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Abstract. We discuss the correspondence between the symplectic fo-
liation of a Poisson structure on the 3-sphere and the unitary spectrum
of its C∗-algebraic quantization, known as Connes-Landi-Matsumoto 3-
sphere. Quantization is obtained via symplectic groupoid quantization
and this allows to understand various peculiarities of such correspon-
dence. In the last section we discuss how this relates to quantization of
Dirac structures (and foliations) and speculate on how to extend this
correspondence to general locally abelian Poisson manifolds.
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1. Introduction

In the words of David Vogan ([22]: a review of the wide ranging overiew given
in [12]) the orbit method is a kind of damaged treasure map, offering cryptic
hints about where to find some (but certainly not all) of the representations we
seek to understand. It is by now well known that, in a nutshell, orbit method
can be seen as an instance of recognizing geometric data on a Poisson manifold
in terms of algebraic properties of its quantization. The usual case of Lie groups
fits into this framework by considering the universal enveloping algebra as an
algebraic quantization of the linear Poisson structure on the dual Lie algebra
g∗. For this reason the orbit method applied to quantum groups and their
homogeneous spaces, although often labelled as quantum orbit method [17, 19],
should, more correctly, be considered a non linear version of the classical orbit
method.

In [5] we outlined a program to describe a orbit method type correspondence
between symplectic leaves of a Poisson manifolds and the unitary dual of its
quantized C∗-algebra. The quantization procedure to be taken into considera-
tion is the geometric quantization applied to the symplectic groupoid, as first
introduced in [23]; this procedure was further clarified in [11], where the role
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of the choice of a multiplicative Lagrangian polarization was more thoroughly
explained. The purpose of this paper is to show how Connes-Landi-Matsumoto
3-sphere fits nicely into this framework once one takes into account some of its
specific features. Though the Poisson integration and geometric quantization
steps present no big obstacles (despite being often the hardest step in buiding
the correspondence) the resulting groupoid C∗-algebra has a non T0 topology
on its set of orbits and therefore it is not type I, so that the unitary dual and
the space of primitive ideals do not coincide.

We will show how the symplectic foliation on the semiclassical Poisson 3-
sphere is still partly reflected in the primitive ideal structure of its quantization,
establishing a homeomorphism between the leaf space and the primitive ideal
space with its Jacobson topology. To this aim we give a detailed analysis of
closed invariant subsets of the unit space of the quantization groupoid. In the
last section we will indicate how the above results can be understood in the
framework of Dirac quantization and foliation C∗-algebras.

The main motivation to analize in such detail this specific example lies in the
fact that, in a sense, it is of a completely different nature from the one already
considered in [5]. In the language of [13], this 3-sphere is a homogeneous space
of a twisted Poisson structure on a compact group, while the complex projective
space was analyzed referring to standard (Bruhat-Poisson) structure. It thus
strengthen the conjecture that groupoid quantization could provide a unifying
framework to treat all quotient Poisson homogeneous structures associated to
compact Poisson-Lie groups.

2. Abelian Poisson structures on S3

In the paper [8], motivated by a construction of families of non commutative
instantons, a non commutative algebra deforming the usual algebra of functions
on S4 was introduced. This algebra was explicitely described by generators
and relations. In particular, since one of the generators (corresponding to a
coordinate w) is a central one, it is possible to quotient the algebra by w = 0
and obtain a deformation of the algebra of functions on a 3-sphere. This algebra
can be completed to a C∗-algebra and in fact, as C∗-algebra, had been also
earlier considered by [14]. We will refer to this non commutative C∗- algebra
as the Connes-Landi-Matsumoto 3-sphere.

By an easy semiclassical limit on generators and relations one finds that
the Connes-Landi 3-sphere can be seen as deformation of an explicit Poisson
bracket on S3. This Poisson bracket admist an alternative description, better
suited for our purposes.

Let T2 be the 2-dimensional torus endowed with a right invariant Poisson
structure πθ = θ∂φ1 ∧ ∂φ2 where θ ∈ R \ {0}. Let us denote with t its Lie
algebra and with ]θ : t∗ → t the corresponding (bijective) sharp map.
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Let us consider the isometric torus action of T2 on S3 given by considering
so-called Hopf coordinates on the 3-sphere{

x0 = cos ξ1 sin η
x1 = sin ξ1 sin η

{
x2 = cos ξ2 cos η
x3 = sin ξ2 cos η

{
η ∈

[
0, π2

]
ξi ∈ [0, 2π]

(1)

and letting (φ1, φ2) ∈ T2 act on them as:

(φ1, φ2) · (ξ1, ξ2, η) = (φ1 + ξ1, φ2 + ξ2, η) .

