sums of S2 × S1

Bruno P. Zimmermann

Abstract. We consider finite group-actions on 3-manifolds Hg ob-
tained as the connected sum of g copies of S2 × S1, with free funda-
mental group Fg of rank g. We prove that, for g > 1, a finite group of
diffeomorphisms of Hg inducing a trivial action on homology is cyclic
and embeds into an S1-action on Hg. As a consequence, no nontrivial
element of the twist subgroup of the mapping class group of Hg (gen-
erated by Dehn twists along embedded 2-spheres) can be realized by a
periodic diffeomorphism of Hg (in the sense of the Nielsen realization
problem). We also discuss when a finite subgroup of the outer automor-
phism group Out(Fg) of the fundamental group of Hg can be realized
by a group of diffeomorphisms of Hg.
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1. Introduction

All finite group-actions in the present paper will be faithful, smooth and orien-
tation-preserving, all manifolds orientable. We are interested in finite group-
actions on connected sums Hg = ]g(S2×S1) of g copies of S2×S1; we will call
Hg a closed handle of genus g in the following. The fundamental group of Hg

is the free group Fg of rank g. Considering induced actions on the fundamental
group and on the first homology H1(Hg) ∼= Zg, there are canonical maps

Diff(Hg)→ Out(Fg)→ GL(g,Z)

where Diff(Hg) denotes the orientation-preserving diffeomorphism group of Hg

and Out(Fg) = Aut(Fg)/Inn(Fg) the outer automorphism group of its funda-
mental group.

Theorem 1.1. Let G be a finite group acting on a closed handle Hg of genus
g > 1 such that the induced action on the first homology of Hg is trivial. Then
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G is cyclic and a subgroup of an S1-action on Hg; in particular, all elements
of G are isotopic to the identity.

For a description and classification of circle-actions on 3-manifolds and
closed handles, see [14].

Denoting by Mod(Hg) the mapping class group of isotopy classes of orien-
tation-preserving diffeomorphisms of Hg, there are induced maps

Mod(Hg)→ Out(Fg)→ GL(g,Z).

Let Twist(Hg) denote the subgroup of Mod(Hg) generated by all Dehn twists
along embedded 2-spheres in Hg (i.e., by cutting along a 2-sphere and regluing
after twisting by one full turn around an axis; since such a twist represents a
generator of π1(SO(3)) ∼= Z2, its square is isotopic to the identity). By classical
results of Laudenbach [6, 7] there is a short exact sequence

1→ Twist(Hg) ↪→ Mod(Hg)→ Out(Fg)→ 1;

moreover Twist(Hg) ∼= (Z2)g is generated by the sphere twists around the core
spheres S2 × ∗ of the g different S2 × S1 summands of Hg (twists around sep-
arating 2-spheres instead are isotopic to the identity). It is proved in [1] that
Mod(Hg) is isomorphic to a semidirect product Twist(Hg) o Out(Fg). Theo-
rem 1.1 has the following consequence (in the sense of the Nielsen realization
problem).

Corollary 1.2. No nontrivial element of the twist group Twist(Hg) can be
realized (represented) by a periodic diffeomorphism of Hg.

For g > 1 this follows from Theorem 1.1 but the methods apply also to
the case g = 1 of H1 = S2 × S1, using the fact that S2 × S1 is a geometric
3-manifold belonging to the (S2 × R)-geometry (one of Thurston’s eight 3-
dimensional geometries, see [15]), and that finite group-actions on S2 × S1 are
geometric ([10, Theorem 8.4]).

For a solution of the Nielsen realization problem for aspherical and Haken 3-
manifolds, see [19] (here finite groups of mapping classes can always be realized,
except for a purely algebraic obstruction in the case of Seifert fiber spaces
where, however, a finite inflation of the group can always be realized).

By [6], homotopic diffeomorphisms of Hg are isotopic but this does not
remain true for arbitrary connected sums of 3-manifolds. By [4], twists around
separating 2-spheres in a 3-manifold may or may not be homotopic to the
identity, moreover by [3] there are sphere-twists which are homotopic but not
isotopic to the identity (see also the discussion in the introduction of [1]). As an



A NOTE ON THE NIELSEN REALIZATION PROBLEM 3

example, considering a connected sum M = M1]M2 of two closed hyperbolic
3-manifolds M1 and M2, the sphere-twist around the connecting 2-sphere is not
homotopic to the identity; also, it cannot be realized by a periodic map (e.g.,
if M1 or M2 does not admit a nontrivial periodic map then also the connected
sum M = M1]M2 has no periodic maps).

