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Abstract. In this note we show that the octagon Farey map introduced
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1. Introduction

The theory of continued fractions is a beautiful page of mathematics which
connects number theory, (hyperbolic) geometry and dynamical systems. Given
a number α ∈ R, its continued fraction expansion is an expression of the form

α = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + . . .

,

where a0 ∈ Z and ai ∈ N, for i 6= 0. The rational approximations pn/qn =
[a0; a1, . . . , an] obtained by truncating the continued fraction at level n are
called convergents and are the best approximations to the number α, among
the ones with denominator bounded by qn. Subtracting the integer part of α,
we can assume that α ∈ [0, 1]. The continued fraction of α can then be obtained
from the itinerary of the Gauss map G(x) =

{
1
x

}
on (0, 1] and G(0) = 0, where

{·} denotes the fractional part

ai = n ⇐⇒ Gi−1(x) ∈
(

1

n+ 1
,

1

n

]
.

The continued fraction algorithm can be also realized in a geometric fashion
in the following way, see the introduction of [2] for more details. Having chosen
α ∈ R+ \ Q, we draw the line in direction (α, 1). Then we consider the basis
of Z2 given by the vectors e−2 = (0, 1) and e−1 = (1, 0). Note that the line in
direction (α, 1) is contained in the cone generated by the vectors e−1 and e−2.
At each step n ≥ 0, we are going to replace en−2 with a new vector en obtained
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Figure 1: The geometric construction of the convergents of α ∈ R+.

by adding to the vector en−2 the vector en−1 as many times as we can without
crossing the line in direction (α, 1), see Figure 1. In other words

en = anen−1 + en−2.

This shows that, after the step n = 1 when we have replaced both our starting
vectors, the algorithm is selecting the points in the integer lattice Z2 that are
the closest ones to the line (α, 1) up to their given height. Moreover, it follows
from the construction that at each step en and en−1 form a basis of Z2 and
that the line in direction (α, 1) is contained in the cone generated by them.

One can show that this procedure produces the continued fraction of α =
[a0; a1, . . . ] and that, if en = (pn, qn), then pn/qn is the nth convergent to α.

It is worth to mention that intermediate vectors of the form ien−1 + en−2,
for i = 1, . . . , an − 1 are also of interest. In fact they yield the additive contin-
ued fraction convergents, that is the ones produced by the Farey map, whose
acceleration gives the Gauss map itself. These intermediate convergents are
called approximations of the first kind in the literature, see [4].

It is well-known that the classical continued fraction algorithm acts as a
renormalizing operator on irrational rotations of the unit interval. It is easy
to see that the induced transformation on a Poincaré section of the geodesic
flow in an irrational direction on the flat torus T2 = R2/Z2 is an irrational
rotation. Hence, one can use the Gauss map to renormalize the geodesic flow
on the flat torus. From a different point of view, the continued fraction arises
from a Poincaré section for the geodesic flow on the moduli space of flat tori,
which is (the unit tangle bundle to) a hyperbolic surface, see [7].

Translation surfaces are higher genus analogues of flat tori, defined by gluing
a set of polygons in the plane via translations, see Section 2. Translation
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surfaces carry a Euclidean structure, hence the geodesic flow on any such surface
is given, as in the case of the torus, by a straightline flow in a fixed direction. It
is easy to see that the first return map to a transversal for the straightline flow
is an interval exchange transformation, which are a generalization of rotations.

It is natural to generalize the theory of continued fractions to translation
surfaces. One way to do this is via Rauzy-Veech induction on interval exchange
transformations, see [12, 13]. Another point of view, which is a direct gener-
alization of the flat geometric point of view on continued fraction described at
the beginning of this introduction, has been taken by Delecroix and Ulcigrai
in [2] and their diagonal changes algorithm for translation surfaces living in the
hyperelliptic component. We will recall the basic definitions of diagonal changes
in Section 4 below.

A particular family of translation surface is the one of Veech surfaces (also
called lattice surfaces), originally discovered in [11]. Examples of Veech surfaces
are the surfaces obtained from gluing opposite sides of a regular 2n-gon in the
plane by translation. By definition, the moduli space of affine deformations of
a Veech surface is also (the unit tangle bundle to) a hyperbolic surface. Hence,
one can use methods inspired by hyperbolic geometry, such as the classical ones
by Bowen and Series in [1, 8], to code the geodesic on the moduli space of affine
deformations of a Veech surface and deduce a continued fraction algorithm from
this construction.

Using this point of view Smillie and Ulcigrai have introduced in [9, 10] a
continued fraction algorithm for the translation surface obtained from the reg-
ular octagon (and more generally for all regular 2n-gons). Their algorithm can
be used to study the straightline flow on the regular octagon from a symbolic
point of view, and comes from a particular section of the geodesic flow on the
moduli space of affine deformations of the regular octagon. A nice feature of
their algorithm is that, unlike the ones defined by Bowen and Series, behaves
as a full shift on 7 symbols, apart from the first move.

On the surface obtained by gluing opposite sides of a regular octagon in
the plane by translation, both the diagonal changes algorithm and the Smillie-
Ulcigrai algorithm can be used. Since they are both generalization of the
classical continued fraction algorithm on the torus, it is natural to ask whether
they are related or not. The content of this note is to show that indeed they
are.

Theorem 1.1. The octagon additive continued fraction algorithm defined in
[10] is an acceleration of the diagonal changes algorithm for the octagon itself.

Since, as we remarked above, the continued fraction on the octagon is
morally a full-shift, this result allows, to a great extent, to bypass the combi-
natorial complexity of the diagonal changes algorithm, restricting the analysis
to a family of loops in the graph of the induction corresponding to the basic
moves of the Smillie-Ulcigrai algorithm.
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Before concluding this introduction, let us comment on our main result.
The Smillie-Ulcigrai algorithm can be defined also on the surfaces obtained
by gluing a regular 2n-gon, forn n ≥ 3. On these surfaces, one can perform
diagonal changes as well. The analogue of Theorem 1.1 remains true for regular
2n-gon. Similarly to the treatment given in [10], we decided to focus on the
case of the octagon in the spirit of concreteness and clarity of exposition, since
in this case we can deduce our result by simple geometric considerations. At
the end of this paper we briefly sketch how one can generalize our main result
to the case of general 2n-gons.