When η = 0 (resp. η = π
2 ) we intend that ξ2 = 0 (resp. ξ1 = 0). The union

of this two disconnected circle is called the Hopf link and the action is not free
on them.

We will denote by ρ : t → X(S3) the corresponding infinitesimal action,
letting ρp : t → TpS3 its evaluation at a point P ∈ S3. In the following we
denote ∂ξi = ρ(∂φi

) and remark that the map ρp is injective at all points not
belonging to the Hopf link. The dual map is ρ∗ : T ∗S3 → t∗ can be understood
as the associated moment map of the Hamiltonian lift of this torus action on
T ∗S3. In the following we will also need the map R = ρ ◦ ]θ : t∗ → X(S3) and
the corresponding pull-back map B : T ∗S3 → Diff (S3):

B(p, ωp) = exp[R(ρ∗(ωp)/2)] .

Let us endow the product Poisson manifold S3×T2, with the Poisson struc-
ture πθ ⊕ 0. Due to its invariance properties such structure projects to the
quotient with respect to the diagonal action of the torus:

S3 × T2 → S3 × T2/T2 ' S3

so that the projection is a Poisson map. In Hopf coordinates this Poisson
bivector is simply given by

Πθ = ρ∧2(πθ) = θ(∂ξ1 ∧ ∂ξ2) , (2)

This quotient Poisson bivector is the semiclassical limit of Connes-Landi
3-dimensional sphere (in [8, Section IV], in fact, a 4-dimensional sphere is con-
sidered having one Casimir generator t, our 3-dimensional sphere corresponds
to the equatorial Poisson submanifold t = 1/2). In [26] a more general ver-
sion of this procedure is considered; manifolds obtained through an invariant
Poisson structure on an abelian group are called abelian Poisson manifolds
in [11].

The symplectic foliation of this Poisson bivector is easily computed. The
Hamiltonian distribution is tangent to each Hopf torus η = η0 ∈]0, π2 [ and
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therefore each such torus is a 2-dimensional symplectic leaf. When η = 0, π/2
the rank drops down to zero and therefore all points of the Hopf link{

x2
0 + x2

1 = 1, x2 = x3 = 0
}
t
{
x0 = x1 = 0, x2

2 + x2
3 = 1

}
are 0-dimensional leaves. The symplectic foliation therefore corresponds to the
usual Heegaard decomposition of the 3-sphere, with the singular tori decom-
posed into 0-dimensional leaves. The topology on the quotient space of leaves
is thus equivalent to the topology on a quotient of the closed cylinder [0, π2 ]×S1

by identifying all inner parallel circles through (η0, ϕ) ' (η0, ϕ
′).

3. Groupoid quantization of (S3,Πθ)

The first ingredient needed in groupoid quantization of a Poisson manifold is its
integrating symplectic groupoid ([9]). The symplectic groupoid Σθ integrating
(S3,Πθ) can be explicitely described, as done in [26, 27]. As a symplectic
manifold Σθ is simply the cotangent bundle T ∗S3, endowed with the exact
Liouville symplectic form ω.

For what concerns the groupoid structure, it is linked to the action groupoid
t∗ n S3 where the action of t∗ on S3 is integrating the map R. More precisely,
there is a well defined groupoid morphism over the identity:

Θ : Σθ → t∗ nR S3 ; Θ(p, ωp) = (ρ∗(ωp), p) .

It is important to remember, here, that the R-action groupoid has non trivial
isotropy over points in the Hopf link.

This description of the groupoid structure is often modified to look more
simmetrical; composing with an easy groupoid isomorphism the source and
target maps of T ∗S3 can be determined as:

s(p, ω) = B(−ω)(p), t(p, ξ) = B(ω)(p) (3)

and the partially defined product is then just addition of covectors, after pull-
back, i.e.