There arises naturally the question of which finite subgroups of Out(Fg)
can be realized by a finite group of diffeomorphisms of Hg. Finite groups G
of diffeomorphisms of Hg which act faithfully on the fundamental group (i.e.,
inject into Out(Fg)) are considered in [17] where, for g ≥ 15, the quadratic
upper bound |G| ≤ 24g(g − 1) for their orders is obtained. Since Out(Fg) has
finite subgroups of larger orders, these subgroups cannot be realized by finite
groups of diffeomorphisms (by [16] the maximal order of a finite subgroup of
Out(Fg) is 2gg!, for g > 2). A precise result is as follows (we refer to [17,
Section 2] for definitions and the proof).

Theorem 1.3. Let G be a finite subgroup of Out(Fg) and 1 → Fg → E →
G → 1 the corresponding group extension associated to G. Then G can be
realized by an isomorphic group of diffeomorphisms of Hg if and only if E is
isomorphic to the fundamental group π1(Γ,G) of a finite graph of finite groups
(Γ,G) in normal form associated to a closed handle-orbifold (in particular, the
vertex groups of (Γ,G) have to be isomorphic to finite subgroups of SO(4) and
the edge groups to finite subgroups of SO(3)).

We note that, for a finite group G acting on a closed handleHg, the quotient
Hg/G has the structure of a closed handle-orbifold (see [17]). Analogous results
on finite group-actions on 3-dimensional handlebodies are obtained in [8, 12]
(and in [9] for finite group-actions on handlebodies in arbitrary dimensions).

The case g = 2 is special. By well-known results,

Out(F2) ∼= Aut(Z2) ∼= GL(2,Z) ∼= D6 ∗D2 D4,

so up to conjugation the maximal finite subgroups of Out(F2) are the dihedral
groups D6 and D4 of orders 12 and 8, and both can be realized by diffeomor-
phisms of the torus with one boundary component (hence, if the realizations of
the amalgamated subgroups D2 coincide, one obtains a realization of the whole
group Out(F2) ∼= D6 ∗D2 D4). Considering the product with a closed interval,
one obtains realizations on the handlebody V2 of genus 2 and also on its double
H2 along the boundary.

Concerning the case g = 3, by [20] there are exactly five maximal finite
subgroups of Out(F3) up to conjugation; by an easy application of Theorem 1.3,
all of these maximal finite subgroups can be realized by diffeomorphisms of the
closed handle H3 of genus 3 (but not of a handlebody V3 of genus 3).
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2. Proof of Theorem 1.1

Let G be a finite group acting faithfully and orientation-preservingly on a
closed handle Hg = ]g(S2×S1) of genus g. By the equivariant sphere theorem
(see [10] for an approach by minimal surface techniques, [2, 5] for topological-
combinatorial proofs), there exists an embedded, homotopically nontrivial 2-
sphere S2 in Hg such that x(S2) = S2 or x(S2)∩S2 = ∅ for all x ∈ G. We cut
Hg along the system of disjoint 2-spheres G(S2), by removing the interiors of
G-equivariant regular neighbourhoods S2 × [−1, 1] of these 2-spheres, and call
each of these regular neighbourhoods S2 × [−1, 1] a 1-handle. The result is a
collection of 3-manifolds with 2-sphere boundaries, with an induced action of
G. We close each of the 2-sphere boundaries by a 3-ball and extend the action
of G by taking the cone over the center of each of these 3-balls, so G permutes
these 3-balls and their centers. The result is a finite collection of closed handles
of lower genus on which G acts (cf. [17]). Applying inductively the procedure
of cutting along 2-spheres, we finally end up with a finite collection of 3-spheres
or 0-handles (closed handles of genus 0). Note that the construction gives a
finite graph Γ on which G acts whose vertices correspond to the 0-handles and
whose edges to the 1-handles. Note that Γ has no free edges, i.e. edges with
one vertex of valence 1.

On each 3-sphere (0-handle) there are finitely many points which are the
centers of the attached 3-balls (their boundaries are the 2-spheres along which
the 1-handles are attached). For each of these 3-spheres, let Gv denote its
stabilizer in G (by the geometrization of finite group-actions on 3-manifolds,
one may assume that the action of a stabilizer Gv on the corresponding 3-
sphere is orthogonal but this is not needed for the following). Denoting by Ge

the stabilizer in G of a 1-handles S2×[−1, 1], we can assume that each stabilizer
Ge preserves the product structure of S2×[−1, 1] of the corresponding 1-handle
(by choosing small equivariant regular neighbourhoods of the 2-spheres). If
some element of a stabilizer Ge acts as a reflection on [-1,1], we split the 1-
handle into two 1-handles by introducing a new 0-handle obtained from a small
regular neighbourhood S2 × [−ε, ε] of S2 × {0} by closing up with two 3-balls.
Hence we can assume that each stabilizer Ge of a 1-handle S2 × [−1, 1] does
not interchange its two boundary 2-spheres; that is, G acts without inversions
on the graph Γ.