We remark that is an open question to characterize the behavior of diagonal
changes on a Veech surface.

Organization of the paper

In Section 2 we recall the definitions we need about translation surfaces. Then
we proceed to describe the additive continued fraction algorithm defined in [9,
10]. In Section 4 we recall the definitions for diagonal changes, and we give
a different combinatorial description for the octagon, which is more suited for
our discussions. Finally in Section 5 we show Theorem 1.1 and in Section 6
we sketch how to generalize this result to the more general situation of regular
2n-gons. The drawings needed are included in an Appendix at the end of the
document.

2. Definitions

We now introduce the basic definitions on translations surfaces which will be
needed in the next sections. General reference on the subject are [3, 6, 13].

A compact translation surfaces is a finite collection of polygons {P1, . . . , Pn}
embedded in the plane R2 ∼= C together with side identifications as follows.
Every side si ∈ Pi is identified with a unique side sj ∈ Pj such that the sides si
and sj are parallel and have the same length. Moreover, the outward pointing
normal vectors with respect to the two sides point in opposite directions. We
then identify the sides si and sj by translations. We denote by X the surface
obtained after performing all the gluing.

We remark that the presentation of a translation surface as a collection
of polygons is not canonical. In fact, two collections that differ by cut and
paste yield the same surface. More precisely, a “cut” operation means cut-
ting some polygon(s) along a straight line connecting two vertices, record-
ing in the new collection of polygons that those sides that have been created
are identified in the quotient; a “paste” operation corresponds to gluing some
polygons along sides that are identified in the quotient. Two translation sur-
faces X = {P1, . . . , Pn} and X ′ = {P ′1, . . . , P ′m} are isomorphic if there exists
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a (finite) sequence of cut and paste operation that transforms the colletion
{P1, . . . , Pn} into {P ′1, . . . , P ′m}, with the appropriate side identifications. Cut
and paste operations are at the heart of the diagonal changes algorithm, which
will be described in Section 4

The surface X inherits the Euclidean structure from R2 everywhere except
in a finite set S , which is contained in the image of the vertices of the polygons.
These points are called conical singularities. Around a point s ∈ S the total
angle is 2π(ks + 1) for ks ∈ N. One has the following Gauss-Bonnet formula
for the flat metric on the surface:

2g − 2 =
∑
s∈S

ks,

where g is the genus of the surface X.

The collection of translation surfaces with the same topology, that is number
of singularities and value of conical angle around each of them (and hence the
same genus), is called a stratum and is denoted H(k1, . . . , kn). One can show
that strata are complex orbifold, not necessarily connected.

Thanks to the Euclidean structure on X, for every angle θ ∈ S1 we have a
well-defined concept of linear flow in direction θ, which is given in charts by
following lines in direction θ on X. The orbit of a point under the linear flow
in direction θ is a geodesic for the flat metric on X. A trajectory of the linear
flow that connects two (not necessarily distinct) singularities and contains no
singularities in its interior is called a saddle connection. To a saddle connec-
tion we can associate a displacement vector (often called holonomy vector), by
developing the saddle connection to the plane R2 and taking the difference of
its endpoints. In the following, for simplicity, we will often identify saddle con-
nections with their respective displacement vector. A separatrix is a trajectory
of the linear flow with only one of its endpoints in a singularity.

There is a natural action by affine diffeomorphisms of GL(2,R) on trans-
lation surfaces, given by acting on the polygons that constitute the surface by
linear transformations. As the action of GL(2,R) preserves parallelism, this
descents to an action on the surface itself. One can show that the action is
continuous on each stratum (with respect to the orbifold topology). The group
of affine diffeomorphisms of a translation surface is called the Veech group of X.
The Veech group is a discrete subgroup of SL±(2,R), the matrices with deter-
minant equal to ±1. A surface is called a Veech surface if its Veech group is
a lattice inside SL±(2,R). We remark that we will allow orientation reversing
affine diffeomorphisms, as this will allow to use the full dihedral group of the
regular octagon in Section 3.
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3. The octagon Farey map

In this section we will recall the definition of the octagon Farey map. Our
presentation will closely follow the one given in [9].

Let O ⊂ C be a regular octagon. We will use X = XO to denote the
translation surface obtained by gluing opposite parallel sides of the octagon.
This surface has genus 2 and a single conical singularity of order 6π, coming
from the image of the vertices of O, hence it belongs to the stratum H(2).

Let D8 ∈ GL(2,R) the dihedral group of O, that is the full group of symme-
tries of the regular octagon. The octagon Farey map will act as a renormaliza-
tion operator on S1, the space of directions of trajectories. Since − id ∈ D8, we
can restrict our analysis to the upper half Σ+ of S1. More precisely Σ+ is the
part corresponding to complex numbers with positive imaginary part. As we
are thinking of S1 as the space of directions, it is more convenient to use angle
coordinates θ ∈ [0, 2π) to parametrize points z = eiθ. In other words the angle
θ corresponds to the unit vector (cos θ, sin θ) in R2. In this coordinates, Σ+

corresponds to θ ∈ [0, π]. Another coordinate we are going to use is the inverse
slope coordinate u on Σ+ given by u = cot(θ). It is natural in this context
to extend u to a map from Σ+ to RP1 = R ∪ {∞} sending the endpoints of
Σ+ to the point at infinity. This coordinate is helpful for us since it allows to
conveniently express the action of GL(2,R) on S1 simply by Möbius maps in
the u coordinate.

We divide Σ+ into 8 sectors Σj =
{
θ ∈ S : jπ

8 ≤ θ ≤
(j+1)π

8

}
, for i =

0, . . . , 7. The sector Σ0 is a fundamental domain for the action of D8 on Σ+.
We denote by νj ∈ D8 the element mapping linearly each sector Σj onto Σ0.
One can check that these elements are

ν0 =

(
1 0
0 1

)
, ν1 =

(
1√
2

1√
2

1√
2
− 1√

2

)
, ν2 =

(
1√
2

1√
2

− 1√
2

1√
2

)
, ν3 =

(
0 1
1 0

)
,

ν4 =

(
0 1
−1 0

)
, ν5 =

(
− 1√

2
1√
2

1√
2

1√
2

)
, ν6 =

(
− 1√

2
1√
2

− 1√
2
− 1√

2

)
, ν7 =

(
−1 0
0 1

)
.