(p1, ω1) · (p2, ω2) = B(ω1)∗(ω2) +B(−ω2)∗ω1

where it is assumed that the inverse in this groupoid is then simply (p, ωp)
−1 =

(p,−ωp) and the identity embedding coincides with the zero section.
Let us now describe an example of real Lagrangian multiplicative polar-

ization on this symplectic groupoid. As explained in [11] a real multiplicative
Lagrangian polarization is identified by a choice of a coisotropic subspace F0

in t which is transverse to each isotropy subspace kerρp. The easiest possible
choice, considered in Hawkins’ paper, is the diagonal subspace F0 = (v, v) ⊆ t,
since the choice of the generators of the two components of the torus do not
satisfy the transversality condition, each one of them vanishing on a great circle.
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We will consider a more general case by fixing h(a,b) = 〈(a, b)〉 with ab 6= 0.
We will limit ourselves to rational pairs (a, b) so that h(a,b) integrates to a 1-
dimensional subtorus H(a,b) of T2. Let then pr : t∗ → h∗(a,b) ' t∗/h⊥(a,b) be
the quotient map and let µ(a,b) = ρ∗ ◦ pr. We can then consider the groupoid
morphisms composition

T ∗S3 t∗ nR S3 h∗(a,b) nR S2

S3 S3 S2

Θ Ψ

(4)

where S2 ' S3/H(a,b) is the space of H(a,b)-orbits and the base map in the right
square is the corresponding projection. The action R can be written as:

R(λ,Op) = OR(t,p)

where p ∈ S3, Op is its H(a,b)-orbit and t ∈ t is such that pr(t) = λ. The
term on the right hand side does not depend on any of the choices involved. In
projected Hopf coordinates (ξ, η), where ξ = −bξ1 + aξ2, we have that:

λ · (ξ, η) = (ξ − (a2 + b2)θ, η) (5)

where λ = [adeφ1 + bdeφ2] is a canonical choice of basis in h(a,b)
∗. Therefore,

by choosing a norm one generator in h(a,b) the action is simply an irrational
rotation on equatorial circles η = const. with two fixed points at the poles
η = 0, π/2.

We will denote by Φ = Ψ ◦Θ the composed Lie groupoid morphism at the
level of total spaces. For any (λ,Op) ∈ h∗(a,b) nR S2, then,

Φ−1(λ,Op) =
{

(p′, ωp′) ∈ T ∗S3
∣∣ p′ ∈ Op , µ(a,b)(ωp′) = λ

}
(6)

where µ(a,b)(ωp) = λ if and only if ρ∗(ωp)(ha,b) = λ with h(a,b) equal to a fixed
non trivial generator of h(a,b). It is therefore clear that any such fiber of Ψ has
the form of a twisted conormal bundle N⊥λ to an H(a,b)-orbit (as defined in [2,
Example 3.28]), having Liouville class [π∗Oλ]. Here λ ∈ h∗(a,b) is identified to a
closed 1-form along O. It is worth remarking that the two exceptional fibers
over poles verify:

Φ−1(λ,ON ) = T ∗NS3 ; Φ−1(λ,OS) = T ∗SS3 ,

and are the only contractible ones.
The fibers of this Lagrangian fibration define, as said, a real multiplicative

Lagrangian polarization as in [11] (where the case F0 = h((1,1) is considered).
The image of Φ is the groupoid parametrizing the set of Lagrangian leaves
and is independent of (a, b). In fact, if we use the symmetrized version of the
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symplectic groupoid given in equation (3), and denote by s (resp. t) the source
(resp. target) of the quotient groupoid, then

s(λ,Op) = OB(λ/2)(p) , t(λ,Op) = OB(−λ/2)(p) (7)

and for a pair of composable elements the product is

(λ,Op) · (λ′,OB(λ)(p)) = (λ+ λ′,Op) .

The explicit form of Liouville class given above allows to check immediately
Bohr-Sommerfeld conditions: since every leaf different from the polar ones has
the topology of a cylinder S1×R2 these conditions are non trivial. They select
a subgroupoid on the action side by imposing [π∗Oλ] ∈ 2πZ to be an integer
cohomology class in H1(Φ−1(λ,O)).

Resuming all information thus acquired, symplectic groupoid quantization
tells us that the groupoid quantization of the Poisson manifold (S3;πθ) is the
groupoid C∗-algebra:

C∗θ (S3) = C∗(Z nθ S2) ,

with respect to an irrational rotation action of angle θ on each parallel. In the
next section we will analyze it from a C∗-algebraic point of view.