Suppose now that g > 1 and that the induced action of G on the first
homology of Hg and hence also of Γ is trivial. As before, G acts without
inversions on Γ and Γ has no free edges. We will prove in next Proposition 2.1
that under these hypotheses the action of G on Γ is trivial, that is each element
of G acts as the identity on Γ. Hence G fixes each vertex and each edge of Γ.
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Since G fixes each 1-handle S2 × [−1, 1], it maps each 2-sphere S2 × {0} to
itself. By construction, G does not interchange the two sides of such a 2-sphere
and acts faithfully on it (otherwise some element of G would act trivially on an
invariant regular neighbourhood of such a 2-sphere and then act trivially also
on all of Hg (well-known in particular for smooth actions)). It follows that G
is isomorphic to a finite subgroup of the orthogonal group SO(3), i.e. cyclic
Zn, dihedral D2n, tetrahedral A4, octahedral S4 or dodecahedral A5. It is easy
to see that an orientation-preserving action of D2n, A4, S4 or A5 on S3 has
at most two global fixed points around which a 1-handle can be attached; but
then the graph Γ would be a segment or a circle, that is g ≤ 1. Since g > 1,
G is a cyclic group which acts by rotations around an axis S1 in each 0-handle
S3. By the positive solution of the Smith-conjecture [13], each of these axes is
a trivial knot in S3, and hence the action of the cyclic group G embeds into an
S1-action on each 0-handle. Since these S1-actions on the 0-handles extend to
the connecting 1-handles S2 × [−1, 1], the cyclic G-action on Hg embeds into
an S1-action.

To complete the proof of Theorem 1.1, it remains to prove the following
proposition (which may be considered as an analogue of Theorem 1.1 for finite
graphs).

Proposition 2.1. Let G be a finite group acting faithfully on a finite connected
graph Γ without free edges and of genus g > 1 (or cycle rank, or rank of its free
fundamental group). Then also the induced action of G on the first homology
H1(Γ) ∼= Zg of Γ is faithful.

Proof. By subdividing edges, we can assume that G acts without inversion of
edges on Γ. Suppose that an element x ∈ G acts trivially on the first homology
of Γ. Then its Lefschetz number is 1− g which, by the Hopf trace formula, is
equal to the Euler characteristic of the fixed point set of x which is a subgraph
Γ′ of Γ (since G acts without inversions of edges). The graph Γ of genus g
has Euler characteristic 1− g; passing from Γ′ to Γ by adding successively the
missing edges, the Euler characteristic remains unchanged (when adding a free
edge) or decreases. Since Γ has no free edges, this implies Γ′ = Γ, and hence x
acts trivially on Γ. This completes the proof of the proposition.

By [18, Proof of Satz 3.1], each finite subgroup of Out(Fg) can be realized
by an action of the group on a finite graph Γ without free edges (this is a
version of the Nielsen realization problem for finite graphs which several years
later was ”rediscovered” by various authors); Proposition 2.1 implies then the
following well-known result.

Corollary 2.2. The canonical projection Out(Fg)→ GL(g,Z) is injective on
finite subgroups of Out(Fg).
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We note that not all finite subgroups of GL(g,Z) are induced in this way
by finite subgroups of Out(Fg); in fact, for g = 2, 4, 6, 7, 8, 9 and 10 there are
finite subgroups of GL(g,Z) of orders larger than 2gg! (which, by [16], is the
maximal order of a finite subgroup of Out(Fg))). On the other hand, there are
also small cyclic subgroups of GL(g,Z) which cannot be realized in this way,
see the discussion in [21, Section 5].
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[4] H. Hendriks, Applications de la théorie d’obstruction en dimension 3, Mém.
Soc. Math. Fr. 53 (1977), 81–196.

[5] W. Jaco and J.H. Rubinstein, PL equivariant surgery and invariant decom-
positions of 3-manifolds, Adv. Math. 73 (1989), 149–191.

[6] F. Laudenbach, Sur les 2-sphères d’une variété de dimension 3, Ann. of Math.
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