Using these maps, we define a folding map fold : Σ+ → Σ0 that sends a point
θ ∈ Σj to the point νj(θ) with the linear action of νj on the corresponding
unit vector (cos θ, sin θ). The different branches of fold agree on the common
endpoints and hence we see that fold is a continuous, piecewise linear, map.

Consider now the element

γ =

(
−1 2(1 +

√
(2))

0 1

)
.

One can show that γ and D8 generate the whole Veech group of X. We remark
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Figure 2: The octagon Farey map in angle coordinates.

that γ2 = id. If we denote with Σ = Σ1 ∪ · · · ∪ Σ7, we see that γ maps Σ0 to
Σ, and vice versa, reversing the orientation.

Call Fi : Σi → RP1 the map induced by γνi. We define the octagon Farey
map F : RP1 → RP1 to be the map that acts on directions belonging to the
sector Σi as Fi. In other words F = γ ◦ fold, see Figure 2. This, in turn, implies
that F is a continuous map. As we said above, the action of F is expressed in
the inverse slope coordinate u simply by Möbius transformation: if u ∈ Σi we
have

F (u) = γνi ∗ u =
au+ b

cu+ d
, where γνi =

(
a b
c d

)
The action in the angle coordinate is obtained by conjugation with cot. In

the θ coordinate the map F is expanding at every point, except at the endpoints
of each sector, but the amount of expansion is not uniform and tends to one
at the endpoints of each sector. Since all Fi are monotonic, we can define their
inverses F−1i : Σ→ Σi, for i = 0, . . . , 7.

We are now ready to recall the definition of an additive continued fraction
algorithm, exploiting the map F . Take a direction θ ∈ [0, π] and record its
itinerary {sk}k∈N under the map F . In other words, we write sk = j if and
only if F k(θ) ∈ Σj . This itinerary is unique if F k(θ) never coincides with
the endpoint of two sectors. We remark that, as the image of F is contained
in Σ, only s0 can be 0. On the other hand, given a sequence {sk}k∈N of
entries 0, . . . , 7 such that sk = 0 implies k = 0, we consider the intersection
∩k∈NF−1s0 F

−1
s1 . . . F−1sk

[π8 , π]. One can show that the intersection is non empty
and consists of only one point. We hence write

θ = [s0; s1, s2, . . . ]O :=
⋂
k∈N

F−1s0 F
−1
s1 . . . F−1sk

[π
8
, π
]
, (1)

for an octagon Farey expansion of θ.
One direction θ can have at most two expansions. In fact, let us call termi-

nating a direction whose continued fraction entries sk are eventually all 1 or 7.
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Then, all points that are not endpoints of a sector Σj have a unique expansion.
More precisely, the two sequences (. . . , sk, 1, 1, 1, . . .) and (. . . , sk+1, 1, 1, 1, . . .)
correspond to the same direction if sk is even and (. . . , sk, 7, 7, 7, . . .) and
(. . . , sk + 1, 7, 7, 7, . . .) correspond to the same direction if sk is odd. Finally 0
corresponds to [0; 7, 7, 7, . . .]O and π = [7; 7, 7, 7, . . .]O.

Since each γνi maps the corresponding sector Σi onto Σ, we want to think
of the octagon Farey map F as a renormalization scheme acting on directions
θ ∈ [0, π]. To illustrate what we mean by this, let us consider a direction θ and
let us suppose that its first entry in the octagon Farey expansion is not zero.
Then θ belongs to some Σi ⊂ Σ. Apply F to θ hence corresponds to apply the
map Fi = γνi, which opens up the sector Σi onto the union of possible sectors
Σ. By construction, F (θ) still belongs to Σ. Moreover, it is clear from (1)
that F acts on the Farey expansion of θ as a left shift. In other words, if
θ = [s0; s1, s2, . . .]O then F (θ) = [s1; s2, s3, . . .]O.

In the following, given a direction θ = [s0; s1, s2, . . .]O, we will abuse the
notation and continue to call the octagon Farey map the sequence of affine
diffeomorphisms given by the octagon continued fraction expansion of θ.

4. The diagonal changes algorithm

4.1. Basic definitions

We are now going to recall the basic definitions of the diagonal changes algo-
rithm, as defined in [2]. For more details and for applications of this algorithm
we refer the reader to their original paper.

The diagonal changes algorithm produces a sequence of saddle connections
which approximate a given direction θ ∈ S1. These saddle connections from a
wedge, in the following sense.

Definition 4.1 (Wedges). A wedge w on a translation surface X is a pair of
saddle connections w = (wl, wr) such that:

1. wl and wr start from the same conical singularity of X;

2. wl and wr are oriented so that Im(wl), Im(wr) ≥ 0;

3. wl is left-slanted (i.e., Re(wl) < 0) and wr is right-slanted (i.e., Re(wr) >
0);

4. (wl, wr) consist of two edges of an embedded triangle in X.

A quadrilateral q in X is the image of an isometrically embedded quadri-
lateral in C so that the vertices are singularities of X, and q contains no other
singularities.
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Definition 4.2 (Admissible quadrangulation). A quadrilateral q in X is ad-
missible if left-slanted and right-slanted saddle connections alternate while we
turn around the quadrilateral.

A quadrangulation Q of X is a decomposition of X into a union of admis-
sible quadrilaterals.

Given a quadrilateral q ∈ Q, let us call the saddle connections that start
from the same singularity the bottom sides of q and the ones that end on
the same singularities the top sides. We remark that the bottom sides of an
admissible quadrilateral, such as one in a quadrangulation of X, form a wedge
in the sense of the above definition, which we will call the base wedge of q.