It has to be remarked that a different approach to groupoid quantization for
a family of toric manifolds, including the one considered here, was developed
by Cadet in [4]. It would be interesting to connect the two approaches in a
rigorous manner.

4. Primitive ideals of C∗θ (S3)

Now that we have obtained a quantization of (S3, πθ) as a groupoid C∗-algebra
we are in a position to understand how orbits and isotropy of this groupoid
are related to its primitive ideals. The bad piece of news is the fact that since
the orbit space is not even a T0 space (a consequence of the fact that irrational
orbits are dense on parallel circles) the corresponding C∗ algebra is not even
postliminal and its unitary dual does not coincide with the topological space of
primitive ideals ([7]). It, hence, will be Prim C∗(Znθ S2) the target of the orbit
correspondence. The good news is that our C∗-algebra is the transformation
group C∗-algebra of an abelian group, Z, acting on a compact Hausdorff space:
and this is a fairly well understood situation.

From general C∗-algebra theory it is known that for any given point γ in
the unit space and any representation (ργ ,Hγ) of the isotropy subgroup Σγγ
it is possible to induce a representation of the whole groupoid on a suitable
Hilbert space completion of Cc(Σγγ)⊗Hγ .

For the specific case of transformation group C∗ algebras, all irreducible
unitary representations are induced by isotropy subgroups: such groupoid C∗
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algebras are sometimes called EH-regular. Furthermore the induction corre-
spondence allows to establish a topological description of the space of primi-
tive ideals. From [25, Theorem 8.39] (see also [24]) one gets that the induction
map is a homeomorphism between a certain quotient space of S2 × S1 and
Prim(Zn S2). On the space S2 × Ẑ ' S2 × S1, with its natural product topol-
ogy, in fact, the following equivalence relation can be considered:

(p, φ) ' (q, ψ) ⇐⇒

{
Z · p = Z · q if Gp = Gq = 0

p = q if Gp 6= 0 6= Gq

where Gp stands for the isotropy group of p. Since all orbits on level sets of S2

are dense, by an easy comparison with the content of Section 2 we can therefore
conclude the following.

Proposition 4.1. The primitive ideal space of C∗(S3
θ) is homeomorphic to the

leaf space of the Poisson manifold (S3; θ).

The same conclusion can also be derived by considering so-called Renault’s
disintegration theorem ([18]) which says that for any closed invariant subset X
of the unit space there exists an exact sequence of C∗-algebras

0→ C∗(Σ
∣∣
Xc)→ C∗(Σ)→ C∗(Σ

∣∣
X

)→ 0

and furthermore any irreducible unitary representation factors through such a
C∗-algebra C∗(Σ

∣∣
X

). By considering, then the closure Xt = Z · p of orbits of
points of height t one immediatly has:

• C∗(Σ
∣∣
Xt

) ' C∗(Z nθ S1) ' C∗(T2
θ) which has one-point primitive ideal

space;

• For every t ∈ [−1, 1] there is a decomposition:

0→ C∗(Σ
∣∣
Xc

t
)→ C∗(Σ)→ C∗(T2

θ)→ 0

• There are two S1 families of characters corresponding to isotropy of North
and South pole X±1 (Hopf link);

• Jacobson topology on Prim(C∗(Z n S2)) is of the form S1 × [−1, 1]/ '
where the equivalence relation is given by

(ϕ, t) ' (ψ, s) ⇐⇒ t = s 6= 0, 1 .
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t = 1 circle of 0-dim. leaves

t = 1/2 toric 2-dim. leaf

t = 0 toric leaf– gluing

t = −1/2 toric 2-dim leaf

t = −1 circle of 0-dim. leaves

Here the interval [−1, 1] just plays the role of the T0-ization of the space of
Z-orbits in S2. This quotient space is immediately identified with the corre-
sponding space of leaves of the underlying Poisson manifold described at the
end of Section 2. The above decomposition of the CLM 3-sphere C∗-algebra
can be considered a non commutative analogue of the Hopf fibration and as
such was earlier introduced in [15].

5. A different point of view: Dirac structures

In this section we will give some ideas on how to generalize results in [20] to
the case of CLM 3-sphere. Details are postponed to future work where we plan
to deal with the more general case of locally abelian Poisson manifolds which
fits into the same scheme.