Let q be an admissible quadrilateral and w = (wl, wr) its base wedge. We
say that a q is left-slanted if its diagonal is right-slanted. Equivalently, the
outgoing vertical separatrix contained in the base wedge of the quadrilateral
crosses the top left side. Similarly, we say that a q is right-slanted if its diagonal
is left-slanted.

A diagonal change in an admissible quadrilateral q consists in replacing the
base wedge w with a new one. More precisely, if q is left-slanted the new base
wedge will be w′ = (wl, wd), where wd is the diagonal of q itself. Similarly, if q
is right-slanted, the new base wedge will be w′ = (wd, wr). Remark that in both
cases, thanks to our assumption on the slantedness of q the new base wedge
still contains a vertical outgoing separatrix. To coherently combine diagonal
changes in different quadrilaterals, we will need one more geometrical definition.

Definition 4.3 (Staircases). Given a quadrangulation Q of X a left staircase
S for Q (respectively a right staircase S for Q) is a subset S ⊂ X which is the
union of quadrilaterals q1, . . . , qn of Q that are cyclically glued so that the top
left (resp. top right) side of qi is identified with the bottom right (resp. bottom
left) side of qi+1 for 1 ≤ i < n and of q1 for i = n.

A left (respectively right) staircase S is well slanted if all its quadrilaterals
are left (resp. right) slanted.

Definition 4.4 (Staircase move). Given a quadrangulation Q and a well-
slanted left staircase (respectively a well-slanted right staircase) S, the staircase
move in X is the operation which consists in doing simultaneously left (resp.
right) diagonal changes in all the quadrilaterals of X.

Having given the basic definitions of the diagonal changes algorithm, we
now proceed describing the formalism used to encode it.

Definition 4.5 (Combinatorial datum). Let Q be a quadrangulation of k quad-
rilaterals. Let qi denote the quadrilateral labeled by i ∈ {1, . . . , k}. The com-
binatorial datum π = πQ of the labeled quadrangulation Q is a pair (πl, πr) of
permutations of {1, . . . , k} such that:
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1. for each 1 ≤ i ≤ k, the top left side of qi is glued with the bottom right
side of qπl(i);

2. for each 1 ≤ i ≤ k, the top right side of qi is glued with the bottom left
side of qπr(i);

We remark that, since wi,l and wπl(i),r are the left sides of the quadrilateral
qi and wi,r and wπr(i),l are its right sides, we have

wi,l + wπl(i),r = wi,r + wπr(i),l, for 1 ≤ i ≤ k. (2)

These equations are called train-track relations.
Conversely, we can construct a surface with an admissible quadrangulation,

starting with a pair of permutations of k elements π = (πl, πr) and a length
datum

w = ((w1,l, w1,r), . . . , (wk,l, wk,r)) ∈ ((R− × R+)× (R+ × R+))k,

where R− = { t ∈ R : t < 0 } and R+ = { t ∈ R : t ≥ 0 }. If w satisfies the train-
track relations (2) we can build a labeled quadrangulation Q that we denote
(π,w).

We remark that in [2], horizontal vectors are not allowed in a quadrangu-
lation, as this would not allow the definition of a backward diagonal changes
algorithm However, since we will only use the algorithm forward it will be
useful to allow for horizontal saddle connections in the quadrangulation.

4.2. Moves and matrices

Let Q = (π,w) be a labeled quadrangulation. For each quadrilateral qi ∈ Q,
let (wi,l, wi,r) be its base wedge and call wd its diagonal, given by

wi,d = wi,l + wπl(i),r = wi,r + wπr(i),l,

where the equality holds thanks to (2). Given a cycle c of a permutation πr the
corresponding staircase Sc formed by the quadrilaterals labeled by the elements
of c is well-slanted only if Re(wi,d) < 0 for all i ∈ c, and similarly if c is a cycle
of πl.

Starting from a cycle c of πr, if its staircase Sc is well-slanted, we can
perform a staircase diagonal change as in Section 4.4. The new length data w′
is given by

w′i =

{
(wi,d, wi,r), if i ∈ c;
wi, otherwise.
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The new combinatorial datum π′ = (π′l, π
′
r) of the new quadrangulation Q′ is

given by

π′l(i) =

{
πl ◦ πr(i), if i ∈ c;
πl(i), otherwise.

and π′r = πr. (3)

Similarly, if c is a cycle of πl and the corresponding staircase Sc is well-
slanted, the new quadrangulation Q′ = (π′, w′) will be given by

w′i =

{
(wi,l, wi,d), if i ∈ c;
wi, otherwise.

and

π′r(i) =

{
πr ◦ πl(i), if i ∈ c;
πr(i), otherwise.

and π′l = πl. (4)

We remark that the operation on the combinatorial datum does not depend
on the length datum and that the operation on the wedges w is linear. Hence we
can write π′ = c · π, where the action is described above, and we can introduce
matrices to encode the action on the length datum. These matrices will be
denoted by Aπ,c ∈ SL(2k,Z). Let us index the rows and columns of Aπ,c with
(1, l), (1, r), . . . , (k, l), (k, r). Denote I2k the 2k × 2k identity matrix and for
1 ≤ i, j ≤ k, and ε, ν ∈ {l, r} let E(i,ε),(j,ν) be the 2k × 2k matrix whose entry
in row (i, ε) and column (j, ν) is 1 and all the other entries are 0. We set

Aπ,c =

{
I2k +

∑
i∈cE(i,l),(πl(i),r), if c is a cycle of πr;

I2k +
∑
i∈cE(i,r),(πr(i),l), if c is a cycle of πl.

(5)

Let us summarize the previous discussion.

Lemma 4.6 (Staircase move on data). Given a labeled quadrangulation Q =
(π,w) and a cycle c of π, if the staircase Sc is well slanted, when performing
the staircase move in Sc on Q one obtains a new labeled quadrangulation Q′ =
(π′, w′) with

π′ = c · π, w′ = Aπ,cw,

where c · π and Aπ,c are given by Equations (3) to (5).

We can construct a graph describing how the combinatorial datum changes
using the moves of the diagonal changes algorithm. Following [2], we represent
in Figure 3 the graph obtained beginning from πl = (1, 2) and πr = (2, 3). One
can show that this graph represents all the possible moves for a surface in H(2),
see [2] for more details. Let us explain the notation used in it. At every vertex
we represent the permutation πl above πr. Arrows are labeled with words of
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(1, 3)(2)
(1, 3, 2)

(1, 3)(2)
(1, 2)(3)

(1, 2, 3)
(1, 2)(3)

(2, 3)(1)
(1, 3, 2)

(2, 3)(1)
(1, 3)(2)

(1, 2, 3)
(1, 3)(2)

(1, 2)(3)
(1, 3, 2)

(1, 2)(3)
(2, 3)(1)

(1, 2, 3)
(2, 3)(1)

l · l

·l·

rr·

·l·

· · r

· · r

lll·ll

l · ·

r · r

l · ·

·r· ·r·

ll·

· · l

rrr

·rr

· · l

r · · r · ·

Figure 3: The possible moves in H(2).

length k representing cycles c in the following way. If π′ is obtained from π by
a left staircase move, that is if c is a cycle for πl, then the corresponding arrow
is labeled by a word with letters in {l, ·} where the ith letter is equal l if, and
only if, i ∈ c. Similarly, if π′ is obtained from π by a right staircase move, we
use letters in {r, ·}.

4.3. A simpler description of diagonal changes in H(2)
A more convenient description, for our purposes, of diagonal changes in H(2)
is given by the following. Let us introduce a move, called symmetry, which
exchange the left and right vectors in every quadrilateral. Moreover, we allow
to relabel the wedges. The graph we obtain is drawn in Figure 4. In fact,
allowing relabeling collapses the three rows in Figure 3 into one. The symmetry
then identifies the left and right node into a single one which, along with the
central one, gives us our reduced graph.

We have introduced these extra moves for the following reasons. The oc-
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πl = (1, 2)(3)
πr = (2, 3)(1)

πl = (1, 2, 3)
πr = (2, 3)(1)

·rr

·rr

r · ·, lllr · ·, sym

Figure 4: The possible moves in H(2), up to relabeling and symmetry.

tagonal continued fraction constructed in [9] and recalled in Section 3 uses also
orientation reversing affine diffeomorphisms. Hence the symmetry is needed in
order to represent via diagonal changes that algorithm, precisely for the moves
corresponding to even numbered sectors. Moreover, since the moves of the
octagon Farey map act on the unlabeled quadrangulation of the octagon, we
need to forego that extra data, that is we have to allow for relabelings. In fact,
the (combinations of) moves of the diagonal changes that correspond to the
octagon Farey map usually begin at one vertex of the graph of possible moves
in H(2) and end at one which is different from the original one. The starting
vertex and the final one differ precisely by a relabeling. Relabeling the wedges
hence is needed to make sure that the concatenation of diagonal changes agrees
with the action of the octagon Farey map; and also allows us to combine the
moves from one step to the next.

In the basis given by {E(1,l), E(1,r), . . . , E(3,r)}, the moves in Figure 4 are
given by the following matrices.

• ·rr from the left node to the right one;

• ·rr from the right node to the left one;

• r · · (which is the same matrix in both nodes);

• lll plus relabeling;

• the left/right symmetry plus relabeling.

5. The octagon Farey map in terms of diagonal changes

In this section, we show that the octagon Farey expansion is an acceleration
of diagonal changes moves, that is we prove Theorem 1.1. Given a direction
θ = [s0; s1, s2, . . .]O, we have a well-defined sequence of maps (Fsi)si∈N. These
maps act affinely on the surface XO. As we said above, with a slight abuse of
notation, we will refer to this sequence of maps also as the octagon Farey map.
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5.1. Step 0

In the octagon Farey expansion the first entry s0 plays a special role, since it
is the only case in which we can have si = 0. By definition, after the 0 step
of the algorithm we obtain the sector F−1s0 [π/8, π] = Σs0 of amplitude π/8 to
which the direction θ belongs. Thus, s0 dictates the starting quadrangulation
of the surface XO.

Let Q′ be the quadrangulation in Figure 5, formed by wedges in directions
π and π/8. Applying γ to Q′ we obtain a new quadrangulation, Q, shown in
Figure 6, now in the directions π/8 and 0, with inverted orientation. Then the
beginning quadrangulation of XO is Q0 = ν−1s0 Q = F−1s0 Q

′.

5.2. Further steps

We now describe how to translate the induced action of the octagon Farey
expansion in terms of diagonal changes. We remark that, as s0 dictates the
starting quadrangulation, and the other si only take values from 1 to 7, we
only have to translate these seven cases.

Renormalizing, we apply the map Fs0 to the octagon. As the octagon Farey
map acts by a shift, we are now approximating the direction θ(1) = F (θ) =
[s1; s2, . . .]O. By our choice of initial quadrangulation, we have to produce the
wedges bounding the sector Σs1 to which θ(1) belongs, representing them as
linear combinations of the ones in the quadrangulation Fs0Q0 = Q′.

Having done this first step, we now renormalize once again, and apply the
map Fs1 to the surface. Thus, we are back to approximating the direction
θ(2) = Fs1(θ(1)) with respect to the quadrangulation obtained after the diag-
onal changes and having undone them by applying the Farey map. In other
words, we have to approximate a direction in [π/8, π] with respect to the quad-
rangulation Q′, as we just did.
Remark 5.1: Another natural choice for a starting quadrangulation would be
to begin with the quadrangulation Q̃ made by the rectangle in the middle of the
octagon and by the two trapezes at the top and at the bottom. Then we would
apply the map ν−1s0 to it and obtain our starting quadrangulation of the octagon.
Since γ is the composition of a Dehn twist in the horizontal cylinder and the

q2q1

q3

w1,l w2,l

w3,l

w2,r w1,r w2,r

w3,r w3,r

w2,l

w1,l

Figure 5: The quadrangulation Q′ of the regular octagon.
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q2q1

q3

w1,r w2,r

w3,r

w2,l w1,l w2,l

w3,l w3,l

w2,r

w1,r

Figure 6: The quadrangulation Q of the regular octagon.

reflection with respect to vertical line, the renormalized quadrangulation γQ̃ is
wider than Q′. This quadrangulation is a configuration as the one in the right
of Figure 4. Hence, we can apply the moves ·rr and r · · to γQ̃ and go back to
our configuration Q′.