Let us consider a right invariant Dirac structure Γ on the torus such that
Γ ∩ TT2 = 〈−θ∂φ1

+ ∂φ2
〉. The distribution thus determined, written also as

CΓ in what follows, is also called the characteristic distribution of Γ.
A canonical choice of Dirac structure on the product manifold T2 × S3 is

then Γ ⊕ T ∗S3. Since such subbundle is transversal to all isotropy groups of
the T2-action on S3, it projects to a well defined Dirac structure Γ̂ on S3,
according to [10, Proposition 4]. Explicitely the projected subbundle Γ̂ is the
Dirac structure generated in Hopf coordinates by −θ∂ξ1 + ∂ξ2 , dξ1 + θdξ2 and
dη. Let Cθ be its characteristic distribution.

Let us fix a subalgebra h(a,b), with (a, b) ∈ Q2 \ (0, 0) (and therefore a
Lagrangian multiplicative polarization) as in Section 3. This is equivalent to
the choice of a 1-dimensional rational complement of Cθ inside t2. If H(a,b) is
the subtorus integrating h(a,b) then S2 ' S3/H(a,b) corresponds to the choice
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of a complete transversal to the characteristic foliation on S3. In general the
Dirac structure Γ̂ should induce a Poisson structure on this quotient, but by
dimensional reasons, since the rank of this Poisson structure is bounded above
by dimC(Γ) = 1, it turns out to be trivial.

The action groupoid on the 3-sphere when restricted and projected to S2 is
nothing but the transformation groupoid ZnθS2, with action given by irational
rotations on parallels. From this point of view the crossed product C∗-algebra
can both be seen as the result of groupoid quantization, as explained in Sec-
tion 3, and as the result of Dirac quantization of Γ̂ on S3, as proposed in [20].

Exactly the same proof as in [20], in the easy case in which the transverse
Poisson structure on S2 is zero, allows to conclude that the Morita equivalence
class of the quantization does not depend on the choice of transversal, i.e.
it does not depend on the choice of the Lagrangian polarization, as long as
it is determined by a rational complement of C(Γ) in t2. Furthermore [20,
Theorem 4.1.] still holds in this context, i.e. there is a well defined O(2, 2;Z)
action on the set of (T2-invariant) Dirac structures on S3 leaving the Morita
equivalence class of the quantization unaltered.

6. Conclusions

As briefly mentioned before, Connes-Landi 3-sphere is but a specific example of
a whole class of Poisson manifolds, called locally abelian in [11], which depend
on the choice of an invariant Poisson structure on Tk (determined by an anti-
symmetric matrix θ ∈ so(k;R)) and a torus action Tk×M →M on a manifold
M . The symplectic groupoid quantization for Poisson manifolds of this type is
quite well understood ([11]) and an analysis of the general case, from the point
of view of orbit method, is under preparation.

The discrepancy between the unitary dual and the primitive ideal space,
which holds also in these cases, raises the question of which kind of Poisson
data, richer than the plain symplectic foliation, can detect irreps of the C∗-
algebra. We give indications on how a generalization of the concept of rigged
orbits (see [1] for the classical case) find a natural interpretation in the setting
of groupoid quantization. A more detailed program on how to develop this
approach can be found in [6].

The example we consider here is somewhat complementary to the one in [5];
there the symplectic integration and geometric quantization (with singularities
appearing in the Lagrangian distribution, as explained in [3]) are the main ob-
stacles. Since the resulting groupoid C∗-algebra however has a nicely behaved
T0 orbit space the correspondence between groupoid orbits and unitary dual is
easily understood.

The fact that such different cases both verifies a quantum orbit correspon-
dence is a good indicator that such a correspondence should hold under pretty
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general conditions. Let us remark that the general quantum orbit method as
proved via quantum groups in [17] covers the case of those Poisson homoge-
neous spaces which are quotient by a Poisson subgroup of the standard compact
Poisson-Lie group. Since the Poisson CLM-sphere can be seen as a quotient
of a non standard Poisson-Lie group structure by a coisotropic subgroup [21]
it is tempting to foresee that the class of Poisson manifolds for which such
result can hold should include all coisotropic quotients of Poisson-Lie compact
groups.
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