We now proceed to list the sequences of diagonal changes moves which
produce the wedges bounding the sectors Σi starting from the quadrangulation
Q′, thus completing the proof of Theorem 1.1.

In order to perform diagonal changes, we label quadrilaterals in Q′ so that
the combinatorial datum π is given by

πl = (1, 2)(3), and πr = (1)(2, 3).

Let us remark once again that we will use diagonal changes to approximate the
direction θ = [s1; s2, . . .]O and not the vertical one. Figures that represent the
movements can be found at the end of the document, see Appendix A for some
comments about them.

1. First sector
(
π
8 ≤ θ ≤

2π
8

)
: ·rr, r · ·, ·rr, see Figure 8. Hence:

A1 =


1 0 0 1 0 0
0 1 0 0 0 0
0 1 1 0 0 1
0 0 0 1 0 0
0 1 0 0 1 1
0 0 0 0 0 1

 .

2. Second sector
(
2π
8 ≤ θ ≤ 3π

8

)
: ·rr, lll, r · r, ·r·, symmetry, see Figure 9.

Hence:

A2 =


1 1 0 0 0 0
1 0 0 1 1 1
0 1 1 0 0 1
1 1 0 0 1 1
0 0 0 1 1 1
0 2 2 0 0 1

 .
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3. Third sector
(
3π
8 ≤ θ ≤

4π
8

)
: ·rr, lll, lll, ·rr, see Figure 10. Hence:

A3 =


0 0 0 0 1 1
1 1 1 0 0 1
1 1 1 1 1 1
1 1 0 0 1 1
1 2 2 0 0 1
0 1 1 1 1 1

 .

4. Fourth sector
(
4π
8 ≤ θ ≤ 5π

8

)
: · · l, ·rr, ·rr, ll·, ll·, r · ·, symmetry, see

Figure 11.

These moves correspond in the reduced graph to: symmetry, r · ·, sym-
metry, ·rr, ·rr, symmetry ·rr, ·rr, symmetry, r · ·, symmetry. Hence:

A4 =


0 0 1 0 0 1
0 1 1 0 1 1
1 1 1 1 1 1
0 1 2 0 0 1
1 2 1 0 1 1
2 1 1 1 1 1

 .

5. Fifth sector
(
5π
8 ≤ θ ≤

6π
8

)
: · · l, ·rr, lll, r · r, l · ·, see Figure 12.

These moves correspond in the reduced graph to: symmetry, r · ·, sym-
metry, ·rr, lll, ·rr, symmetry, r · ·, symmetry. Hence:

A5 =


0 1 1 0 0 0
0 0 1 1 1 1
1 1 1 0 1 1
0 1 2 0 0 1
1 0 1 1 1 1
2 2 1 0 1 1

 .

6. Sixth sector
(
6π
8 ≤ θ ≤

7π
8

)
: ll·, · · l, rrr, l · l, see Figure 13.

These moves correspond in the reduced graph to: symmetry, ·rr, r · ·, lll,
·rr. Hence:

A6 =


0 0 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 1
1 0 0 1 1 0
1 1 2 0 0 1
0 0 1 0 1 1

 .
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7. Seventh sector
(
7π
8 ≤ θ ≤ π

)
: ll·, · · l, ll·, · · l, see Figure 14.

These moves correspond in the reduced graph to: symmetry, ·rr, r · ·, ·rr,
r · ·, symmetry. Hence:

A7 =


1 0 0 0 0 0
1 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 1 0
0 0 0 0 1 0
0 0 2 0 0 1

 .

6. Regular 2n-gons

In the introduction we sketched how diagonal changes are related to the classical
continued fraction algorithm on the torus. The central part of this paper was
devoted to the octagon. In this section we briefly sketch how for regular 2n-gons
for n ≥ 3.

6.1. 2n-gon Farey expansion
We denote with X2n the surface obtained after gluing opposite sides of the
regular 2n-gon. The cases when n = 2k is even and n = 2k + 1 is odd are
slightly different. In the first case, X2n has only one conical singularity of total
angle 2(n − 1)π and hence lies in H(n − 2). If n = 2k + 1, the surface has 2
singularities, resulting after identifications of half the vertices of the 2n-gon.
Each of the singularity is of 2kπ = (n− 1)π, and the corresponding stratum is
H
(
n−3
2 , n−32

)
. An example of this can be seen in Figure 7.

The dihedral group D2n of the regular 2n-gon is generated by the horizontal
reflection α(n) and the reflection β(n) with respect to the line at angle π/2n
with the horizontal line. For i = 0, . . . , n − 1 we can construct 2n angular
sectors of amplitude π

2n :

Σ
(n)

i =

{
θ ∈ S :

iπ

2n
≤ θ ≤ (i+ 1)π

2n

}
.

As before, the sector Σ
(n)

0 is a fundamental domain for the action of D2n on
Σ+. For i = 0, . . . , n, we define ν(n)i to be the element of D2n such that
ν
(n)
i Σ

(n)

i = Σ
(n)

0 . One can check that

ν
(n)
i = (α(n)β(n))i, if i is even, and ν

(n)
i = (α(n)β(n))i β(n), if i is odd.

The regular 2n-gon can be divided into k horizontal cylinders, that is max-
imal subsets foliated by periodic horizontal trajectories for the linear flow
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Figure 7: Horizontal cylinders for the regular decagon and the regular 12-gon.

on X2n, see Figure 7. By definition, the boundary of each cylinder is com-
posed of horizontal saddle connections. A cylinder is isometric to R/wZ×[0, h],
where w is the length of an horizontal trajectory inside the cylinder and h is
the height of the cylinder. The ratio w/h is called the inverse modulus of the
cylinder. If n = 2k + 1, with some simple trigonometry, one can check that
the inverse modulus is equal to µ(n) = 2 cot

(
π
2n

)
for all k cylinders. If n = 2k,

k − 1 horizontal cylinders have inverse modulus equal to µ(n) and the last one
has inverse modulus equal to µ(n)/2. In both cases, there is a globally well
defined affine diffeomorphism, which acts by a Dehn twist simultaneously on
all cylinders in X2n, whose derivative is given by

σ(n) =

(
1 2 cot

(
π
2n

)
0 1

)
.

Following [11] and [10], one can prove that the Veech group of X2n is gen-
erated by D2n and the element γ(n) given by

γ(n) = σ(n)ν(n)n =

(
−1 2 cot

(
π
2n

)
0 1

)
.

Similarly to how we described in Section 3 we can construct a 2n-gon Farey
map defined by

F (n)(θ) = cot−1(γ(n)ν
(n)
i (cot θ))

if θ ∈ Σ
(n)

i for i = 0, . . . , n − 1. Since this map is expanding inside every
sector, we can locally invert it and hence construct an associated 2n-gon Farey
expansion of θ, which is now an infinite sequence sk with s0 ∈ {0, . . . , n − 1}
and sk ∈ {1, . . . , n− 1} if k ≥ 1. This expansion is unique with the exception
of the sequences that are eventually equal to 1 or to n− 1.
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6.2. Diagonal changes for the regular 2n-gons

The regular 2n-gon is fixed by the rotation by 180 degrees with respect to its
center. This induces on the surface X2n an involution, which can be shown to
be the hyperelliptic involution. We recall that strata of translation surfaces are
not necessarily connected and that their connected components have been com-
pletely classified in [5]. Diagonal changes are defined for translation surfaces
living in the so-called hyperelliptic components, which only exists for the strata
H(g − 1, g − 1) and H(2g − 2), where g ≥ 2 is the genus of the corresponding
translation surfaces. The surface X2n always belong to such components.

We can decomposeX2n into n−1 admissible quadrilaterals, on which we can
act via the diagonal changes algorithm. However, the combinatorial complexity
of the algorithm, and with it the graph describing the combinatorial datum
under diagonal changes, similar to the one depicted in Figure 3, grows quite
rapidly. To obtain a more manageably sized graph, we can allow for relabeling
of the quadrilaterals and introduce a symmetry operation, similarly to what we
did to obtain Figure 4. We remark that, if n = 2k the symmetry operation fixes
a combinatorial datum, this is not the case if n = 2k+1. This is a consequence
of the structure of the combinatorial datum, which in turn is caused by the fact
that if k is even the central horizontal cylinder of the 2n-gon has a different
inverse modulus from the remaining ones and hence plays a special role.

One can repeat the procedure we describe in Section 5 to show that also for
a general 2n-gon the 2n-gon Farey algorithm is an acceleration of the diagonal
changes algorithm. Let us comment a bit more on this.

Given a direction θ, its first digit in the 2n-gon Farey expansion s0 dictates
the starting quadrangulation of X2n. We define Q′ the quadrangulation formed
by n− 1 quadrilaterals given by wedges in direction π and π/2n. By applying
γ(n) we obtain a quadrangulation Q formed by wedges in direction 0 and π/2n.
Then the starting quadrangulation of X2n is Q0 = (ν

(n)
s0 )−1Q = (F

(n)
s0 )−1Q′.

This quadrangulation is formed by wedges of amplitude π/2n which bound the
sector Σ

(n)

i to which the direction θ belongs.
In general, we can label Q′ so that the combinatorial datum is given by(

πl = (1, 2)(3, 4) · · · (n− 3, n− 2)(n− 1)
πr = (1)(2, 3) · · · (n− 2, n− 1)

)
, if n = 2k,

and (
πl = (1, 2)(3, 4) · · · (n− 2, n− 1)

πr = (1)(2, 3) · · · (n− 3, n− 2)(n− 1)

)
, if n = 2k + 1.

We can now renormalize by applying the map F (n)
s0 to X2n and approximate

the direction θ′ = F (n)(θ). We are now left to represent the wedges bounding
the sector Σ

(n)

si , to which θ′ belongs, in terms of the ones in Q′. In principle,
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one could repeat the analysis we carried to explicitly find the description in
terms of diagonal changes corresponding to the action on every sector of the
2n-gon Farey expansion. Unfortunately, we were not able to find a closed
combinatorial description for these moves. Nevertheless, playing with the cases
of the hexagon, octagon, decagon and dodecagon, we discovered some patterns,
which could be useful towards this kind of description.

• The moves corresponding to the first sector correspond to applying once
the right diagonal change in the quadrilateral labelled by 1, which forms
a right staircase by itself, and twice the right diagonal changes in all the
remaining right staircases.

• Similarly, but not identically, the moves corresponding to the last sec-
tor correspond to applying twice the left diagonal change in all the left
staircases.

• The moves corresponding to the middle sector Σ
(n)

n has the following
pattern:

– if n = 2k we do one left move in the quadrilateral labelled by n− 1,
we do two right moves in the staircase (n− 3, n− 2), we do two left
moves in the staircase (n − 4, n − 3), we do two right moves in the
staircase (n − 3, n − 2), . . . , we do two left moves in the staircase
(1, 2), and finally we do one right move in the quadrilateral 1.

– if n = 2k+1, the moves are as in the case when n is even, exchanging
the roles of left and right.

• The number of left moves increases by 1 when increasing the sectors, from
the first to the middle one. Similarly the number of right moves decreases
by 1 when decreasing the sectors, from the last to the middle one.

• The pattern of the moves corresponding to the sectors from 1 to n − 1
of a 2n-gon seems to pass on to the pattern of the moves corresponding
sectors for the (2n+2)-gon. Similarly for the sectors from n+1 to 2n−1.

These patterns can be seen in Tables 1 and 2, which we include to help further
investigations on this matter.
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Table 1: The moves for the regular hexagon, octagon and decagon.

Sector Hexagon Octagon Decagon

1 r·, ·r, ·r r · ·, ·rr, ·rr r · ··, ·rr·, ·rr·, · · ·r, · · ·r
2 ·r, ll, rr ·rr, lll, r · r, ·r· ·rr·, · · ·r, llll, r · r·, ·r · r
3 ·r, ll, ll, r· ·rr, lll, lll, rr· ·rr·, · · ·r, llll, llll, r · ·r, ·r · ·
4 ll, rr, l· · · l, ·rr, ·rr, ll·, ll·, r · · · · ·r, · · ll, ·rrr, ll · l, ll · l, rr · ·
5 ll, ll · · l, ·rr, lll, r · r, l · · · · ·r, · · ll, · · ll, ·rr·, ·rr·, ll · ·, ll · ·, r · ··
6 ll·, · · l, rrr, l · l · · ll, ·rrr, ·rrr, lll·, r · r·, l · ··
7 ll·, ll·, · · l, · · l · · ll, ·rrr, ll · l, r · rr, l · l·
8 · · ll, ll · ·, rrrr, l · ·l, · · l·
9 ll · ·, ll · ·, · · ll, · · ll

Table 2: The moves for the regular dodecagon.

Sector Dodecagon

1 r · · · ·, ·rr · ·, ·rr · ·, · · ·rr, · · ·rr
2 ·rr · ·, · · ·rr, lllll, r · r · ·, ·r · ·r, · · ·r·
3 ·rr · ·, · · ·rr, lllll, lllll, r · · · r, ·r · r·
4 · · ·rr, · · lll, · · r · r, ll · ll, ll · ll, r · ·r·, ·r · ··
5 · · ·rr, · · lll, · · lll, ·rrr·, ll · l·, ll · l·, rr · ··
6 · · · · l, · · ·rr, · · ·rr, · · ll·, · · ll·, ·rr · ·, ·rr · ·, ll · ··, ll · ··, r · · · ·
7 · · · · l, · · ·rr, · · lll, ·rr · r, ·rr · r, lll · ·, r · r · ·, l · · · ·
8 · · · · l, · · ll·, ·rrrr, ·rrrr, ll · ·l, r · r · r, l · l · ·
9 · · · · l, · · ll·, ·rrrr, ll · l·, r · rrr, l · · · l, · · l · ·
10 · · · · l, · · ll·, ll · ··, rrrrr, l · ·l·, · · l · l
11 ll · ··, ll · ··, · · ll·, · · ll·, · · · · l, · · · · l

A. Drawings

In the last few pages of this document we present the drawings that describe
the concatenation of diagonal changes moves needed to recover the octagon
Farey map.

Let us comment on the pictures that follows. In every picture we represent
at the top the quadrangulation Q′ together with a line in a generic direction
θ inside the appropriate sector. Then we represent the diagonal changes in
left to right, top to bottom order. In order to keep the pictures as clear as
possible, labels are kept to a minimum and we do not represent the direction
θ in the drawings of the staircases moves. Let us remark once again that we
will use diagonal changes to approximate the direction θ and not the vertical
one. With this caveat, the reader can check that all the moves are admisibles,
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that is, the staircases are slanted in the appropriate direction. Moreover, in
order to save space, we do not represent the final symmetry move in the even
numbered sectors.

References

[1] R. Bowen and C. Series, Markov maps associated with fuchsian groups, Publ.
Math. Inst. Hautes Études Sci. 50 (1979), 153–170.

[2] V. Delecroix and C. Ulcigrai, Diagonal changes for surfaces in hyperelliptic
components: a geometric natural extension of Ferenczi-Zamboni moves, Geom.
Dedicata 176 (2015), 117–174.

[3] G. Forni and C. Matheus, Introduction to teichmüller theory and its appli-
cations to dynamics of interval exchange transformations, flows on surfaces and
billiards, J. Mod. Dyn. 8 (2014), no. 3–4, 271–436.

[4] A. Y. Khinchin, Continued fractions, Dover, 1997, Reprint of the 1964 edition
by the University of Chicago Press.

[5] M. Kontsevich and A. Zorich, Connected components of the moduli spaces
of abelian differentials with prescribed singularities, Invent. Math. 153 (2003),
no. 3, 631–678.

[6] H. Masur, Ergodic theory of translation surfaces, Handbook of dynamical sys-
tems. Vol. 1B (Boris Hasselblatt and Anatole Katok, eds.), Elsevier B.V., 2006,
pp. 527–547.

[7] C. Series, The modular surface and continued fractions, J. Lond. Math. Soc.
31 (1985), 69–80.

[8] C. Series, Geometrical markov coding of geodesics on surfaces of constant neg-
ative curvature, Ergodic Theory Dynam. Systems 6 (1986), 601–625.

[9] J. Smillie and C. Ulcigrai, Geodesic flow on the teichmüller disk of the
regular octagon, cutting sequences and octagon continued fractions maps, Dy-
namical numbers - interplay between dynamical systems and number theory
(Martin Möller, Pieter Moree, and Thomas Ward, eds.), Contemp. Math., vol.
532, American Mathematical Society, 2010, pp. 29–65.

[10] J. Smillie and C. Ulcigrai, Beyond sturmian sequences: coding linear tra-
jectories in the regular octagon, Proc. Lond. Math. Soc. (3) 102 (2011), no. 2,
291–340.

[11] W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an
application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583.

[12] J.-C. Yoccoz, Continued fraction algorithms for interval exchange maps: an
introduction, Frontiers in number theory, physics, and geometry. I (Pierre
Cartier, Bernard Julia, Pierre Moussa, and Pierre Vanhove, eds.), Springer,
2006, pp. 401–435.

[13] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry.
I (Pierre Cartier, Bernard Julia, Pierre Moussa, and Pierre Vanhove, eds.),
Springer, 2006, pp. 437–583.



OCTAGONAL DIAGONAL CHANGES 23

·rr

q′2

q′3

w2,d

w3,d

w2,d

q′1
r · ·

w1,d

w1,d

q′2

q′3

·rr

w2,d

w3,d

w2,d

q2q1

q3

Figure 8: The moves of the diagonal changes algorithm for the first sector.
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Figure 9: The moves of the diagonal changes algorithm for the second sector.
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Figure 10: The moves of the diagonal changes algorithm for the third sector.
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Figure 11: The moves of the diagonal changes algorithm for the fourth sector.
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Figure 12: The moves of the diagonal changes algorithm for the fifth sector.
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Figure 13: The moves of the diagonal changes algorithm for the sixth sector.
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Figure 14: The moves of the diagonal changes algorithm for the seventh sector.
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